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Abstract: This report is on convolution neural network (CNN) fusion lock-in thermography, which
can implement the intelligent identification of defects for aviation honeycomb sandwich composites
(HSCs). First, HSCs specimens with subsurface delamination defects were fabricated and stimulated
by halogen lamps according to sinusoidal modulation, and the defects were reliably inspected using
lock-in thermography. The amplitude and phase images (commonly referred to as feature images)
were obtained by using a digital lock-in correlation algorithm. Furthermore, these feature images were
changed into gray or color-level image formalism datasets, which is pre-processed in ways including
contrast enhancement, threshold segmentation as well as mosaic data augmentation. Finally, the
four-layer feature pyramid structure and ransformer are combined and introduced to the popular
YOLOv5 CNN model, and a YOLOLT CNN model is formed to realize the defect identification. The
average precision (AP) in the defect identification of HSCs in complex environments (contains noise
and other objects) reached 93.2% and achieved an average recognition speed of 0.6 s/image.

Keywords: honeycomb sandwich composites; infrared nondestructive testing; deep learning; de-
fect detection

1. Introduction

Launch vehicles and aerospace vehicles have put forward higher requirements for the
specific strength and specific modulus of their materials. Honeycomb sandwich composites
(HSCs) are made of two high-strength facings and a lightweight honeycomb core (i.e.,
aluminum, titanium as well as paper), and they have been widely used in the primary
and secondary load-bearing structures of aerospace vehicles due to their high specific
stiffness, high specific strength, low density, good thermal insulation, as well as vibration
reduction [1–3]. During the preparation process or long-term work in a harsh environment,
HSCs may generate defects or damages (i.e., debonding, collapse, skin delamination,
ponding, impact damage, etc.), and among the defects, the most common is the debonding
between the skin and an adhesive layer, as well as the adhesive layer and a honeycomb
core [4]. These defects are usually small, discontinuous, and relatively hidden, which
causes HSCs to have no symptoms before failure; however they are suddenly destroyed
under the action of external impact or internal stress, causing a fatal threat to the structure
and seriously affecting the normal use of relevant components [5]. Therefore, it is of great
significance to quickly, efficiently and accurately identify the debonding defects of internal
HSCs using an effective nondestructive testing and evaluation (NDT&E) approach.

Currently, several NDT&E techniques have been used to detect the debonding defects
that occurred on HSCs including holographic interferometry (HI), ultrasonic testing (UT)
and infrared thermography (IRT) [6]. Holographic interferometry (HI) is a fully optical
method for defect detection, allowing the measuring of the surface displacement changes
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induced by subsurface defects with external stimulation. Thomas. et al. applied the HI
method to inspect the defect with a square wave excitation, and a defect detection strategy
was proposed to improve the speed and accuracy of the debonding detection of internal
sandwich structures [7]. The leaky lamb wave method has been utilized to detect the defect
of sandwich structures. Chong et al. reported a full-field ultrasonic guided wave approach
for the inspection of sandwich composite. Gere, the continuous wavelet transform was
used to characterize the full-field ultrasonic signal at a given dominant frequency [8]. As
the ultrasonic guide wave method has the disadvantage of lower detection efficiency, the
immersion C scan method has been used to inspect the debonding of HSCs, and the C scan
image provides a powerful tool for the debonding detection of HSCs [9]. Simultaneously,
immersion C needs water as the coupling medium. This is a contact inspection method,
and these factors would affect the applicability of this method and the detection ability.

Lock-in thermography (LIT) as an active thermography method has been employed
for the detection of many defects, especially typical defects of composite such as debonding,
delamination and fiber fracture [10–12]. LIT possibly requires less energy, obtains high
signal-noise-ratio (SNR) and detect deep defects, and has showed to be very attractive
for applications in the aerospace and automotive industry. Meola et al. applied LIT to
inspect the common damages of aerospace composites, and the results show that LIT
was effectively used for the detection of impact damage extension range and the size of
composites [13]. Wang et al. [5] presented LIT to detect the debonding of carbon/epoxy
facings-aluminum honeycomb sandwich composites (C/E HSCs) and established a 3D
finite element model of HSCs with an external optical sinusoidal excitation to analyze the
effects of the modulation frequency, optical power intensity, and excitation period on defect
detectability, and the results implied that LIT provides an effective method for inspecting
the debonding of C/E HSCs. Recently, many deep learning methods have been remarkable
in computer vision tasks. Among them, convolution neural network (CNN) has been
attractive and widely used in imaging processing, classification, and target recognition.

