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Abstract: Graphene-reinforced aluminium composites have been widely studied due to their excellent
mechanical properties. However, only a few studies have reported their dynamic compression
properties. The purpose of this study is to investigate the quasi-static and dynamic compression
properties of graphene-reinforced aluminium composites. The addition of graphene improved the
compressive stress resistance and energy absorption capacity of the aluminium matrix. An aluminium-
0.5 wt.% graphene composite exhibited good compressive properties due to the different interfacial
wave impedance generated by the additional grain boundaries or aluminium–graphene interfaces.

Keywords: aluminium matrix composite; graphene; quasi-static compression; dynamic compression;
powder metallurgy

1. Introduction

Aluminium and its alloys have been widely used in many fields, such as aerospace,
military, industry, and transportation, owing to their low density, low melting point, and
excellent mechanical and physical properties [1–3]. Aluminium matrix composites are a
group of advanced materials with a high application potential in practical engineering
applications [4,5]. Composites of aluminium and its alloys are prepared by doping with
reinforcing phases (such as Al2O3 [6–8] and SiC [9–11]) to improve their mechanical prop-
erties. Since its appearance in 2004 [12,13], and due to its excellent properties, graphene
has gradually replaced Al2O3 and SiC as reinforcing phases to improve the mechanical
properties of aluminium matrix composites [14–16]. In practical engineering applications,
materials are often subjected to dynamic and quasi-static loads. The dynamic properties of
materials are important as they affect the service life of components.

Many researchers have studied the dynamic compressive properties of aluminium and
its composites with reinforced phases. For instance, Zaiemyekeh et al. [17] investigated the
quasi-static and dynamic behaviours of aluminium composites reinforced with different
weight percentages of Al2O3. They found that the addition of 5.0 wt.% Al2O3 signifi-
cantly improved the compressive strength and energy absorption capacity of aluminium.
Wang et al. [18] prepared carbon nanotube-reinforced aluminium matrix composites and
investigated their compressive properties at different strain rates. Under the same test
conditions, the best compressive properties were achieved when the carbon nanotube
content was 2.0 wt.%. Wang et al. [19] prepared aluminium composites reinforced with
glass microspheres by hot pressing and investigated their compressive properties at dif-
ferent pressures. They found that the composite hot-pressed at 15 MPa exhibited better
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compression resistance. These studies indicate that the reinforced phase enhances the
dynamic compressive properties of composites.

In recent years, graphene has been used as the reinforcement phase in aluminium
matrices because of its high specific surface area, high ductility, and high tensile strength.
Khanna et al. [20] prepared graphene-reinforced aluminium matrix composites and found
that the compressive strength and hardness of the materials were highest when the
graphene nanosheet content was 0.25 wt.%. Sharma et al. [21] prepared 0.3 wt.% graphene-
reinforced aluminium matrix composites and found that the compressive strength and hard-
ness increased by 23.61 and 24.65%, respectively, compared with those of pure aluminium.
However, these studies focus only on the quasi-static performance of aluminium-graphene
composites and do not report their dynamic compressive properties. Compared with foam
aluminum with better dynamic compression performance [22,23], aluminum–graphene
composite is more suitable for practical engineering applications.

In this study, aluminium-graphene composites were prepared with different graphene
contents using powder metallurgy techniques. We studied their quasi-static and dynamic
compressive properties at different strain rates.

2. Material and Methods

The raw materials consisted of high-purity (purity ≥ 99.9%) spherical aluminium
powder with a particle size of 1–2 µm and monolayer graphene (99.9% purity) oxide in
aqueous solution. Aqueous solutions of graphene oxide with different mass fractions (0.5
and 1.0 wt.%) were mixed with the aluminium powder using a stirrer (speed: 300 r/min;
duration: 2 h) to obtain graphene oxide–aluminium composite powders after freeze dry-
ing. The composite powders were then placed in a tube furnace and heated to 550 ◦C
(atmosphere: hydrogen; duration: 2 h) for thermal reduction to graphene–aluminium
composite powders. The reduced powders were loaded into a graphite mould and sintered
in a vacuum hot press furnace. The sintering temperature, pressure, and duration were
600 ◦C, 40 MPa, and 2 h, respectively. The preparation process is illustrated schematically
in Figure 1.
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Figure 1. Preparation of aluminium-graphene composites.

