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Abstract: Continuous casting production is an important stage in smelting high-quality steel, and
automatic casting control based on artificial intelligence is a key technology to improve the continu-
ous casting process and the product quality. By controlling the opening degree of the stopper rod
reasonably, the mold can be filled with liquid steel stably in the specified time window, and automatic
casting can be realized. In this paper, an automatic casting control method of continuous casting
based on an improved Soft Actor–Critic (SAC) algorithm is proposed. Firstly, a relational model
of the stopper rod opening degree and the liquid steel outflow velocity is established according to
historical casting data. Then the Markov Decision Process (MDP) model of the automatic casting
problem and the reinforcement learning framework based on the SAC algorithm are established.
Finally, a Heterogeneous Experience Pool (HEP) is introduced to improve the SAC algorithm. Ac-
cording to the simulation results, the proposed algorithm can predict the stopper rod opening degree
sequence under the constraint of the target liquid level curve. Under different billet specifications
and interference conditions, an accuracy of 80% of liquid level in the mold and a stopper rod opening
degree stability rate of 75% can be achieved, which is 4.29% and 3.17% higher than those for the
baseline algorithms, respectively.

Keywords: continuous casting; automatic casting; liquid level control; stopper rod opening degree
control; Soft Actor–Critic; experience pool

1. Introduction

Continuous casting (continuous steel casting) is the process of casting, cooling and
slitting of high-temperature liquid steel through a continuous casting machine to obtain
billets. As a bridge between steelmaking and rolling, the stability of the continuous casting
production not only affects the efficiency of steelmaking tasks but also relates to the quality
and cleanliness of the steel produced. The continuous casting machine is mainly composed
of devices such as the ladle, tundish, stopper rod, mold, pulling machine, second cooling
equipment and cutting equipment.

The tundish is a buffer that feeds the casting line and regulates the supply of liquid
steel to the mold. In addition, the tundish ensures that liquid steel is continuously fed to
the process, especially while the ladles switch between empty and full [1].

The mold, as the core equipment of the continuous casting machine, is of great
importance to the quality of the billet. The liquid steel in the tundish flows into the
mold through the stopper rod control, and the liquid steel is initially cooled and solidified
in the mold to form the billet shell, which is pulled out from the bottom by the pulling
machine. Good control of the liquid level in the mold can effectively avoid the problems
of steel leakage, steel overflow and slag rolling, ensuring production safety and avoiding
defects on the surface of or inside the billet.

At present, the liquid level in the mold is mainly controlled by controlling the inflow
from the tundish through the stopper rod or baffle. The opening degree of the stopper
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rod or the position of the baffle is changed according to the liquid level in the mold, so as
to change the liquid steel outflow velocity and stabilize the liquid level in the mold. The
control of the liquid level in the mold in the complete casting process consists of two main
stages: The first is the rapid filling stage of the liquid steel before the start of the pulling
machine, and the second is the stable casting stage of the liquid steel after the start of the
pulling machine. In the first stage, due to the limitations of the hardware and environment,
the sensor cannot accurately detect the liquid level in the mold and, therefore, cannot
control the liquid level in the mold in a closed-loop manner, so automatic control in this
stage has become a key issue for artificial intelligence in the process of continuous casting.

The liquid steel in the tundish is an incompressible thermal fluid, and its outflow
velocity is not only related to the opening degree of the stopper rod or the position of the
baffle but also related to the weight of the liquid steel in the tundish, because the weight of
the liquid steel can affect the pressure at the outlet, thus affecting the outflow velocity of
the liquid steel. The relationship between the velocity and the pressure fields of the liquid
steel at the outlet is complex [2], so this paper establishes the relationship model between
the opening degree of stopper rod and the liquid steel outflow velocity by using the real
casting data for a stopper-rod-type continuous casting machine. This model introduces the
weight parameter of the tundish to capture the influence of the liquid steel pressure on the
outflow velocity.