The aim of this paper is to detect the debonding of HSCs by combining LIT and
CNN, which is helpful in accurately identifying the debonding of HSCs and reducing the
interference of background noise. To accomplish this aim, the paper is organized as follows:
In Section 2, the HSCs specimens with subsurface debonding are fabricated, and a CNN
model YOLOLT that combines a four-layer feature pyramid structure and transformer
is proposed for HSCs debonding defect recognition. Section 3 highlights the LIT image
processing and CNN training, and introduces the experimental study on the debonding
defect identifications of HSCs using the YOLOLT method. Finally, the conclusions are
presented in Section 4.

2. Specimens and Methods
2.1. Specimens

In this study, the carbon/epoxy HSCs specimens are prepared and illustrated in
Figure 1, where the carbon/epoxy facing thickness is 1.0 mm, labeled as S1, S2 and S3. The
debonding defects are modeled by adhering 0.1 mm Polytetrafluoroethylene (PTFE) film
on the adhesive layer, and they have different sizes, shapes and spacings. The dimensions
and shapes of sample were obtained by tape measures and a bore gauge. The size of the
sample is 600 mm × 400 mm.
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The HSCs specimen was vertically positioned with the sound side exposed to the 
excitation source. In this study, the specimen was localized at a distance of 2 m to the 
infrared camera, a range of modulation frequencies was used to interrogate HSCs speci-
mens ranging from 0.4 Hz down to 0.05 Hz and the frame rate of the infrared camera was 
set to 37 fps. 

Figure 1. The HSCs specimens with subsurface artificial defects (unit: mm).

2.2. Experimental Setup and Procedure

A schematic diagram of the experimental setup was presented in Figure 2. Here, a
mid-infrared camera (FLIR SC7000) with 320 × 256 pixels elements, spectral bandwidth
3.6~5.1 µm and frame rate 170 fps for the full window was employed for LIT inspection.
The modulation heat apparatus utilized two 1 kW halogen lamps to provide the external
excitation, and a Protek 9031 function generator was used to control the power amplifier to
sinusoidally modulate the intensity of the halogen lamps. To prevent direct reflection back
into the infrared camera, the thermal sources were oriented on either side of the specimen.
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Figure 2. The schematic diagram of lock-in thermography.

The HSCs specimen was vertically positioned with the sound side exposed to the
excitation source. In this study, the specimen was localized at a distance of 2 m to the
infrared camera, a range of modulation frequencies was used to interrogate HSCs specimens
ranging from 0.4 Hz down to 0.05 Hz and the frame rate of the infrared camera was set to
37 fps.

Figure 3 shows the LIT amplitude and phase images of S1 HSCs specimen at different
frequencies.



Metals 2023, 13, 881 4 of 17

Metals 2023, 13, x FOR PEER REVIEW 4 of 17 
 

 

Figure 3 shows the LIT amplitude and phase images of S1 HSCs specimen at different 
frequencies. 

 
Figure 3. The LIT inspection results of S1, (a) amplitude images and (b) phase images. 

From Figure 3, it can be found that the modulation frequency has a critical and sig-
nificant effect on the subsurface defect detection by both LIT amplitude and phase images. 
However, the LIT phase image is helpful to identify the defect compared to LIT amplitude, 
which is easily influenced by non-uniform heat and surface emissivity. 

2.3. YOLOLT Model 
To reliably and accurately identify the debonding of HSCs, a defined YOLOLT con-

volution neural network (CNN) model is proposed, utilizing a matured YOLOv5-based 
CNN structure to integrate into lock-in thermography (LIT), and its structure mainly in-
cludes backbone net, neck net, and head net. Figure 4 represents the schematic diagram 
of the structure of the YOLOLT model. 

 

Figure 3. The LIT inspection results of S1, (a) amplitude images and (b) phase images.

From Figure 3, it can be found that the modulation frequency has a critical and
significant effect on the subsurface defect detection by both LIT amplitude and phase
images. However, the LIT phase image is helpful to identify the defect compared to LIT
amplitude, which is easily influenced by non-uniform heat and surface emissivity.