The microstructures of the aluminium-graphene composites were determined via
X-ray diffraction (Bruker D8-focus, λ = 1.5406 Å; the voltage and current were 40 kV and
40 mA), Raman spectroscopy (in-Via Reflex; the wavelength was 532 nm), and scanning
electron microscopy (SEM, JEOL JSM-7100 F) techniques. Quasi-static compression tests
(Electronic universal material testing machine, AGS-XD50kN, Shimadzu corporation, Ky-
oto, Japan) were carried out at room temperature (about 25 ◦C) on cylindrical specimens
(diameter: 10 mm; length: 20 mm; complying with the national standards of GB/T 7314-
2017) at a speed of 1.2 mm/min and a crosshead separation rate of 10−3/s. Hopkinson
compression bar tests (separate Hopkinson press bar, SHPB-ALT1000, Archimedes Indus-
trial Technology Ltd., Beijing, China) were conducted at strain rates of 2000, 3000, and
4000/s on specimens with a diameter and height of 8 mm, complying with the national
standards of GB/T 34108-2017.
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3. Results and Discussion

Figure 2 shows the SEM images, XRD patterns, and Raman spectra of the aluminium-
graphene composites. Graphene flakes uniformly cover the surface of the aluminium
spheres, as shown in Figure 2a,b. The XRD pattern (Figure 2c) shows peaks corresponding
to aluminium; however, no characteristic peaks of graphene are observed. This is because
the content of the graphene added is small, and graphene does not have the serious
agglomeration phenomenon, which is beneficial to the performance of the subsequent
composite materials [24]. The Raman spectrum of the composite (Figure 2d) shows the
characteristic D and G peaks of graphene at ~1336 and ~1590 cm−1, respectively. In general,
the intensity ratio of the D and G peaks (ID/IG) indicates defects in the graphite structure.
The calculated ID/IG ratios are 1.16 and 1.15 for the two composites (0.5 and 1.0 wt.%
graphene, respectively), indicating that most of the graphene in the composite powder has
a small number of defects, but this does not affect the later properties. Furthermore, the
intensities of the Raman peaks increase with an increase in the graphene content.
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Figure 2. SEM images, XRD patterns, and Raman spectrum of aluminium-graphene powders.
(a) SEM images of 0.5 wt.% aluminium-graphene powder; (b) SEM images of 1.0 wt.% aluminium-
graphene powders; (c) XRD patterns of aluminium-graphene powders; (d) Raman spectrum of
aluminium-graphene powders.

Figures 3 and 4 show the electron backscatter diffraction and electron microprobe
analysis results of the aluminium-graphene composites. As shown in Figure 3, all the
composites exhibit equiaxed grains. The sizes of the equiaxed grains decrease with an
increase in the graphene content, indicating the presence of more grain boundaries. The
elemental mapping (Figure 4) shows that the graphene is well distributed.
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aluminium-0.5 wt.% graphene composites and Al/C element distribution; (d–f) SEI of aluminium–
1.0 wt.% graphene composites and Al/C element distribution.

Figures 5 and 6 show the stress–strain curves and stress variation of the aluminium-
graphene composites under quasi-static and dynamic compression, respectively. In the
quasi-static condition (Figure 5a), all the aluminium-graphene composites exhibit similar
elastic deformation behaviours at strains below 0.04. The aluminium matrix shows a long
plastic region with a constant stress plateau in the strain range of 0.04–0.5. After adding
0.5 wt.% graphene, the composite exhibits a plastic region in the strain range of 0.04–0.32,
and the stress increases with an increase in the strain. With the addition of 1.0 wt.%
graphene, the plastic region of the composite becomes shorter, and the stress shows a
similar trend to that of the composite with 0.5 wt.% graphene. The peak compressive
stresses of the aluminium-0.5 wt.% graphene and aluminium-1.0 wt.% graphene are 238
and 187 MPa, respectively, which are 40 and 10% higher than that of the aluminium matrix
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(170 MPa), respectively. The increased stress and decreased strain indicate that the addition
of graphene enhances the compressive strength of the aluminium matrix. In the dynamic
compressive stress–strain curves (Figure 5b–d), the compressive stress first increases and
then decreases with an increase in the graphene content (at the same strain rate). The
peak compressive stresses of the aluminium-0.5 wt.% graphene are 286 ± 3, 299 ± 5, and
280 ± 1 MPa, respectively, at strain rates of 2000, 3000, and 4000/s, which are 13.9, 15.0,
and 1.5% higher than those of the aluminium matrix, respectively. When the composite is
subjected to an external force, the load is transferred from the low-strength aluminium to
the high-performing graphene through the interface between aluminium and graphene, so
that graphene replaces aluminium as the main load bearer and strengthens the compressive
properties of the composite. At the same time, graphene as a fine second-phase particle
interacts with dislocations and therefore effectively hinders their movement. Due to the
large difference in thermal expansion coefficients between graphene and aluminium, a high
dislocation density zone is formed around the graphene, creating a dislocation ring, which
further enhances the compressive properties of the composite [24].
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Figure 7a shows the energy absorption capacity of the aluminium-graphene compos-
ites. The absorbed energy is the area of the stress–strain curve derived by calculus from
the test system carried by the Hopkinson press bar. At the same strain rate, the energy
absorption capacity of the aluminium matrix increases with the addition of graphene, reach-
ing a maximum value at 0.5 wt.%, and then decreases. The maximum energy absorption
capacities are 23.35 ± 2.32, 27.04 ± 1.89, and 29.15 ± 2.18 J/cm3, respectively, at strain rates
of 2000, 3000, and 4000/s. Thus, the energy absorption capacity of the composite increases
with an increase in the strain rate. At the same strain rate, the incident waves entering the
pure aluminium matrix are transmitted due to strong interface adhesion. We simulated the
interface adhesion between graphene and aluminium based on the preparation process of
the composite powder (Figure 7b). In the aluminium-0.5 wt.% graphene composite, most of
the incident waves are reflected because of the impedance mismatch between aluminium
and graphene interfaces. In addition, the presence of more grain boundaries can enhance
the energy absorption capacity, whereas in the aluminium-1.0 wt.% graphene composite,
the large amount of graphene present at the aluminium sphere interfaces destroys the bond-
ing strength and decreases its energy absorption capacity. For example, in the more popular
sandwich structure of the composite material [19], when the high-speed shock wave acts
on the aluminium surface, it passes through the aluminium interface to the surface of the
graphene structure, and then into the graphene, indicating reflection and transmission
propagation, due to the difference in the content of the graphene. On part of the graphene
surface, the transmitted wave is converted to a compressional wave, the reflected wave is
converted to a stretching wave, and the transmitted propagated compressional wave will
be reflected and transmitted at another aluminium interface. Repeated wave propagation
occurs, and this process leads to wave impedance at both of the interfaces.
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Figure 7. Aluminium–graphene absorption energy and interface schematic diagram: (a) the en-
ergy absorption capacity of aluminium-graphene composites at different strain rates; (b) schematic
diagram of aluminium-graphene composite interface.