The numerical approach is used to simulate the flow of liquid steel under different
opening degrees of the stopper rod. The most popular numerical approach is to assume a
steady-state, single-phase flow using a Reynold’s Averaged Navier–Stokes (RANS) method,
together with a turbulence model such as k-ε or k-ω [3]. The numerical solutions are
regarded as approximate, and they can be accurate in some cases [4]. Therefore, the
accuracy of the proposed model can be verified by comparing the results of the numerical
simulation and the relational model calculations [5].

Reinforcement learning, as an important branch in the field of machine learning [6],
is considered one of the core technologies leading to strong artificial intelligence. It is
based on an interactive learning mechanism [7] and does not require precise mathematical
equations. It emphasizes that agents learn in interaction with the environment, with good
adaptability and robustness [8], and has achieved excellent results in many fields such
as quantitative trading, robot control and games [9]. Automatic casting is a complex
process related to liquid steel flow, and it is extremely difficult to accurately describe the
relationship between the target liquid level, the liquid steel outflow velocity and the stopper
rod opening degree. Therefore, in this paper, an automatic casting control method based
on reinforcement learning is proposed, which takes advantage of the neural network and
reinforcement learning mechanisms to predict the optimal stopper rod opening degree
sequence to achieve stable control of the liquid level in the mold.

The contributions of this work are three folds.
(1) A novel relational model between the stopper rod opening degree and the liquid

steel outflow velocity is constructed, which can calculate the liquid steel outflow velocity
corresponding to different opening degrees of the stopper rod. Compared with previous
works, this model can more accurately reflect the relationship between variables by using
real casting data.

(2) A control framework for automatic casting based on reinforcement learning is con-
structed, which can predict the stopper rod opening degree sequence under the constraint
of the target liquid level curve during casting. Compared with previous works, this control
framework can automatically adapt to different billet specifications and environmental
interference without complicated manual calculations.

(3) A novel reinforcement learning algorithm is proposed to improve the performance
of the control framework, which can improve the liquid level accuracy in the mold and
the stability of the stopper rod opening degree. Compared with the baseline algorithm,
the proposed algorithm emphasizes the importance of different samples and optimizes the
training process of neural networks.
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The remainder of this paper is organized as follows: Section 2 reviews the related
work on the control of the liquid level in the mold. Section 3 presents the model of the
automatic casting problem. Section 4 presents the automatic casting control framework
and the improved reinforcement learning algorithm. Section 5 presents the simulation
experiments and analyzes the results. Section 6 gives the conclusions of this paper.

2. Related Work

Automatic casting is a technology used to achieve a stable rise of the liquid level in the
mold by controlling the stopper rod or baffle intelligently. It is one of the most important
issues in the field of continuous casting and has a direct impact on the quality of the billet.
During the development of continuous casting technology, many classical methods for the
control of the liquid level in the mold emerged, such as predictive control, fuzzy control,
adaptive control, etc.

In [10], a Hammerstein Generalized Predictive Controller (HGPC) was designed, and
the performance of the controller under different types of environmental disturbances was
verified by simulation. Reference [11] designed a Generalized Predictive Controller (GPC)
that modeled white noise as colored noise, which improved the robustness of the controller
and took into account the system integrity characteristics in modeling to avoid complex
calculations in parameter identification.

Reference [12] designed a fuzzy Proportional–Integral–Derivative (PID) controller with
nonlinear compensation, which effectively suppressed fluctuations of the liquid level in the
mold under abnormal operating conditions and achieved a better anti-disturbance capability.

Reference [13] designed an adaptive control framework, established an internal mode
observer to predict the periodic component of the signal and then established an adaptive
control paradigm to effectively reduce the dynamic bulging problem in continuous casting.

However, there are still some challenges in the control of the liquid level in the mold,
mainly including inaccurate sensor detection, system delays and limited understanding of
its dynamic processes from the control perspective, in addition to disturbances caused by
uncertainties such as clogging of the tundish outlet port [14] and argon flow [15,16].