2.3. YOLOLT Model

To reliably and accurately identify the debonding of HSCs, a defined YOLOLT convo-
lution neural network (CNN) model is proposed, utilizing a matured YOLOv5-based CNN
structure to integrate into lock-in thermography (LIT), and its structure mainly includes
backbone net, neck net, and head net. Figure 4 represents the schematic diagram of the
structure of the YOLOLT model.
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In Figure 4, the backbone net was a fully convolutional network that used a large
number of residual skip layer connections, and to avoid the adverse effect of the pooling
layer on the gradient update, a convolution operation with a stride of 2 was utilized to
implement the down-sampling operation. In the neck net, the feature pyramid network
(FPN) [14] and the pyramid attention network (PAN) [15] were used to fuse deep and
shallow features to achieve multi-scale target recognition. FPN and PAN aggregate pa-
rameters for the various recognition layers from different backbone layers by connecting
breadthwise, which make the multi-scale feature images have better robustness for facing
objects with a large-scale variation range. In the head net, the EIOU Loss function [16] was
employed for the loss function of the prediction box position, and the BCE Loss [17] was
considered as both the category loss function and target confidence loss function of the
prediction box.

As LIT amplitude and phase images are formed with each calculation pixel value by
using of the lock-in correlation algorithm seen in Figure 2, they are unavailable as the input
image-based gray or RGB levels for the YOLOVLT model. Therefore, the LIT amplitude and
phase images should be changed to gray or RGB-level images, and they can be transferred
into gray or RGB images by the following:

Igray[Am(x, y)] = gray(IAm) (1a)

Igray[Ph(x, y)] = gray(IPh) (1b)

Irgb[Am(x, y)] = RGB(IAm) (1c)

Irgb[Ph(x, y)] = RGB(IPh) (1d)

IAm =
Am(x, y)− min[Am(x, y)]

max[Am(x, y)]− min[Am(x, y)]
(1e)

IPh =
Ph(x, y)− min[Ph(x, y)]

max[Ph(x, y)]− min[Ph(x, y)]
(1f)

here, Igray, Irgb present the gray level image and RGB pseudo-color image, IAm, IPh stand for
the normalization images of LIT amplitude and phase images, and Am(x, y), Ph(x, y) are
the LIT amplitude and phase images obtained by lock-in correlation algorithms shown in
Figure 2.

2.4. YOLOLT Model Training and Evaluation

For the purpose of YOLOLT model training, a Dell desktop workstation was employed
for the training and experimental test. It was configured with an Intel Core i9–10980X CPU,
NVIDIA GeForce RTX 3090 GPU with 24 G RAM, 256 GB RAM, and Windows 10 64-bit
OS. A homemade software was programmed using Python 3.7.10, and the deep learning
framework was established based on Pytorch 1.8.0.

Average precision (AP) is defined as the area under the precision (P)-recall (R) curve,
and it was considered as the criterion and employed for evaluating the YOLOLT perfor-
mance on the defect identification. Here, for the target detection, Intersection over Union
(IoU) was used to calculate the coincidence degree of the two target boundaries, which is the
ratio of the intersection area to the union one for two areas [16]. Additionally, for the defect
determination, precision (P) is calculated to represent the ratio of successful recognition
for a given defect, recall (R) is calculated to represent the ratio of correct inspection for all
defects, and they are given by the following:

P =
TP

TP + FP
(2a)
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R =
TP

TP + FN
(2b)

here, TP presents the correctly determined number of true defects, FP stands for the falsely
identified defect number of non-defects and FN represents the falsely recognized non-defect
number of true defects.

For the purpose of the accurately detection of HSCs debonding, a series of HSCs
specimens were prepared for the debonding detection by use of LI, including 60 specimens,
20 debonding of each HSCs specimen. These specimens had a range of facing thickness from
0.5 mm up to 2.0 mm, and the debonding size varyied from 5 mm to 20 mm. Furthermore,
the LIT amplitude and phase images of these HSCs specimens were formed for the dataset
for YOLOLT training, and HSCs specimens of S1, S2 as well as S3 were used to examine the
YOLOLT performance. Figure 5 illustrated the LIT amplitude and phase images for the
different facing thicknesses of HSCs specimens.

Metals 2023, 13, x FOR PEER REVIEW 6 of 17 
 

 

TPP
TP FP

=
+

 (2.a)

TPR
TP FN

=
+

 (2.b)

here, TP presents the correctly determined number of true defects, FP stands for the falsely 
identified defect number of non-defects and FN represents the falsely recognized non-
defect number of true defects. 

