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Abstract: Control of solidification structure and segregation is crucial to improve the service perfor-
mance of high carbon martensitic stainless steels. Design of the electroslag remelting (ESR) process
based on the essential parameters of melting rate, filling ratio, and slag thickness is a precondition to
achieve optimal control of solidification structure and segregation of the steels. However, there is still
a lack of coupled works giving deep insight into the overall effect of the parameters on the expected
control. With this background, a 2D numerical model was established to probe into the effect of
process parameters. The results showed that: (1) With the increase of melting rate from 90 kg/h to
180 kg/h, the molten metal pool depth increased by about 4 cm. Meanwhile, the center LST, PDAS,
and SDAS increased by about 450 s, 100 µm, and 12 µm. The segregation index of C and Cr increased
by about 0.15 and 0.09. (2) As the filling ratio increased from 0.16 to 0.43, the depth of the metal
pool decreased by about 4.5 cm, LST and SDAS received a slight increase of about 41 s and less than
5 µm, but PDAS had little change. The segregation index of C had an increase of about 0.03, but the
segregation index of Cr demonstrated tiny changes. (3) As the slag thickness increased from 0.08 to
0.14 m, the metal pool depth presented a first increase of about 1 cm and then a slight decrease. The
center LST, PDAS, and SDAS first increased by 148 s, 30 µm, and 4 µm and then decreased slightly.
The changes of the segregation index of C and Cr presented a similar tendency than that of LST, but
the changes are extremely small. (4) A low melting rate less than 120 kg/h, a filling ratio of about
0.23–0.33, and a slag thickness of 0.08–0.10 m were appropriate to obtain good performance for ESR
of high carbon stainless steels in this study.

Keywords: electroslag remelting; numerical simulation; process parameters; metal pool; solidification;
high carbon martensitic stainless steels

1. Introduction

High carbon martensitic stainless steels are broadly used in production of high-grade
knives and structural components because of their high hardness, strength, abrasive re-
sistance, and corrosion resistance. The essential production process of these special steels
generally includes ingot casting [1], continuous casting [2,3], and ESR [4]. The steel ingots
produced through these processes have critical influence on the final product quality.

Among these processes, ESR has a high advantage in controlling solidification struc-
ture and chemical refining of high carbon martensitic stainless steels. During the ESR
process, the melting of the electrode and the solidification of molten metal take place
simultaneously. On the one hand, the metal droplets continuously supply liquid metal
from the electrode to the molten metal pool. On the other hand, the metal in the mould is
strongly cooled by the water-cooling bottom and wall, and thus solidification takes place in
the shallow molten pool. Since the solidification starts from the mould bottom, shrinkage
of the metal can be compensated by the molten pool, and the gas and inclusions in the
liquid metal are easy to float up; hence, the microstructure of the ESR ingot is dense and
uniform compared to the conventional casting ingot [5].

Metals 2023, 13, 482. https://doi.org/10.3390/met13030482 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met13030482
https://doi.org/10.3390/met13030482
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0009-0006-8035-7318
https://doi.org/10.3390/met13030482
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met13030482?type=check_update&version=2


Metals 2023, 13, 482 2 of 25

In order to ensure good service performance, it is necessary to improve the solidifica-
tion structure and meanwhile control the solute segregation as well as the resulting carbide
of high carbon martensitic stainless steels. Considering the advantages of the ESR process,
the ESR process is employed to produce a steel ingot with high requirement for quality.
The coordination of ESR process parameters is an essential precondition for good ingot
quality. In the ESR process, the molten pool is an important zone, which deeply influences
the heat transfer and solute transport, and thus influences the solidification structure and
segregation. The melting rate of the electrode is a performance of the electrical current
of the ESR process, which further affects the slag temperature and depth of the molten
pool [6]. The filling ratio of the electrode is defined as area ratio of electrode to mould,
which affects the electrical current path in the slag region and thus affects the heat transfer
to the metal/slag interface and the molten pool characteristics [7]. The slag generates heat
to melt the electrode, so the change of slag thickness may affect the molten pool shape [8].
Accordingly, the melting rate, filling ratio, and slag thickness are three key parameters
affecting the ESR solidification process. Liu et al. [9] reported the effect of melting rate
characterized by current on an ESR of low carbon dual alloy ingot based on laboratory-
scale experiments and found that less dendrite segregation and finer precipitates could
be achieved at low current. Wang et al. [10] conducted a similar study on Ni transport in
ESR dual alloy ingot and found that the rise of current increased the metal pool depth and
the segregation of Ni. In the above studies, the steels are low carbon and low alloy steel
grades, and the segregation is weak compared to high carbon martensitic stainless steels in
the present study. Wang et al. [11] reported the solute segregation and precipitation of the
primary carbides in H13 ESR ingot and found primary carbides mainly distributed in the
interdendritic region where the solutes are enriched. But he did not offer the suggestion
to control enrichment of solutes. Chen et al. [6] reported the effect of melting rate on the
surface quality and solidification structure of Mn18Cr18N hollow ESR ingot and obtained
technical parameters to achieve good surface quality; its difference from conventional
ESR process is that the ESR ingot is hollow, and the ingot is withdrawn during ESR. This
cannot provide reference for control of the structure and segregation in the center zone.
Du et al. [12] compared the effect of electroslag remelting-continuous rapid solidification
(ESR-CRS) and conventional ESR on carbides in GCr15 steel and found that the ESR-CRS
process had a stronger capacity to suppress segregation and refine the microstructure due
to intensive cooling. But this is difficult to achieve in the conventional ESR process. It can
be found from the aforementioned studies that most experiments focus on the effect of
melting rate and different ESR processes. Due to the limitations of safety and facility, few
experimental studies on molten pool characteristics, filling ratio, and slag thickness can be
found, especially for ESR of high carbon martensitic stainless steels.