Reinforcement learning has good nonlinear fitting ability and independent decision-
making ability [17]. The Soft Actor–Critic (SAC) algorithm [18], as one of the representative
algorithms of reinforcement learning in recent years, has achieved the best effect on a
series of continuous control benchmark tasks [19]. Therefore, it is applied in this paper for
automatic casting control of continuous casting, so that the stopper rod opening degree
can respond to different environmental states to achieve stable control of the liquid level in
the mold.

3. Problem Modeling

Automatic casting technology means that the stopper rod automatically completes
the filling of liquid steel in the mold in the initial stage of continuous casting, making the
process of raising the liquid level in the mold fully controllable and reaching the start level
of the pulling machine within the specified time window. The setting of the target liquid
level curve was in accordance with reference [20], but in order to better understand the
process of raising the liquid level in the mold, the specific liquid level value is abstracted in
this paper, and the final curve is shown in Figure 1. The period from 0 to t5 is the automatic
casting process. The liquid level in the mold reaches the start level h2 of the pulling machine
at t5 and then switches to closed-loop control and reaches the stable casting level at t6.

The sensor of the liquid level in the mold cannot detect a level below h1 due to
hardware limitation and high-temperature steam, so it is necessary to establish a relational
model between the stopper rod opening degree and the liquid steel outflow velocity and
calculate the stopper rod opening degree at different stages of casting according to the
model. Then, the stopper rod opening degree sequence is put into the first-level system
(i.e., direct control system of continuous casting machine) of the production line to realize
automatic casting. Equation (1) is the model of the liquid level variation in the mold. The
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liquid level in the mold is related to the normal inflow Qin of liquid steel and the fluctuation
Qerr under interference. Due to the existence of various disturbances and noises in the
casting process, to simplify the model, the influence of all disturbances on the liquid level
in the mold was set as Qerr. {

Qin = F(p)
dH
dt = Qin(t)−Qerr(t)

S
(1)
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As shown in Equation (1), p is the stopper rod opening degree, H is the liquid level in
the mold and S is the cross-sectional area of the billet.

In order to establish the relationship F between the stopper rod opening degree p
and the liquid steel inflow Qin, this paper used the historical casting data of a steel mill to
calculate the weight change relationship between the ladle and the tundish in the casting
process, as shown in Equation (2) and indirectly established the relationship F according
to the law of conservation of mass. Specifically, the liquid steel in the ladle flows into the
tundish at uniform velocity through the fixed opening degree water outlet, and the liquid
steel in the tundish flows into the mold at a nonuniform velocity through the stopper rod
control. The liquid level in the mold rises gradually. In the casting data used in this paper,
the sensor sampling interval for the stopper rod opening degree in association with the
weight of the ladle and the tundish was 0.5 s. According to the law of conservation of mass,
the difference between the decrease in the weight of the ladle and the increase in the weight
of the tundish every 0.5 s is the weight of the liquid steel flowing into the mold from the
tundish at that stopper rod opening degree.

∆Wbig = Wt
big −Wt+1

big
∆Wmid = Wt+1

mid −Wt
mid

s.t.∆Wbig > ∆Wmid > 0

Qin =
∆Wbig−∆Wmid

ρ

p→ Qin

(2)

As shown in Equation (2), Wbig is the weight of the ladle, Wmid is the weight of the
tundish and ρ is the density of the liquid steel.

Considering that the weight of the liquid steel in the tundish also affects the flow
velocity at the outlet of the stopper rod, the heavier the liquid steel is, the faster the outflow
velocity of the liquid steel can be under the same stopper rod opening degree. Therefore, in
order to model the actual casting situation more accurately, the parameter of the tundish
weight was introduced based on Equation (1), and the correction coefficient k was added,
which was determined by fitting with the historical data. The final equation of liquid level
variation in the mold is shown in Equation (3).

dH
dt

=
Qin(t)·Wt

mid·k
−1 −Qerr(t)

S
(3)
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As shown in Equation (3), assuming the opening degree of stopper rod at time t is p,
the volume of liquid steel flowing into the mold from the tundish Qin can be calculated
according to Equation (2) under this stopper rod opening. Wt

mid is the weight of liquid
steel in the tundish at time t, which can be directly obtained from the detection data of the
weight sensor. Qerr refers to the fluctuating volume of liquid steel in the mold caused by
environmental interference at time t, which is usually complicated and difficult to predict
in real casting. The purpose of setting Wt

mid in this paper was only to verify the robustness
of the proposed method, so its specific value was manually set.