For the purpose of the accurately detection of HSCs debonding, a series of HSCs 
specimens were prepared for the debonding detection by use of LI, including 60 speci-
mens, 20 debonding of each HSCs specimen. These specimens had a range of facing thick-
ness from 0.5 mm up to 2.0 mm, and the debonding size varyied from 5 mm to 20 mm. 
Furthermore, the LIT amplitude and phase images of these HSCs specimens were formed 
for the dataset for YOLOLT training, and HSCs specimens of S1, S2 as well as S3 were 
used to examine the YOLOLT performance. Figure 5 illustrated the LIT amplitude and 
phase images for the different facing thicknesses of HSCs specimens. 

 
Figure 5. LIT images of HSCs specimens with various facing thickness. 

From Figure 5, the debonding defect of HSCs was difficult to directly and accurately 
determine regarding the facing thickness reaching up to 1.5 mm by using the LIT ampli-
tude and phase images; however, it is very critical and imperative to implement intelli-
gence identification of these debonding defects in virtue of CNN model. Based above all 
LIT amplitude and phase images dataset, the YOLOLT model was trained and used to 
examine the debonding recognition capability of HSCs. In this work, the training param-
eters of YOLOLT, mainly including batch size and epoch, had the batch size varied from 
2 to 16, the epoch set as 300 and 500, and the LIT amplitude and phase images pre-pro-
cessed for the contrast enhancement and segmentation. 

2.5. LIT Images Enhancement, Segmentation and Data Augmentation 
Image contrast enhancement is very significant to improve the defect identification, 

and it would highlight the details of defects from the background. In this work, the com-
mon global histogram and adaptive threshold equalization methods were used to enhance 
the contrast of LIT images. Figure 6 shows the enhanced LIT phase image and its histo-
gram of HSCs S1 specimen. 

Figure 5. LIT images of HSCs specimens with various facing thickness.

From Figure 5, the debonding defect of HSCs was difficult to directly and accurately
determine regarding the facing thickness reaching up to 1.5 mm by using the LIT amplitude
and phase images; however, it is very critical and imperative to implement intelligence
identification of these debonding defects in virtue of CNN model. Based above all LIT
amplitude and phase images dataset, the YOLOLT model was trained and used to examine
the debonding recognition capability of HSCs. In this work, the training parameters of
YOLOLT, mainly including batch size and epoch, had the batch size varied from 2 to 16,
the epoch set as 300 and 500, and the LIT amplitude and phase images pre-processed for
the contrast enhancement and segmentation.

2.5. LIT Images Enhancement, Segmentation and Data Augmentation

Image contrast enhancement is very significant to improve the defect identification,
and it would highlight the details of defects from the background. In this work, the common
global histogram and adaptive threshold equalization methods were used to enhance the
contrast of LIT images. Figure 6 shows the enhanced LIT phase image and its histogram of
HSCs S1 specimen.
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As can be seen from Figure 6, the debonding defects of HSCs S1 specimen become
obvious, easily distinguished from the background through global histogram and thresh-
old equalization, respectively. Simultaneously, the debonding defect contour caused a
relatively obvious expansion phenomenon after threshold equalization processing, which
is not conducive to quantify the defect size. Additionally, the histogram in Figure 6c is
relatively average and uniform, which implied that the background noise had also en-
hanced. However, from Figure 6b, the contrasts of debonding defects with different sizes
were obviously enhanced by global histogram method, and the gray level distribution had
a degree of discrimination, which was helpful for being better differentiated regarding
background and noise. Furthermore, the enhanced LIT images were filtered by using the
most commonly Gaussian and Median filters [18].

To quantitatively detect the debonding defect area from LIT images, it is necessary
to perform binarization of the LIT image’s use of image segmentation. In this work, both
threshold algorithm and K-means clustering segmentation were used to segment the LIT
images, and here, the threshold segmentation adopted an adaptive threshold, and the
K-means clustering utilized a 2-clustering for segmentation. Figure 7 presents the binarized
segmentation of an LIT amplitude image of HSCs S1 specimen.
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From Figure 7, both threshold and K-means clustering segmentations were available
for realization of binary distinction between the debonding defects and background, and
they had failed to segment all debonding defects. It can be seen in Figure 7b that the image
edge burr is relatively lesser and the background noise is also evidently suppressed by
using of K-means clustering segmentation; however, the debonding defect is relatively
difficult to accurately identify compared to threshold segmentation. From Figure 7a, more
debonding defects were segmented, their shapes were significantly distinguished, and
finally, the threshold segmentation was employed for the defect detection of LIT images.