ESR process is a complicated “black box”, so it is difficult to know more about the
temperature and element distributions, as well as the molten slag and steel flow patterns
during solidification through experiment. It is also time-consuming and has high exper-
imental trial costs to learn about the structures and how to optimize the ESR process.
However, it is necessary to learn about the effects of those parameters such as melting rate,
filling ratio, and slag thickness on the solidification process and structure, as well as solute
segregation, to optimize the ESR process. Wang et al. [13,14] simulated the ESR process
to predict the macrosegregation of Ni in 201 stainless steels using constant parameters.
But he did not investigate the effect of ESR parameters such as melting rate and slag
thickness on segregation and structure of ESR ingots. Li et al. [15] investigated the effects
of the current frequency, electrode immersion depth, and slag thickness on the electric
and magnetic characteristics as well as Joule heating in slag through a 3D finite element
model. But the temperature distribution, solidification structure, and solute segregation
were not presented. Weber et al. [16] constructed a 2D transient-state numerical model
to study the effect of electrode fill ratio on pool profile and Joule heating during the ESR
process of Ni-based alloy Nimonic 80A. Nevertheless, structure and element segregation
were not reported in his study. Huang et al. [17] developed a comprehensive transient
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model to study the effect of electrode rotation on the evolution of metal pool profiles and
the solidification quality of H13 ESR ingots. The results showed that the temperature
distributions became uniform and the pool profiles became flat at high rotating speed, but
the local solidification time and the secondary dendrite arm spacing increased. The solute
segregation was not reported.

As discussed above, few experimental studies reported the effect of filling ratio and
slag thickness on the molten pool characteristics, structure, and segregation during the ESR
process. Modelling studies compensated some deficiencies of experimental studies, but
there is still a lack of coupled works concerning the overall effect of process parameters
such as melting rate, filling ratio, and slag thickness on the ESR solidification process,
especially for the high-carbon high-alloy and segregation-susceptible steel in the present
study, and the control of the solidification process and segregation is crucial for these
steels. In order to deeply and thoroughly understand the solidification process and obtain
quantitative information in ESR of high carbon martensitic stainless steels for process
design and optimization, the present study on temperature and flow field of metal and
slag pools, solidification characteristics, and element segregation was conducted through a
numerical simulation method concerning the melting rate, filling ratio, and slag thickness.

2. Numerical Simulation
2.1. Assumptions

Melting of the electrode and the solidification of molten metal take place simultane-
ously during ESR. In order to simulate these two processes, the finite element analysis
software Melt-Flow 3.1 was employed to establish the model of ESR in the present study.
The calculation range starts from top surface of slag and finishes at bottom of remelted steel
ingot. The top surface of slag is viewed as the reference surface. For a round ESR mould,
the following assumptions are made to simplify the calculation process [18–21]:

(1) The model is assumed to be axisymmetric.
(2) The electrode/slag and the slag/metal interfaces are assumed to be flat.
(3) The model calculation is based on the steady state conditions.
(4) A frame of reference attached to the electrode/slag interface is used for reference

surface, where the slag is stationary, but the ingot grows downwards.
(5) The electrode is not included in the computational domain because the thermal and

the electromagnetic effects within the electrode are limited to a very thin boundary layer.
(6) The slag/metal interface is treated implicitly using a unified domain containing

both the slag and the ingot.
(7) The solidification shrinkage of slag skin with decrease of temperature is neglected,

and there is no air gap between slag skin and mould wall.

2.2. Electromagnetic Phenomena

The electromagnetic field is an essential physical phenomenon of the ESR process. The
electromagnetic field could be expressed through Maxwell’s equations [18,21,22]:

Magnetic diffusion:

∇·
(

1
σ
∇
(

Ĥθeθ

))
= jµ0ωĤθ (1)

Magnetic flux density:
B̂θ = µ0Ĥθ (2)

Current density:
Ĵ = ∇× (Ĥθeθ) (3)

Lorentz force:

FL = Re
(

1
2

Ĵ× conjugate
(
B̂
))

(4)
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Joule heating:

SJ =
1

2σ
Ĵ× conjugate

(
Ĵ
)

(5)

The radial current on the slag/electrode interface and ingot bottom are assumed to be
zero during the ESR process. The boundary conditions of the electromagnetic field could
be expressed as follows [18]:

Slag/electrode interface and ingot bottom:

∂Ĥθ

∂x
= 0 (6)

Exposed slag surface:

Ĥθ(r) =
1

2πr
Î (7)

Circumferential surface of ESR ingot:

Ĥθ(r) =
1

2πRingot
Î (8)

2.3. Flow Field

The metal pool is under the slag pool during the ESR process. Flow of molten slag and
metal is controlled with the buoyancy force and Lorentz force. The macroscopic flow in the
metal pool and slag pool can be controlled using the mass conservation equation and the
momentum conservation equation. The time-averaged form of the Navier–Stokes equation
is employed to describe the flow field [21,23].