When solving Equation (3), an initial value of k was first given, and then the change of
the liquid level in the mold dH was constantly calculated until the end of the casting. The
liquid level in the mold was recorded at this time and compared with the value detected by
the sensor of liquid level in the mold. If the difference is large, it indicates that the value of
k is unreasonable. The value of k was constantly adjusted until the difference was within
the allowable range. At this time, Equation (3) can simulate the change process of the liquid
level in the mold in the casting process and solve the problem that the sensor of liquid level
in the mold cannot work normally in the first stage.

4. Automatic Casting Control Method
4.1. Reinforcement Learning Modeling

Reinforcement learning is the product of combining cognitive science and compu-
tational intelligence [21]. By interacting with the environment to learn knowledge, the
agent can effectively explore the high-dimensional continuous space [22] and finally make
decisions. To clearly characterize the interaction process, reinforcement learning introduces
the Markov Decision Process (MDP), which involves three basic elements: state, action and
reward. In this paper, an MDP model was established for the automatic casting control
problem, as shown in Figure 2.
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In order to use the reinforcement learning algorithm, the state space, action space
and reward function of automatic casting control were defined in detail based on the
MDP model.

State space S = {s = [Hset, Hact, Wmid]}, where Hset, Hact and Wmid represent the tar-
get liquid level in the mold, the actual liquid level in the mold and the weight of the
tundish, respectively.

Action space A = {a = [p]}, where p represents the stopper rod opening degree, which
can be any value in the range of 0–30 mm. p = 0 indicates that the stopper rod is not opened,
and the liquid steel in the tundish cannot flow into the mold. p = 30 indicates that the
stopper rod is fully opened, and the liquid steel in the tundish can flow into the mold at
full speed.

Reward function R = {r = [r1 + r2]}, where r1 is 0 or 1, indicating the reward obtained
by the agent at the end of the control task. r1 = 1 indicates that the agent has completed
the task, that is, the stopper rod successfully controls the liquid level in the mold to reach
the starting level. In other cases, r1 = 0 will be given. r2 represents the real-time reward
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obtained by the agent during the control process, which is related to the liquid level error
Herr = Hset − Hact in the mold. The specific calculation equation is shown in Equation (4).

r2 =


1, Herr ≤ 1

0.1, 1 < Herr ≤ 5
−0.5, 5 < Herr ≤ 10
−1, Herr ≥ 10

(4)

The selection of an appropriate reinforcement learning algorithm is crucial to the
final control effect. There are complex environmental disturbances in continuous casting
production, such as the fluctuation and turbulence of liquid steel in the mold or the
vibration of the stopper rod and the mold, so the robustness and generalization ability
of the strategy must be high. The SAC algorithm uses a stochastic strategy instead of
a deterministic strategy [23] and greatly improves exploration efficiency and training
stability by introducing a maximum-entropy objective [24]. Moreover, it is less sensitive to
hyperparameters, so the SAC was chosen as the core algorithm of the model.

The state space of the automatic casting control task is a three-dimensional vector,
and the dimension is small. In this paper, the policy network and the critic network of
the algorithm use a multilayer, fully connected neural network. The input of the policy
network is the state, and the output is the action probability distribution function [25]. The
input of the critic network is the state, and the output is the value of the state. The optimal
number of hidden layers and neurons was selected through experiments. ReLU was used
as the activation function.