Generally, for the construction of a neural network, the deeper neural network allows
the handling of more complex problems, and the more layers of the neural network, the
more parameters it contains. To obtain the correct parameters to meet complex work
requirements, it is necessary that a large amount of data is used for CNN training. The
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dataset in this experiment contains 1270 infrared images, which are divided into a training
set and verification set according to the ratio of 7:3 due to there not being enough data for
practical engineering applications. In order to improve the generalization of the neural
network and avoid overfitting, it has to perform data augmentation on the original data
to increase the amount of training data, as well as to enhance the robustness of the CNN
model. Commonly, data augmentation mainly carries out simple processing on the original
data such as flipping, translation, rotation, scaling and cropping [19]. In this work, mosaic
data augmentation was applied to the LIT images dataset, the input batch size was set to
16 for YOLOLT, and the results was shown in Figure 8. From Figure 8, each sub image is
concatenated from four original HSCs images, which means that the Mosaic algorithm has
been implemented, achieving the goal of expanding the dataset.
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Figure 8. Mosaic data augmentation results.

The mosaic data augmentation method has more merits regarding the expansion of
the LIT image dataset, enriching the background of the recognized object; primarily, the
random scaling adds a lot of small objects, making the CNN more generalizable.

3. Results and Discussion

Figure 9 shows the corresponding AP and loss function curves of different batch sizes
during 300 training epochs. Here, image size was set to 320.
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From Figure 9, it was found that the AP curve started to greatly fluctuate before 150
epochs, and then it gradually converged and reached a stable stage. The comparison of
YOLOLT training results with varied batch sizes is listed in Table 1.

Table 1. Comparison of YOLOLT training results with different batch sizes.

Evaluation Batch Size = 2 Batch Size = 4 Batch Size = 8 Batch Size = 12 Batch Size = 16

P 0.721 0.730 0.725 0.741 0.743
R 0.980 0.990 0.990 0.990 0.990

AP 0.906 0.923 0.926 0.926 0.932
Training time (s) 17,467 9056 5426 4733 4308

It can be seen from Figure 9 and Table 1 that the YOLOLT rapidly converged with the
increase in the batch size during training, but it easily failed regarding the local optimum
point; furthermore, this resulted in the drastic fluctuations in the AP cures. In opposite, for
a small batch size, YOLOLT would escape the current local optimal position due to the
rapid rise in the learning rate, and it could find a new optimal point as soon as possible.
The AP has the largest value at the batch size of 16 compared to others, and the training
time is reduced to 75.35% in comparison with batch size of 4. Therefore, in this work, the
batch size was set to 16 for YOLOLT training. Figure 10 shows AP and loss function curves
during the training process at batch size of 16 and epochs of 500.
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From Figure 10, the AP and loss function curves were basically stable after 300 epochs,
and the AP reached up to the maximum value at the 297th epoch, and then gradually
decreased due to over-fitting. Therefore, the YOLOLT model was trained with 300 epochs
in experiment.

In the current case, the genetic algorithm [20] has been used to find the optimal main
hyperparameters of YOLOLT (including initial learning rate lr0, cosine annealing learning
rate lrf, stochastic gradient descent momentum SGD momentum, EIOU loss coefficient box,
target detection loss coefficient obj, optimizer weight attenuation coefficient weight decay,
threshold for the ratio of the length and width of the label to the length and width of the
anchor anchor-t, etc.). Table 2 shows the range of hyperparameters variation.

Table 2. Range of hyperparameters variation.

Hyperparameters Mutation Scale Minimum Value Maximum Value

lr0 1 0.00001 0.1
lrf 1 0.01 1.0

momentum 0.3 0.6 0.98
box 1 0.02 0.2
obj 1 0.2 4.0

weight decay 1 0.0 0.001
anchor-t 1 2.0 8.0

The crossover and mutation are the main operators in the genetic algorithm. In this
current case, the variation with 90% probability and 0.04 variance was set to generate the
new offspring based on the combination of the best parents of all previous generations.
Simultaneously, the optimal three combinations of the hyperparameters of the previous
generation were directly inherited to the next generation through skipping mutation
and crossover, and eliminating the remaining combinations after each epoch. Figure 11
illustrates a parallel coordinate diagram of the hyperparameter optimization results after
50 epochs.

Metals 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

From Figure 10, the AP and loss function curves were basically stable after 300 
epochs, and the AP reached up to the maximum value at the 297th epoch, and then grad-
ually decreased due to over-fitting. Therefore, the YOLOLT model was trained with 300 
epochs in experiment. 