Mass conservation:
∂ρ

∂t
+∇·(ρu) = 0 (9)

Momentum conservation:

∂(ρu)
∂t

+∇·(ρu× u) = −∇P +∇·
(

µe f f

(
∇u +∇uT

))
− ρg + FL (10)

The flow in the slag and metal pool is supposed to be weakly turbulent according
to the ESR process conditions and ingot size [24]. And the turbulent mixing in the slag
may be changed obviously. A k-ε turbulence model is employed to calculate the effect of
turbulent mixing on the flow and the temperature fields. The turbulent viscosity could be
calculated through turbulent kinetic energy and turbulent dissipation. Then, the turbulent
conductivity could be calculated based on the turbulent viscosity using Reynold’s analogy.

Turbulent kinetic energy [18,23]:

∇·(ρµk) = ∇·
(

µt

σk
∇k
)
+ µtG− ρε (11)

Turbulent dissipation [18,23]:

∇·(ρµε) = ∇·
(

µt

σε
∇ε

)
+ (c1µtG− c2ρε)

ε

k
(12)

Turbulent viscosity [18,21,23,25]:

µt = cu
ρk2

ε
(13)

Turbulent conductivity [18,21]:

kt

Cp
=

µt

Prt
(14)
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The previous governing equations are subjected to the following boundary conditions.
A no-slip boundary condition is imposed on the region of the mold boundary where the
molten slag and metal are in contact with the mould. On the exposed top surface of the slag
and electrode/slag interface, the shearing stress is zero for the free top surface of the slag
and electrode/slag interface. In the region of ESR ingot, the macrolevel flow is supposed to
be absent below the liquid fraction, and it corresponds to the solid/liquid interface in the
flow calculation [18].

Top surface:
∂uy

∂x
= 0 (15)

Mould surface:
u = 0 (16)

Due to the employment of the k-ε turbulence model, enhanced wall functions are used
to calculate the turbulent kinetic energy, turbulent dissipation, shear stress, and heat flux
on all the solid surfaces and the molten pool boundary. In the solidified zone, k and ε are
set as zero. At the liquid/solid surface, a normal gradient of zero is imposed for both k and
ε [16,18].

Mould surface and molten pool boundary:

∂k
∂y

= 0 (17)

ε =

(
Cuk2) 3

2

ky
(18)

Top slag surface:
∂k
∂y

= 0 (19)

∂ε

∂y
= 0 (20)

Top surface of metal pool:
k = cu2

in (21)

ε =
k

3
2

l f R0
(22)

2.4. Energy Conservation and Solidification

The temperature distributions in the slag and molten pool and ingot are governed
by the following energy conservation equation. Where Joule heating is a heating source
term of the equation generated by the electric current, it dominates the heat in the slag pool.
In the molten pool, the released latent heat during metal solidification is also a heating
source term. It is related to the local liquid fraction f l which can be obtained through the
functional relationship with the featured temperature of metal.

Energy conservation [21]:

∂(ρuh)
∂t

+∇·(ρuh) = ∇·
(

ke f f∇T
)
−
(

∂(ρ∆H)

∂t
+∇·(ρu∆H)

)
(23)

Sensible enthalpy [13]:

h = hre f +

T∫
Tre f

CpdT (24)
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Latent heat [21]:
∆H = f (T)L, Tsol ≤ T ≤ Tliq (25)

Liquid fraction [26]:

fL =


0 T ≤ Tsol

T−Tsol
Tliq−Tsol

Tsol < T ≤ Tliq

1 T > Tsol

(26)

The local solidification time (LST) is defined as the required time for a metal volume to
cool from the liquidus temperature to the solidus temperature, which reveals the residence
time of metal volume in the mushy zone. The thermal history of the solidified ESR ingot
obtained based on the energy conservation is used to calculate LST. The primary and
second dendrite arm spacings could be also calculated using the following equations based
on the thermal history of solidification of the ESR ingot [27,28].

Local solidification time:

LST =
Tliq − Tsol

GLR
(27)

Primary dendrite arm spacing (PDAS):

λ1 =
m1

(GLR)n1
(28)

Secondary dendrite arm spacing (SDAS):

λ2 =
m2

(GLR)n2
(29)

where m1, m2, n1, and n2 are the constants determined by the alloy compositions. For a
specific melting rate, the heat flux is supposed to be uniform at the slag/electrode inter-
face. They are the energies heating the electrode from the inlet temperature to molten
metal temperature and losing heat from the exposed slag surface, respectively. The tem-
perature distribution could be determined using the following interactions on the ingot
boundaries [18]:

Electrode/slag interface:

− k
∂T
∂x

=

.
m
(

L +
∫ Tliq

Tamb
CpdT

)
Ael

(30)

Exposed slag surface:

− k
∂T
∂x

= εeσb

(
T4 − T4

sin k

)
(31)

2.5. Macrosegregation

The local concentrations of the alloying elements within the molten pool and the solid
could be described by the convection–diffusion equations as follows [21].