4.2. Improved SAC Algorithm

The SAC algorithm uses an experience replay mechanism to cache all samples gen-
erated by the agent during exploration in the experience pool, including the samples of
liquid level fluctuation or stability in the mold and the samples of the stopper rod opening
degree vibration or stability. By default, all samples have the same weight [26], and samples
are extracted from the experience pool in a completely random way to train the network.
However, these samples have different influences on the network training process. The ran-
dom method ignores the importance and differences of the samples. Therefore, this paper
proposes to introduce an additional Heterogeneous Experience Pool (HEP) to cache the
samples of the stopper rod opening degree vibration, in order to enhance network training
using such samples to reduce unnecessary vibration during the stopper rod movement,
thus improving the stability of the continuous casting production. This algorithm is named
HEP-SAC in this paper, and its pseudocode is shown in Algorithm 1.

Algorithm 1. Automatic casting control algorithm based on HEP-SAC.

Input: billet width, billet thickness, target liquid level curve.
Output: neural network parameters.
Initialize the experience pool and set the minibatch size.
Initialize the parameters of the neural network.
for each iteration, do

for each environment step, do
generate action at based on state st.
execute action at, generate sample x1 = {st, at, rt, st+1}.
store x1 in the default experience pool.
calculate the vibration amplitude of the stopper rod Rs = at − at−1.
if Rs > threshold value,

store x2 = [{st−1, at−1, rt−1, st}{st, at, rt, st+1}] in the HEP.
end if

end for
N1 = minibatch·η·2−1

N2 = minibatch·(1 − η)
if x2 quantity > N1 and x1 quantity > N2
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for each gradient step, do
sampling from HEP and default experience pool.
update neural network parameters.

end for
end if

end for

5. Experiment and Analysis
5.1. Experimental Environment and Parameter Setting

In order to verify the availability of the relational model between the stopper rod
opening degree and the liquid steel outflow velocity, Ansys Fluent software [27] was used
to establish the fluid domain related to the stopper rod in a continuous casting machine.
Ansys Fluent is a general-purpose Computational Fluid Dynamics (CFD) software used to
model fluid flow, heat and mass transfer, chemical reactions and more. In this paper, Ansys
Fluent was used to realize the whole process of numerical simulation from preprocessing
to postprocessing, including the establishment of the model and the grid, the setting of the
boundary conditions the and solver and the visualization of the results [28].

As shown in Figure 3, the blue side is the inlet boundary, that is, the upper surface
of the liquid steel in the tundish. The inlet speed was calculated according to the outflow
velocity of the ladle liquid steel. The red side is the outlet boundary, that is, the bottom
surface of the outlet pipe.
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In this paper, the Application Programming Interface (API) provided by OpenAI
Gym was used to implement the environment function. The TensorFlow framework was
used to implement the reinforcement learning algorithm. The algorithm interacts with the
environment to complete the training. The software and hardware configurations related
to the training platform are shown in Table 1.

Table 1. The detailed configurations of the hardware and software.

Hardware Configuration Software Configuration

CPU Ryzen 7 4800U Operating System Windows 11
RAM Micron 16G IDE PyCharm 2021

Motherboard LNVNB161216 Python 3.6.2
SSD SAMSUNG 512G TensorFlow 2.1.0
GPU Radeon Graphics Gym 0.21.0

The environment of the reinforcement learning is important for training and learn-
ing [29]. The environment settings in the MDP model included the following: The billet
width was 1540 mm, and the billet thickness was 230 mm. The rising process of the target
liquid level in the mold included five stages, and the liquid level reached the target height
at a uniform speed within the specified time window of each stage. The duration of the
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five stages was 7 s, 3 s, 20 s, 20 s and 25 s, respectively. The rise of the liquid steel level in
the five stages was 30 mm, 20 mm, 200 mm, 64 mm and 100 mm, respectively.