In the current case, the genetic algorithm [20] has been used to find the optimal main 
hyperparameters of YOLOLT (including initial learning rate lr0, cosine annealing learning 
rate lrf, stochastic gradient descent momentum SGD momentum, EIOU loss coefficient box, 
target detection loss coefficient obj, optimizer weight attenuation coefficient weight decay, 
threshold for the ratio of the length and width of the label to the length and width of the 
anchor anchor-t, etc.). Table 2 shows the range of hyperparameters variation. 

Table 2. Range of hyperparameters variation. 

Hyperparameters Mutation Scale Minimum Value Maximum Value 
lr0 1 0.00001 0.1 
lrf 1 0.01 1.0 

momentum 0.3 0.6 0.98 
box 1 0.02 0.2 
obj 1 0.2 4.0 

weight decay 1 0.0 0.001 
anchor-t 1 2.0 8.0 

The crossover and mutation are the main operators in the genetic algorithm. In this 
current case, the variation with 90% probability and 0.04 variance was set to generate the 
new offspring based on the combination of the best parents of all previous generations. 
Simultaneously, the optimal three combinations of the hyperparameters of the previous 
generation were directly inherited to the next generation through skipping mutation and 
crossover, and eliminating the remaining combinations after each epoch. Figure 11 illus-
trates a parallel coordinate diagram of the hyperparameter optimization results after 50 
epochs. 

 
Figure 11. The parallel coordinates plot of hyperparameter optimization results. 

It was found from Figure 11 that the optimization of hyperparameters played a sig-
nificant role in improving AP, and AP fluctuated in variation range from 0.85 to 0.94, fi-
nally reaching a maximum value of 0.932. The yellow curve in Figure 10 represents an 
optimal hyperparameters of YOLOLT, and they were listed in Table 3 and applied for the 
identification of the debonding defect by LIT inspection. 

  

Figure 11. The parallel coordinates plot of hyperparameter optimization results.

It was found from Figure 11 that the optimization of hyperparameters played a
significant role in improving AP, and AP fluctuated in variation range from 0.85 to 0.94,
finally reaching a maximum value of 0.932. The yellow curve in Figure 10 represents an
optimal hyperparameters of YOLOLT, and they were listed in Table 3 and applied for the
identification of the debonding defect by LIT inspection.
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Table 3. Optimal hyperparameters of YOLOLT.

Parameters Value Parameters Value

batch size 16 epochs 300
images size 320 lr0 0.00771

lrf 0.2783 momentum 0.7437
box 1 obj 0.4312

weight decay 0.00047 anchor-t 2.34

LIT image pre-processing would be directly influenced by YOLOLT training properties.
Figure 12 presents the precision, recall, AP and loss function curves during YOLOLT
training with the pre-processed LIT images and original ones as datasets, respectively.
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From the precision and recall curves in Figure 12a,b, it can be seen that YOLOLT
would be converged about 20 epochs in advance with pre-processing LIT images used
in training, and the precision and recall curves were more stable and less volatile than
the training from original LIT images. Simultaneously, from Figure 12c,d, the oscillation
amplitude of overall AP curve become very weak and tended to relatively stabilize after 100
epochs, with the loss curve decreasing more smoothly with pre-processed dataset training
in comparison with original images training. This contributed to the fact that it would
improve the debonding defect detectability and identification probability by LIT image
pre-processing, so that the false positive rate of YOLOLT model was reduced. The YOLOLT
training evaluation results were listed in Table 4.
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Table 4. The training evaluation results.

CNN Model AP P R Training Time/s

Pre-processing 0.932 0.712 0.99 3470
Original image 0.925 0.681 0.98 4308

It was obtained from Table 4 that the performance parameters of YOLOLT including
AP, P as well as R were increased with pre-processed LIT images dataset training compared
to original LIT images dataset training, and the training time was obviously reduced by
about 20%.

Figure 13 illustrates the comparisons of the debonding defect recognition results of
HSCs S1 specimen by YOLOLT.
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phase image and (b) pre-processed LIT phase image.