Liquid region:

∂(ρci)

∂t
+∇·(ρuci) = ∇·

((
µ

Sci
+

µturb
Scturb

)
∇ci

)
+ Si, sol− f ront (32)

Solid region:
∂(ρci)

∂t
+

∂
(
ρuingotci

)
∂x

= −Si, sol− f ront (33)
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The governing equations are subjected to the following boundary conditions. For
ingot top surface: the concentrations of the alloying elements in the metal flowing into
the metal pool through the top surface of the ingot correspond to their concentrations at
the melt front of the electrode. For pool boundary: the mass flux of an alloying element
caused by selective rejection or absorption during this part of the solidification give rise
to a source/sink in the liquid and a corresponding sink/source in the newly formed solid
regions adjacent to the pool boundary. For each alloying element, this interface segregation
flux is calculated from Scheil’s equation with an equivalent segregation coefficient.

It should be noted that the present study employed a 2D axisymmetric model to
simulate the ESR process such as in the works of Weber [16], Szekely [29], and Dong [30].
Compared with some 3D models reported by some researchers [13–15], the 2D model in
this study shortens the calculation time and increases the efficiency, but it decreases the
accuracy to a certain degree. Generally, an extension of the calculation zone along the axis
can greatly reduce the discrepancy from 3D results. So, the full length of the ESR mould of
more than one meter was used in the simulation in the present study. Another limitation is
that 2D models cannot reveal the information along the normal direction. Accordingly, the
information obtained from the symmetry plane was elaborated in this study.

2.6. Modelling Parameters

The electrode compositions of high carbon martensitic stainless steel for simulation
are listed in Table 1. The steel properties including thermal conductivity, specific heat,
and dynamic viscosity varied with temperature, and they were calculated using JMatPro
7.0, a universal material simulation and calculation software. The liquidus and solidus
temperatures, as well as liquid and solid densities, were also calculated using JMatPro 7.0.
A classical CaF2-based ESR slag with the composition of 70CaF2-15CaO-15Al2O3 was used
during the simulation; the properties came from the Melt-Flow database. The main melting
parameters are set based on an industrial trial, and are shown in Table 2.

Table 1. Compositions of ESR electrode.

Element C Cr Mo V Si Mn Co Ni Fe

Content, wt% 1.0 14.37 1.09 0.23 0.36 0.33 1.47 0.18 Balance

Table 2. Melting parameters used in simulation.

Parameter Value

Mold diameter, m 0.228
Electrode diameter, m 0.09, 0.11, 0.13, 0.15

Ingot height, m 1.2
Slag height, m 0.08, 0.10, 0.12, 0.14

Melting rate, kg/h 90, 120, 150, 180
Current, kA 3.75

Frequency, Hz 50

3. Results and Discussions
3.1. Temperature and Flow Field
3.1.1. Effect of Melting Rate on Temperature and Flow Field

Figure 1 demonstrates the temperature distribution, liquid fraction, and flow field at
steady-state melting. It can be seen from the left half of each subfigure that the molten steel
pool has a highest temperature at the top surface contacting the slag pool. This is because
the electrode is first heated by slag, and it then melts into the molten pool, passing the slag
pool, and subsequently solidifying. The slag is its unique physical heating source. The slag
has a highest temperature zone at midradius position. In combination with the flow field
appearing in the right half of subfigure, the highest temperature zone exactly corresponds
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to the vortex created by the falling metal and Lorentz force, which is consistent with Wang’s
simulation results [31]. The decrease of temperature of the slag at the top, lateral and
bottom zones is due to the stronger heat transfer to the ambient air, water-cooling wall, and
molten pool. Moreover, it can be noticed that the slag closing to the center of the ingot has a
descending temperature with an increasing melting rate. Figure 2 presents the change more
intuitively through the change of highest slag temperature. The highest slag temperature
decreases from about 2165 K to 2090 K when the melting rate increases from 90 kg/h to
180 kg/h. This is because more heat from the slag was consumed to melt the electrode to
achieve a higher melting rate.
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Figure 2. Effect of melting rate on maximum slag temperature.

As shown in the right half of Figure 1a–d, it can be noticed there is an anticlockwise
vortex in the molten slag pool, but the vortex becomes clockwise in the molten steel pool.
The length and direction of the arrow represent the magnitude and direction of flow velocity.
It is obvious the flow of slag is stronger than the flow of molten steel. The largest flow
velocity in the slag pool is far more than 5 cm/s, whereas the value of steel pool is much less
than 5 cm/s according to the scale in the figure. A primary reason for this difference is the
flow of slag is mainly controlled by the momentum of falling metal droplets and Lorentz
force, but the flow of molten steel in the pool is mainly controlled by the thermal and
solutal density differences, as well as an inward Lorentz force generated by the interaction
between the self-induced magnetic field and the current, which would jointly drag or push
the metal from the periphery to the bottom [31,32]. Lorentz force in slag pool is much larger
than that in the molten steel pool especially for the case of higher melting rate. Thus, the
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flow of slag is much stronger. Because increasing melting rate deepens the molten pool, the
vortex area in the metal pool enlarges correspondingly.