In order to verify the performance of the HEP-SAC algorithm, this paper compares it
with the Twin-Delayed Deep Deterministic Policy Gradient (TD3) and the SAC algorithm,
and analyzes its training performance and control performance. The same hyperparameters
of all algorithms included the following: The number of training rounds was 350, the
number of steps in each round was 150, the batch size was 128, the number of exploration
steps was 1000, the number of network updates was 3, the learning rate was 3 × 10−4,
the discount factor was 0.95 and the size of the default experience pool was 5 × 105. The
unique hyperparameter settings of each algorithm are shown in Table 2.

Table 2. The hyperparameters of each algorithm.

Parameter TD3 SAC HEP-SAC

Exploring noise standard deviation 0.3 — —
Policy noise standard deviation 0.4 — —

Delay update frequency 3.0 — —
Learning rate of alpha — 3 × 10−4 3 × 10−4

Size of HEP — — 1 × 106

Sampling ratio — — 0.2

The HEP-SAC algorithm uses an additional HEP to cache two ordinary samples at
adjacent time steps, so the size of the HEP should be twice that of the original experience
pool to prevent sample overflow. The sampling ratio between the HEP and the original
experience pool should be determined by experimentation. A large η can lead to a large
number of vibration samples collected and reduce the training of the neural network for the
accurate liquid level samples, and a small η cannot meet the training of the neural network
for the vibration samples. All other parameters of the HEP-SAC algorithm should be the
same as in the original SAC algorithm.

In order to quantify the performance of the control framework, two evaluation indexes
were set in this paper, namely Automatic Casting Probability (ACP) and Stable Stopper Rod
Opening Degree Probability (SSP). The specific calculation is shown in Equation (5). ACP
was used to measure the deviation between the liquid level in the mold and the target liquid
level curve. The moment when the liquid level error is within the set threshold is called the
accurate liquid level moment. The proportion of the accurate liquid level moments in the
total casting time is the ACP of the framework under the current casting task. The SSP was
used to measure the stability of the stopper rod in the process of movement. The moment
when the vibration amplitude of the stopper rod is within the set threshold is called the
stable opening degree moment. The proportion of the stable opening degree moment in
the total casting time is the SSP of the framework under the current casting task.{

ACP =
ΣT

i=0 Herr(t)<2
T

SSP =
ΣT

t=0Rs(t)<3
T

(5)

As shown in Equation (5), Herr is the liquid level error in the mold, T is the time steps
of the automatic casting and Rs is the vibration amplitude of the stopper rod.

The smaller the ACP is, the more the liquid level in the mold deviates from the target
liquid level curve, which not only easily causes slag inclusion, and thus affects the quality
of billet, but also easily causes steel overflow, and thus poses a safety threat to the workers
on site. The smaller the SSP is, the more unnecessary vibration exists in the opening
degree sequence of stopper rod, which can easily cause irreversible structural loss to the
equipment. Therefore, the larger the two evaluation indexes, the better the performance of
the control framework.
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5.2. Availability Analysis of the Stopper Rod Flow Control Model

Figure 4 shows the level fitting results of the relational model between the stopper rod
opening degree and the liquid steel outflow velocity under different k, where the height of
the mold was 900 mm and the insertion depth of the pulling machine was 350 mm. IF a
position is set indicating that the liquid level in the mold is 0 and this position is 200 mm
from the top of the mold, the simulated level changes from −350 mm, and the level enters
the effective detection range of the sensor at about 95 s. According to the variation of the
level in the figure, the error between the simulated level and the detected level can be
controlled to within ±5 mm until 110 s. Compared with the total increase in the level, the
ratio is less than 2%, so the relational model proposed in this paper can meet the accuracy
requirements. Considering the complexity of the liquid steel flow and the diversity of
external disturbances, the value of k is suggested to be in the range of 300–310.
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In order to further verify the availability of the relational model, Ansys Fluent software
was used to conduct fluid simulation experiments. Figure 5a is the fluid trace diagram.
It can be seen that the liquid steel in the tundish flowed rapidly to the stopper rod and
carried out complex flow around it. In this paper, the section 2 mm down from the top of
the outlet pipe was taken as the base surface, and the outflow velocity distribution on this
surface is shown in Figure 5b. It can be seen that the outflow velocity of the liquid steel
gradually decreased from the center point to the pipe wall.
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In order to quantify the simulation results, Vd was set to represent the difference in
outflow velocity between the model and the simulation calculation. It was assumed that the
radius of the outlet pipe was 35 mm, the billet width was 1000 mm, and the billet thickness
was 230 mm. The liquid level difference Hd in the mold caused by Vd within 1 s under
different stopper rod opening degrees was calculated using Equation (6). The results are
shown in Table 3. The average absolute level difference was 3.094 mm. Compared with the
total level change value of nearly 400 mm during the casting process, it is in the acceptable
range. Therefore, the relational model between the stopper rod opening degree and the
liquid steel outflow velocity can simulate the liquid level variation in the mold accurately.