It can be seen from Figure 13 that all the debonding defects of HSCs S1 specimen
were reliable and accurately identified from the pre-processed LIT phase image by the use
of YOLOLT, and this indicates that the signal-noise-ratio (SNR) of LIT phase image was
improved visibly to the naked eye, with the contrast between debonding defect background
enlarged to enhance the defect recognition probability of YOLOLT. For the defect with a
diameter of Φ5 mm, its edge became blurred and easily submerged in the background noise,
and in this case, it was still difficult to reliably determine the pre-processed LIT phase image
by using YOLOLT. However, it provides evidence that the accuracy of debonding defect
identification was improved and the training time of YOLOLT was obviously reduced by
utilizing the pre-processed LIT images.

In this work, the proposed YOLOLT model was inherited from the popular YOLOv5
structure of the CNN model. It increases the number of branches in the head network
with an increase in the layers of the feature pyramid network; in addition, the transformer
structure was added, and the self-attention mechanism is also introduced to prevent
overfitting and improve the resolution of defects. Figure 14 shows the debonding defect
recognition results of HSCs S2 specimen by using the ordinary YOLOv5 and the proposed
YOLOLT, respectively.
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Figure 14. The comparisons debonding defects recognition of HSCs S2, (a) the ordinary YOLOv5,
and (b) the proposed YOLOLT.

From Figure 14a, the debonding defects with the size of 5 mm (seen in Region A) were
missed and not accurately identified by using the ordinary YOLOv5 model. However, from
Figure 14b, the small-sized debonding defects (seen in a same Region A) were reliable and
accurately recognized by using the proposed YOLOLT CNN model. Here, this implied
that the small-sized defects identification capability of YOLOLT was improved due to the
increase in the layers of feature pyramid network based on YOLOv5. So, in this work,
it is a significant improvement of YOLOv5 that a branch of four times down-sampling
from the backbone network was added, the eight times down-sampling feature map from
the upper-level feature pyramid network was up-sampled and then spliced along the
channel direction tensor, and finally, the feature fusion was performed through the pyramid
attention network, as well as output to the head network.

Figure 15 depicts the debonding defect recognition results of the HSCs S3 specimen
by using the ordinary YOLOv5 and the proposed YOLOLT, respectively.
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and (b) the proposed YOLOLT.

From Figure 15a, it was seen that the two adjacent debonding defects (the distances
between the two defects center were 10 mm, 15 mm and even 20 mm shown in Region
A) were identified as one debonding defect by using the ordinary YOLOv5 CNN model.
However, from Figure 15b, the two adjacent debonding defects (shown in the same Region
A) were accurately distinguished by using the YOLOLT CNN model, and this contributed
to the fact that the YOLOLT took into account introducing a self-attention principle through
a transformer structure; furthermore, it would add adaptive weights to the defect features
of input LIT images of HSCs through scaled dot-product attention (SDPA) to enhance the
feature expression ability. From the above improvements in YOLOv5, YOLOLT can be nade
more sensitive to the adjacent defects and accurately distinguish them.

The amplitude and phase images can be synchronously obtained by using LIT inspec-
tion; therefore, the YOLOLT CNN model could be trained by using LIT amplitude image,
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LIT phase image and their fusion (LIT amplitude and phase) datasets, respectively. In this
case, the effect of different datasets on the recognition accuracy of YOLOLT was studied,
and the AP and loss function curves were obtained by training the use of LIT amplitude,
phase and their combination (amplitude and phase), shown in Figure 16, as well as the
evaluation parameters were listed in Table 5.
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Table 5. The evaluation results based on different training datasets.

Training Dataset AP R Identification Time (s)

LIT amplitude 0.879 0.970 0.549
LIT phase 0.887 0.980 0.575

LIT amplitude and phase 0.932 0.990 0.603

From Figure 16a, it was seen that the AP curves shows a relative high fluctuation by of
the use of individual LIT amplitude or phase dataset training compared to the synchronous
use of amplitude and phase (amplitude and phase) training. From Figure 16b, it was found
that the loss curve of training would be slowly decreased before 60 epochs whenever using
individual LIT amplitude or phase dataset, and then it would be rapidly decreased to a
stable stage; simultaneously, the loss value of LIT phase training would be always lower
than LIT amplitude training. However, the loss curve of training would be quickly reduced
by synchronously using amplitude and phase, and it has a relatively low loss value in
comparison with individual LIT amplitude or phase training. This also indicated that
the feature information of debonding defect of HSCs could be comprehensively extracted
through synchronously using amplitude and phase training.

It can be seen from Table 5 that the performance parameters of YOLOLT including AP,
R were increased synchronously using amplitude and phase dataset training compared to
individual LIT images dataset training, and in contrast, the defect identification time was
increased by about 10% and 5% compared to LIT amplitude and phase dataset training,
respectively.