The right half of Figure 1a–d also presents the profile of molten metal pool. It is easily
found the metal pool gradually becomes deep “V” shape from shallow “U” shape with
increasing melting rate. In order to clearly clarify the change of liquid metal pool depth
(f L = 1.0) and mushy zone width (0 ≤ f L ≤ 1.0) with melting rate, Figure 3 plots the liquid
metal pool depth and mushy zone width along radical direction. As shown in the figure,
the liquid metal pool depth and mushy zone width present different rise with increase
of melting rate from 90 kg/h to 180 kg/h, this can be contributed to the weaker cooling
intensity in the center where solidification is difficult due to the increasing amount of
central liquid metal. Generally, a shallow and flat liquid metal molten pool is expected to
be formed during ESR process to obtain uniform and compact structures. The deep molten
pool would accelerate the dendrite to grow toward the center, which increases the potential
of bridging in the ingot center, resulting in the shrinkage defect. So, the growth direction of
the columnar grains in the ESR ingot was usually expected to be less than 45◦ with respect
to the rising direction of molten pool [33,34]. Moreover, the wider mushy zone indicates
lower temperature gradient, which is not beneficial for formation of fine grain structures.
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3.1.2. Effect of Filling Ratio on Temperature and Flow Field

Figure A1a–d illustrates the temperature and flow field with varying filling ratio.
The left half of each figure illustrates the temperature field, the right half of each figure
illustrates the flow field and liquid fraction contour. It can be observed the temperature of
slag and liquid steel closing to the slag increases with rise of filling ratio. In combination
with Figure 4, the maximum slag temperature and liquid steel temperature increase by more
200 K, respectively. Wang et al. [35] reported the similar temperature change based on the
ESR of Q235 steel with vibrating electrode. Meanwhile, the area of high temperature zone
of slag pool enlarges, both areas of the high temperature zone (above 1800 K) and middle
temperature zone (1600–1700 K) of metal pool also enlarge. This may cause the ununiform
temperature distribution in slag and metal pool. A possible reason is the increase of filling
ratio reduces the exposed area of slag to open air atmosphere, resulting in the reduction
of the heat loss. Moreover, increasing filling ratio prolongs the passing distance of electric
current in slag, and thus creating more heating. The increase of slag temperature will
transfer heat to molten metal pool [35]. The temperature of metal at slag/metal interface
increases correspondingly.

As shown in the right half of subfigures of Figure A1, there is still an anticlockwise
vortex in slag and a clockwise vortex in metal pool. Compared to the increasing slag
temperature, the flow velocities of slag and metal decrease, meanwhile the vortices weaken,
and vortex center of slag gradually shifts toward mould wall and top surface of slag
pool with increase of filling ratio, which further reduces the uniformity of temperature
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distribution. This can be contributed to the reduction and movement of Lorentz force
toward the mould wall due to the change of electric current distribution, which weakens
the intensity and affected zone of vortex. According to Figures 5 and A1, it can be also
observed the filling ratio makes the molten metal pool become shallow, but has small effect
on the width of mushy zone. This result agrees with Wang and He’s reports that the depth
of molten pool decreases with increase of filling ratio when the filling ratio is less than
0.5 [35,36]. It may be because weakening stirring of metal pool slows the renovation of
temperature and the lower temperature gradient.
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3.1.3. Effect of Slag Thickness on Temperature and Flow Field

Figure A2a–d displays the evolution of temperature field and flow field of slag pool
and metal pool. As shown in the left half of each subfigure, both the high temperature
zones of slag pool and metal pool shrink with the increase of slag thickness from 0.08 m
to 0.14 m. The highest slag temperature decreases to about 2050 K from about 2160 K
according to Figure 6. During ESR process, Joule heating is generated in the slag, increase
of slag thickness is beneficial for generation of more Joule heating. While in the meantime,
the increase of slag thickness also enlarges the contact area between slag and water-cooling
mould wall, more heat is transferred out from slag pool. It seems the heat transfer toward
mould wall dominates the result under the competition of heat generation and heat transfer
for slag pool. According to Figures 7 and A2, the depth of metal pool increases firstly then
has a decreasing tendency despite of the small variation amplitude. This may be because
the heat transfer from slag into metal pool decreases with increasing slag thickness and
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decreasing slag temperature. When the heat brought is less than that taken through cooling,
the metal pool depth begins to decrease.
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3.2. Solidification Structure
3.2.1. Effect of Melting Rate on Solidification Structure