Hd =
π·R2·Vd

Sw·St
(6)

Table 3. Comparison of calculation results between model and simulation.

p/mm Vd/m·s−1 Hd/mm p/mm Vd/m·s−1 Hd/mm

3 0.006 1.003 18 −0.032 −5.351
6 0.007 1.171 21 −0.014 −2.341
9 −0.014 −2.341 24 −0.048 −8.027

12 −0.052 −8.696 27 0.021 3.512
15 0.023 3.846 30 −0.042 −7.024

As shown in Equation (6), R is the radius of the outlet pipe, Sw is the billet width and
St is the billet thickness.

It is worth noting that, in this model, the outflow velocity of the liquid steel was
calculated on the base surface of 2 mm down from the top of the outlet pipe, so the time
delay in the process of the liquid steel flowing into the mold was ignored. Moreover, the
liquid level fluctuation in the mold was ignored, because the turbulent flow of liquid steel
is extremely complicated and it is difficult to model all the characteristics. In addition, the
model is not suitable for a baffle-type continuous casting machine.

5.3. Convergence Performance Analysis of HEP-SAC Algorithm

Figure 6 shows the training process of TD3, SAC and HEP-SAC under the same set of
random seeds. It can be seen that TD3 algorithm had the fastest learning speed, but the
reward value after convergence was the lowest. This is because the deterministic strategy
easily causes agents to fall into the overfitting state. The convergence speed and final
performance of the HEP-SAC algorithm exceeded that of the baseline algorithms. It shows
that the samples stored in the HEP can guide the training of neural networks correctly.
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5.4. Performance Analysis of Control Framework Based on HEP-SAC

The performance of the control framework was mainly verified by ACP and SSP.
The specification of the billet was set as 1540 mm × 230 mm, and two different types of
perturbations were added: the first was the sudden rise of the liquid level in the mold
at 15 s, and the second was the sudden drop of the liquid level in the mold at 45 s. The
level change caused by both disturbances was set at 20 mm to verify the robustness of
the control framework. Figure 7a,b shows the time-varying curves of the liquid level
error in the mold and the stopper rod opening degree in this task. It can be seen that the
proposed method had a smaller liquid level error in the mold and a more stable control
sequence under normal and disturbed conditions, and its performance exceeded that of the
baseline algorithms.

The performance quantification results of the control framework are shown in Tables 4 and 5.
Different billet widths were set, and the billet thickness was uniformly set at 230 mm. The
results show that the ACP of the proposed method reached more than 80% under different
casting tasks, and the control accuracy improved by 4.29% on average compared with the
baseline algorithms. The SSP reached more than 75%, and the control stability improved by
3.17% on average compared with the baseline algorithms.
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Table 4. ACP of each algorithm in different casting tasks.