Figures 8 and 9 show SEM images of the fracture surfaces of composites subjected to
quasi-static compression and a high-strain-rate impact. The results show that the fracture
morphology is completely different between quasi-static loading and high-strain-rate
loading. There is a relationship between the fracture morphology and the strain rate. From
the quasi-static compression test samples, the fracture surfaces of the pure aluminium
samples in Figure 8a showed ductile damage with small cracks and therefore greater
elongation. The Figure 8b,c samples of aluminium matrix composites with a graphene
addition had larger fracture surfaces with brittle damage and were found to have a high
density of deformation areas on the fracture surface. For the samples tested with the
separate Hopkinson press bar test, the pure aluminium sample did not fracture due to
the high degree of bonding between the aluminium powder particles and aluminium
powder particles in it, and the sample was pressed directly into a pie shape. The other
samples of the composite with graphene addition all fractured into several pieces. As can
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be seen in Figure 7, the composites cracked more and more as the strain rate increased.
The fracture surfaces of their composites all show brittle damage and a large number of
cracks. The results show that the addition of graphene leads to brittle fractures, which
justifies the schematic diagram in Figure 5b. This is due to the fact that the graphene in
the aluminium matrix composite with the added graphene breaks the bond between the
aluminium powder particles and the aluminium powder particles: the more graphene
added, the worse the interfacial bond. The presence of the interface leads to a wave
impedance at both of the interfaces and therefore results in more cracks.
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4. Conclusions

Aluminium–graphene composites with a uniform distribution were prepared by hot
press sintering, and their compression behaviours at different strain rates were studied.
The compressive stress increases with the addition of graphene up to 0.5 wt.% and then
decreases with a further increase in the graphene content; however, these numbers are
higher than that of a pure aluminium matrix. The maximum quasi-static and dynamic
compression stresses of the aluminium-0.5 wt.% graphene composite are 238 and 299 MPa,
respectively. At the same strain rate, the energy absorption capacity of the aluminium
matrix increases with the addition of graphene, reaching a maximum value at 0.5 wt.%
graphene. The increased performance is mainly related to the interfacial bonding strength
and wave impedance between aluminium and graphene interfaces. The current research
has demonstrated that aluminium-graphene composites prepared by powder metallurgical
methods can be applied in dynamic impact environments with good results. However,
further optimising the process is the next research priority. At present, aluminium-graphene
matrix composites can be applied to the bumpers of special vehicles. This not only acts as
a decoration, but it also plays an important role in absorbing and mitigating the external
impact force and protecting the safety of the body and passengers. At the same time,
aluminium-graphene matrix composites also meet the requirements for the lightweighting
and impact resistance of small precision instruments.
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