LST is the required time of the steel for completing solidification, which reveals the
residence time of steel in mushy zone. LST is always employed as a critical criterion to
evaluate the solidification structure of steel. Figure 8 demonstrates the LST distribution
of the solidified ESR ingot with varying melting rates. It can be seen from a single figure
that the bottom and circumference of the ESR ingot shows a shorter LST, but the LST
becomes longer when closing to the center of the ingot from both the lateral wall and the
bottom. This can be contributed to the change of cooling effect of water-cooling mould
wall and basement. The heat transfer during ESR solidification is mainly through water-
cooling mould wall and basement. The cooling intensity is higher in the region near the
mould lateral wall and basement. With the solidification of ingot and rise of molten pool
level, the cooling rate decreases gradually. According to the Equation (27), LST increases
correspondingly.
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As shown in Figure 8, the increase of melting rate from 90 kg/h to 180 kg/h also causes
obvious influence on LST distribution of ESR ingot. The influence on LST is especially
obvious in the center of ESR ingot. It can be seen clearly LST in the center grows greatly.
The detailed change of LST can be found in Figure 9, which presents LST change along
radial direction at half height of solidified ESR ingot. As shown in Figure 9, the change
of LST presents a parabola shape along the diameter. In the lateral surface zone of ingot,
it has a slightly shorter LST of about 600 s at higher melting rate compared to about
700 s at a lowest melting rate 90 kg/h. However, as it approaches the ingot center, the
LST becomes longer at higher melting rate. A LST difference of about 450 s in the center
can be found when comparing the lowest and highest melting rate. Rise of melting rate
can increase the solidification rate R, the width of mushy zone also increases while the
temperature gradient GL decreases correspondingly [37,38]. According to the Equation
(27), if solidification rate is dominant, increase of melting rate can increase the cooling rate
GL·R, so LST decreases. When temperature gradient GL is dominant, increase of melting
rate decreases the cooling rate GL·R, thus LST increases. Obviously, on the ingot surface at
higher melting rate, solidification rate is in dominant position, then the dominant becomes
temperature gradient when being away from surface. According to the above, LST increases
with increase of melting rate in the current study range in most part of ESR ingot.
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PDAS and SDAS are the most intuitive evaluation parameters of solidification struc-
ture. Figures 10 and 11 demonstrate the distributions of PDAS and SDAS. It can be seen
from a single figure that the PDAS and SDAS in the bottom and circumference zone of the
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ESR ingot are also small due to intensive cooling around bottom and lateral surface. Then
they grow gradually as closing to the ESR ingot center because of weakening cooling. An
unusual increase of PDAS and SDAS in the head zone of ESR ingot can be noticed. It may
be caused by the feeding in the late ESR stage. In this period, the molten pool shrinks with
the rapid drop of melting rate, meanwhile the top surface solidifies rapidly but the lower
metal has no enough time to supplement.
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It can be also found the distribution zones of large PDAS and SDAS enlarge gradually
with the increase of melting rate from 90 kg/h to 180 kg/h. In order to specifically clarify
the change of solidification structure with melting rate, PDAS and SDAS of solidified ESR
ingot are taken at half height along radical direction and then are illustrated in Figure 12.
The center zone presents largest PDAS and SDAS. Moreover, the highest melting rate
causes largest PDAS and SDAS in the center zone, they have a respective increase of
about 100 µm and 12 µm with increase of melting rate from 90 kg/h to 180 kg/h. It is not
difficult to notice a similar change tendency of PDAS and SDAS to LST shown in Figure 9.
Shi et al. [39] reported the similar results based on experimental study. He found SDAS
of the ingot increased with the increase in the melting rates of electroslag rapid remelting
(ESRR), and contributed it to the increase in the LST. Flemings et al. [40] associated dendrite
arm spacing to LST through Equation (34).

log λ = k1 + k2 log LST (34)
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where λ is dendrite arm spacing, k1 and k2 are constants related to steel compositions.
A linear relationship between dendrite arm spacing and LST is expressed through the
equation. This also agrees with the consistent change of PDAS and SDAS with respect to
LST shown in Figures 9–12. According to Flemings’s solidification theory [40], dendrite
arm spacing depends on the heat transfer condition. According to Figures 1 and 3, a lower
temperature gradient can be found due to wider mushy zone at higher melting rate. High
melting rate results in the low cooling rate with temperature gradient being dominant. Due
to the long LST, the solidification of steel inclines to equilibrium solidification, thus the
nucleation and growth of dendrites become slow, eventually the solidification structure
is coarse.
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3.2.2. Effect of Filling Ratio on Solidification Structure

Figure A3 illustrates the LST distribution in the solidified ESR ingot. It can be seen the
area with long LST enlarges gradually with increase of filling ratio. A clear LST distribution
along radical direction at the half height of the ESR is plotted in Figure 13. The LST increases
from the intensive-cooling edge to the weak-cooling center. At the same radical position,
the LST presents an increase with increase of filling ratio but the increasement is small.
Figures A4 and A5 illustrate the PDAS and SDAS distribution with rise of filling ratio.
It seems PDAS doesn’t present obvious change but SDAS in the center has an increase.
More intuitive change can be observed from Figure 14, which depicts evolution of PADS
and SDAS along the diameter at the half height of ESR ingot. Consistently, there is little
change of PDAS, the largest increasement of SDAS is only within 5µm with the increase of
filling ratio from 0.16 to 0.43. As discussed above, there is a linear relationship between
dendrite arm spacing and LST. The little change of LST in Figure 13 also indicates the little
change of dendrite arm spacing here. The essential factor can be contributed to the steady
temperature gradient, which dominates the change of cooling rate, and then the LST and
dendrite arm spacing in the ESR ingot.
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3.2.3. Effect of Slag Thickness on Solidification Structure