Width/mm
No Disturbance Added Disturbance

TD3 SAC HEP-SAC TD3 SAC HEP-SAC

1100 72.0 82.4 85.1 68.0 78.5 81.2
1200 79.2 83.0 86.8 70.1 77.3 82.4
1300 81.2 91.4 96.5 76.3 87.0 91.7
1400 83.5 90.2 94.5 79.2 86.1 89.3
1540 80.4 86.5 92.6 76.4 79.6 86.4
1640 76.3 83.5 89.5 72.3 74.5 84.1

Table 5. SSP of each algorithm in different casting tasks.

Width/mm
No Disturbance Added Disturbance

TD3 SAC HEP-SAC TD3 SAC HEP-SAC

1100 68.7 86.0 89.2 61.8 74.8 78.5
1200 70.2 90.3 93.6 63.2 81.4 85.1
1300 66.9 89.7 93.9 60.2 80.1 84.5
1400 72.3 92.0 94.5 65.1 82.8 86.9
1540 74.4 86.5 90.1 67.0 77.9 79.1
1640 65.3 91.2 95.4 58.8 82.1 85.3
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6. Conclusions

In this paper, the relational model between the stopper rod opening degree and the
liquid steel outflow velocity was established by using historical casting data. The model
used real detection data of the liquid steel weight to convert the outflow of the tundish.
Through fitting with the historical casting data, a reasonable correction coefficient k was
obtained. Compared with numerical simulation or physical simulation, the model can
accurately reconstruct the real continuous casting process. Through the simulation experi-
ment and comparative analysis, the model can accurately simulate the changing process
of the liquid level in the mold. By modeling the automatic casting problem as the MDP
model, reinforcement learning was used to establish the stopper rod opening degree control
framework, and an HEP was introduced to improve the experience replay mechanism of
the SAC algorithm. In the control framework, the stopper rod can automatically select
the appropriate opening degree according to the difference between the actual liquid level
and the target liquid level in the mold at the current moment and adjust the actual liquid
level to keep approaching the target liquid level. The control framework not only auto-
matically adapted to different billet specifications, and thus had good generalization, but
also corrected the liquid level fluctuation caused by environmental interference in a timely
manner, and thus had good robustness. In the HEP-SAC algorithm, an HEP was used to
cache the samples of the opening degree vibration of stopper rod, so as to enhance the
priority sampling of such samples. With the training of the control framework and the
updating of the parameters of the neural network, the policy network not only ensured that
the liquid level in the mold accurately tracked the target liquid level curve, but also output
a more stable opening degree of the stopper rod during the transition stage of liquid level
acceleration, reducing the equipment loss caused by vibration. The experimental results
show that the convergence speed and performance of the HEP-SAC algorithm exceeded
that of TD3 and SAC algorithm. Compared with the control framework based on baseline
algorithms, the framework based on HEP-SAC improved the accuracy of the liquid level
in the mold by 4.29% and the stability of the stopper rod opening degree by 3.17%, which
shows the effectiveness of the improved method in this paper.

With the development of sensors and other hardware equipment, it will be possible to
establish a more accurate relational model between the stopper rod opening degree and the
liquid steel outflow velocity, so as to improve the reliability of the reinforcement learning
control framework and promote the continuous progress of automatic casting technology.
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Nomenclature
Qin normal inflow of liquid steel in the mold.
p stopper rod opening degree.
F relationship between p and Qin.
H liquid level in the mold.
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Qerr fluctuation of liquid steel in the mold under interference.
S cross-sectional area of the billet.
Wbig weight of liquid steel in the ladle.
Wmid weight of liquid steel in the tundish.
ρ density of the liquid steel.
K correction coefficient of Wmid.
Hset target liquid level in the mold.
Hact actual liquid level in the mold.
r1 reward obtained by the agent at the end of the control task.
r2 reward obtained by the agent during the control task.
Herr liquid level error in the mold.
Rs vibration amplitude of the stopper rod opening degree.
T time steps of the automatic casting.
R radius of the outlet pipe.
Vd difference of outflow velocity between the model and the simulation calculation.
Sw billet width.
St billet thickness.
Hd liquid level difference in the mold caused by Vd within 1 s.
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