Figure 17 shows the comparisons of the debonding defect recognition results of HSCs
S2 by the use of YOLOLT with different datasets training.
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4. Conclusions 
A convolution neural network (CNN) fusion lock-in thermography (LIT) has been 

successfully employed for the debonding defect identification of honeycomb structure 
composites (HSCs). The calculated LIT amplitude and phase matrices are changed into 
the gray and color-level images, and they have been processed by global histogram equal-
ization and threshold segmentation for improvement of contrast and defect determina-
tion. A named YOLOLT CNN model was proposed, which combines a four-layer feature 
pyramid structure and transformer into a popular YOLOv5 CNN model framework. The 
YOLOLT CNN model was trained with the use of individual LIT amplitude, LIT phase 
and their synchronous datasets (amplitude and phase), and the optimal training parame-
ters of YOLOLT were obtained such as a batch size of 16, epochs of 300 for HSCs debond-
ing defect inspection. Through comparison experiments, the YOLOLT CNN model has a 
high debonding defect identification ability compared to the ordinary YOLOv5 CNN 
model, and the debonding defects of HSCs are allowed to reliably and accurately be rec-
ognized by YOLOLT from the synchronous use of amplitude and phase dataset training. 
In this work, with the application of YOLOLT, the average accuracy of identifying the 
debonding defects of HSCs specimens could reach up to 93.2%, and the average recogni-
tion speed was about 0.6 s. The CNN fusion LIT method provides a powerful tool for the 
debonding defect of HSCs. In the future work, this method can be studied in depth, the 
instance segmentation research of HSCs defects can be carried out and the prediction of 
the defect area mask can be realized through CNN. In-depth research on the depth of 
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Figure 17. Comparisons of defect identification of HSCs S2 with different datasets training, (a) LIT
amplitude image, (b) LIT phase image and (c) LIT amplitude and phase images.

From Figure 17a, for HSCs S2 specimen, six debonding defects were missed and
not reliably identified by YOLOLT obtained from LIT amplitude dataset training. From
Figure 17b, there were four debonding defects of HSCs S2 missed, and they were not
accurately labeled by the YOLOLT obtained from the LIT phase dataset training. Finally,
from Figure 17c, all debonding defects of HSCs S2 were reliably and accurately recognized
by YOLOLT from the synchronous use of amplitude and phase dataset training, and this
also verified that LIT amplitude and phase characterize the defect feature of HSCs from
two direction channels in the feature space, thus providing more feature details of defects
of HSCs for YOLOLT training and applications.

4. Conclusions

A convolution neural network (CNN) fusion lock-in thermography (LIT) has been
successfully employed for the debonding defect identification of honeycomb structure
composites (HSCs). The calculated LIT amplitude and phase matrices are changed into the
gray and color-level images, and they have been processed by global histogram equalization
and threshold segmentation for improvement of contrast and defect determination. A
named YOLOLT CNN model was proposed, which combines a four-layer feature pyramid
structure and transformer into a popular YOLOv5 CNN model framework. The YOLOLT
CNN model was trained with the use of individual LIT amplitude, LIT phase and their
synchronous datasets (amplitude and phase), and the optimal training parameters of
YOLOLT were obtained such as a batch size of 16, epochs of 300 for HSCs debonding
defect inspection. Through comparison experiments, the YOLOLT CNN model has a high
debonding defect identification ability compared to the ordinary YOLOv5 CNN model,
and the debonding defects of HSCs are allowed to reliably and accurately be recognized by
YOLOLT from the synchronous use of amplitude and phase dataset training. In this work,
with the application of YOLOLT, the average accuracy of identifying the debonding defects
of HSCs specimens could reach up to 93.2%, and the average recognition speed was about
0.6 s. The CNN fusion LIT method provides a powerful tool for the debonding defect of
HSCs. In the future work, this method can be studied in depth, the instance segmentation
research of HSCs defects can be carried out and the prediction of the defect area mask
can be realized through CNN. In-depth research on the depth of HSCs defects will be
carried out, and the detection of the depth of HSCs defects will be realized by analyzing
the temperature time response of the pixel points in the defect area in the infrared image
sequence. Combined with lock-in thermography, it is further applied to the classification,
quantitative identification and intelligent detection of debonding defects. The limitation of
this paper is the limited datasets and the limited labels caused by the inefficiency of manual
labeling, which is also one of the problems to be solved in the future.
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