As shown in Figure A6, LST presents an increasing tendency and then a slight decrease
revealed by the reduced distribution area of long LST. The LST distribution along radical
direction at half height of ESR ingot is displayed in Figure 15 in details. LST increases as
closing to the center and approaches the longest value at the center. LST at center presents
an increase firstly when slag thickness is not more than 0.12 m and then descends slightly.
This is consistent with the change of metal pool depth presented in Figure 7. Cooling is
slow in the deep molten pool, so the LST becomes long correspondingly. Figures A7 and A8
display PDAS and SDAS distribution in the solidified ESR ingot. An increasing tendency of
PDAS and SDAS can be observed with increase of slag thickness. But the slight reduction
of area with high PDAS and SDAS is also noticed when the slag thickness exceeds 0.12 m.
Figure 16 plots the specific change of PDAS and SDAS at half height of ESR ingot. The
same evolution rule of PDAS and SDAS can be found. There is almost no difference in
PDAS and SDAS for the structure size in the zone out of the midridus of the ingot for
varying slag thicknesses. PDAS and SDAS in the center increase firstly and then has a slight
decreasing tendency, which agrees with change of LST as shown in Figure 15. The slag
thickness changes the heat in the metal pool, subsequently the metal pool depth changes
LST. Different LST allows more or less time for nucleation and growth of grains. Eventually,
the change result is revealed by dendrite arm spacing.
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3.3. Macrosegregation
3.3.1. Effect of Melting Rate on Macrosegration

Coarse primary carbide is a critical factor deteriorating the quality of high carbon
steels, which is difficulty to be removed through subsequent treatment process. In the
high carbon martensitic stainless steels in this study, Cr7C3 is primary carbides [41]. The
macrosegregation of C and Cr in the steel will enhance the generation of primary carbides in
the high carbon martensitic stainless steels. Figures 17 and 18 demonstrate the distributions
of C and Cr in the solidified ESR ingot. It can be seen the C and Cr concentrations are
high in the center but low at the periphery. With the increase of melting rate, the C and
Cr concentrations in the center increases gradually and the area with high concentration
enlarges along radical and axial directions. Figure 19 further illustrates the segregation
index of C and Cr along vertical centerline of ESR ingot. The segregation index is defined
as Equation (35).

S =
c− c0

c0
× 100% (35)

where c is concentration of C or Cr in the solidified ESR ingot, c0 is initial concentration of
C or Cr in the electrode. It can be seen clearly from Figure 19 the segregation index of C
and Cr illustrates similar change tendency from head to bottom of ESR ingot. A negative
segregation index due to intensive cooling of bottom water tank can be found, whereas it
quickly transforms into positive segregation toward the head zone, where molten metal
solidifies slowly. In the final stage of ESR solidification, the solidification shrinkage of
ESR ingot exacerbates the segregation due to descending slag temperature and weak heat
insulation. It can be seen a sudden increase of segregation in the range of 0–0.2 m from
Figures 17–19. For a typical height range of 0.2–1.0 m, the segregation indexes of C and
Cr are positive and increases with increasing melting rate. The effect of melting rate on C
and Cr segregation shows Liu [9] and Wang [10] reported the similar effect of melting rate
characterized by current on enhancement of Cr and Ni segregation based on laboratory-
scale experiments. Further, Wang [14,32] presented the similar change tendency of local
carbon content along centerline based on the simulation and experiment. All these studies
verify the reliability of the present simulation results. As discussed above, high melting
rate would deepen the molten metal pool and thus the closed mushy zone would become
broader due to the crossing primary dendrite arms. The partition coefficient between solid
and liquid phase of C is far less than unity, the value of Cr is close to unity but still less
than unity in the high alloy steels [42]. During ESR solidification process, C and Cr are
ejected from solid to liquid incessantly. With the action of thermal buoyancy, the solute-rich
and hotter metal at the solidification front floats due to the driving of clockwise vortex
discussed above. High melting rate enhances the clockwise vortex, and thus enhances C
and Cr segregation. Cr has higher partition coefficient than C, so its segregation index is
lower. Moreover, another effect of melting rate is that it decreases the temperature gradient,
this is not beneficial for stratification solidification to block the floatation of solute-rich
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liquid. The large SDAS and long LST under low temperature gradient prolong the diffusion
time of solute elements, which exacerbates the segregation.
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3.3.2. Effect of Filling Ratio on Macrosegration

Figure 20 illustrates the C and Cr distribution in the ESR ingot. It can be seen there
is a slight increase of element contribution in the center with increase of filling ratio.
Figure 21 compares the change of centerline segregation index of C and Cr with filing
ratio, the centerline segregation index is calculated based on the element concentration
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in the centerline of ESR ingot. The overall change tendency of centerline C segregation
is consistent with the reported study [14]. The enlarged local figure in Figure 21 makes
the comparison clearer. It can be seen a slight increase of the segregation index, which
agrees with the reported effect rule of filling ratio on C segregation in the middle zone of
201 stainless steel ESR ingot [14]. The change of segregation index is also consistent with
the change of SDAS. As discussed above, this is because small SDAS helps restrain the
element segregation because it shortens the diffusion distance of elements and thus restricts
and disperses them in a small microcell.
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3.3.3. Effect of Slag Thickness on Macrosegration

Figure 22 displays the C and Cr concentration in the ESR ingot. An area reduction
of high concentration zone can be found from low slag thickness to high slag thickness.
The centerline segregation index of C and Cr shown in Figure 23 illustrates the change in
detail. Due to the shrinkage in the center as shown in Figure 23a,c, the segregation index
presents an abrupt change. Take the segregation index in the upper half part of ESR ingot
for example, the segregation index increases firstly and then decreases with increases of
slag thickness. In combination with the previous discussion on the change of dendrite arm
spacing with slag thickness, similar change of dendrite arm spacing with segregation index
due to slag thickness indicates it is a critical factor affecting the segregation index.
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As discussed above, it can be found the change of melting ratio in the study range
causes the most serious impact on the ESR solidification process. Deep molten pool and
coarse structures can be viewed in the case of high melting rate. Increase of filling ratio
increases the mushy zone width and thus decreases the temperature gradient, meanwhile
LST, SDAS and segregation receive a slight rise. An inflection can be observed with
respect to the molten pool depth and mushy zone width when increasing slag thickness.
LST, SDAS, segregation of C and Cr approach their maximum when the slag thickness
increases to 0.12 m. To sum up, a low melting rate less than 120 kg/h, a filling ratio of
about 0.23–0.33 and a slag thickness of 0.08–0.10 m are suggested for ESR process of high
carbon stainless steels in this study through synthetical consideration with the whole ESR
solidification process.

4. Conclusions

1. As the increase of melting rate, the molten metal pool depth increases, the temper-
ature gradient and highest slag temperature decrease, the anticlockwise vortex in
the slag and the clockwise vortex in the metal pool enlarge. LST, PDAS and SDAS
increase greatly, meanwhile the segregation of C and Cr deteriorates with increasing
melting rate.

2. Increase of filling ratio reduces the metal pool depth within a small range but in-
creases the mushy zone width, maximum slag temperature and metal temperature at
slag/metal interface. A mild increase of LST and SDAS is observed but the change of
PDAS is little with rise of filling ratio. In the same time, centerline segregation of C
and Cr increases marginally with increasing filling ratio.

3. The metal pool depth increases firstly and then decrease slightly with rising slag
thickness. The flow intensity in the vortex center weakens and the highest slag
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temperature decreases as rise of slag thickness. LST, PDAS, SDAS, segregation of
C and Cr present similar change tendency with metal pool depth as the increase of
slag thickness.

4. Through a comprehensive consideration on temperature and flow field, metal pool
profile, solidification structure and element segregation, a low melting rate less than
120 kg/h, a filling ratio of about 0.23–0.33 and a slag thickness of 0.08–0.10 m are
suggested for ESR process of high carbon stainless steels in this study.
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List of Symbols
∇ Vector operator nabla (1/m)
σ Electrical conductivity (1/(Ω·m))
Ĥθ Complex amplitude of magnetic field intensity (A/m)
µ0 Vacuum permeability (T·m/A)
j In electrical equations j =

√
−1

ω Angular frequency (Hz)
µ Dynamic viscosity (Pa·s)
Ĵ Complex amplitude of current density (A/m2)
FL Lorentz force (N/m3)
Conjugate (B̂) Complex conjugate of magnetic flux density (T)
Conjugate (Ĵ) Complex conjugate of current density (A/m2)
SJ Joule heating (W)
x Axial direction
Î Amplitude of the total current entering the slag (A)
r radius (m)
RIngot Radius of ESR ingot (m)
ρ Density(kg/m3)
u Velocity (m/s)
g Gravitational acceleration (m/s2)
P Pressure (Pa)
µe f f Effective viscosity (Pa·s)
h Sensible enthalpy (J/kg)
∆H Enthalpy change (J/kg)
ke f f Effective thermal conductivity (W/(m·K))
hre f Reference sensible enthalpy (J/kg)
Tre f Reference temperature (K)
Cp Specific heat capacity (J/(kg·K))
L Latent heat (J/kg)
Tliq, Tsol Liquidus and solidus temperature (K)
λ1, λ2 Primary and secondary dendrite arm spacing (µm)
GL Temperature gradient (K/m)
R Solidification rate (m/s)
.

m melting rate (kg/h)
Tamb Ambient temperature (K)
εe Emissivity
σb Stefan-Boltzmann constant
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ε Turbulence dissipation (m2/s3)
k Thermal conductivity (W/(m·K))
µt Turbulent viscosity (Pa·s)
G Generation of turbulence kinetic energy due to the mean velocity gradients (Pa s)
c Concentration of an alloying element
kt Turbulent thermal conductivity (W/(m·K))
Prt Turbulent Prandtl number
S Source term due to mass flux of alloying element (kg/(m3·s))
Sc Schmidt number
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