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Abstract: The manufacturing of structures ranging from bridges and machinery to all types of
seaborne vehicles to nuclear reactors and space rockets has made considerable use of arc welding
technologies. This is as a result of benefits including increased joint efficiency, air and water tightness,
no thickness restriction (0.6 to 25 mm), decreased fabrication time and cost, etc. when compared
to alternative fabrication methods. Gas metal arc welding (GMAW) is a frequently used welding
technology in industries due to its inherent benefits, including deeper penetration, a smooth bead, etc.
Local heating and cooling that takes place during the multi-pass welding process causes complicated
stresses to develop at the weld zone, which ultimately causes angular distortion in the weldment.
Angular distortion is a major flaw that affects the weld’s properties as well as the cracking and
misalignment of the welded joints. The issue of angular distortion can be successfully solved by
predicting it in relation to certain GMAW process variables. A neural network model was created in
this research to predict angular distortion. A fractional factorial approach with 125 runs was used
to conduct the exploratory experiments. A neural network model with feed forward and backward
propagation was developed using the experimental data. To train the neural network model, the
Levenberg–Marquardt method was utilised. The results indicate that the model based on network
4-9-3 is more effective in forecasting angular distortion with time gaps between two, three, and four
passes than the other three networks (4-2-3, 4-4-3, 797 and 4-8-3). Prediction accuracy is more than
95 percent. The neural network model developed in this study can be used to manage the welding
cycle in structural steel weld plates to achieve the best possible weld quality with the least amount of
angular distortion.

Keywords: structural steel; gas metal arc welding; angular distortion; artificial neural networks

1. Introduction

Welding methods have been used in the production of a wide range of objects, such
as bridges, equipment, nuclear reactors, and the space shuttle. This is due to its excellent
joint efficiency, ability to weld complex structural geometries, and reduced fabrication costs
as compared to alternative joining processes. Jiajia Shen et al. [1,2] GMAW welding is
mostly applied for welding of automobile chassis parts where it is necessary to secure the
strength and rigidity of the joint. In the construction industry, it has been used for welding
of components in bridges dam and manufacturing plants. It is also used for structurally
sound metal frame works. Robotic assembly lines typically use GMAW for production
techniques that are time-effective. Jiajia Shen et al. [3] Structural steel is a type of mild
steel that has a low carbon content of 0.25 to 0.35 percent and a manganese content of
1.4 percent. Si, S, and P are equally important for weldability, even though carbon is the
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alloying ingredient that is most important. Their importance can be assessed by converting
them to carbon equivalents. Due to the characteristics of fusion based welding, especially
due to the non-equilibrium solidification conditions, as well as the existence of fast heating
and cooling cycle and high peak temperature results in problem such as fracture arrest,
material sensitivity, residual stress and distortion. The source of all of these problems is
the welding heat cycle, which occurs in the weld metal and base metal components of the
weldment. In large steel fabrications, welding distortion leads to dimensional inaccuracies
and misalignments of structural members. Rework or corrective actions are necessary when
tolerance thresholds are crossed. Production costs increase as a result, and delivery times
grow longer. In fabricated constructions, distortion during welding leads to three primary
dimensional changes: Two types of shrinkage occur: (a) longitudinal shrinkage parallel to
the weld line; and (b) transverse shrinkage perpendicular to the weld line. (c) Rotation or
deformation around the weld line Since angular distortion has a more significant impact
than the other two fundamental distortions, it is given priority. Before welding, the plates
can be pre-bent in plastic or pre-strained in elastic to help minimise normal distortion. For
this to occur, precise angular distortion prediction under a particular set of operational
circumstances is necessary. Angular distortion is significantly influenced by the welding
process parameters. Since predicting angular distortion and figuring out the ideal welding
process parameters both require expensive and time-consuming trials, it is challenging
to predict angular distortion with precision for a particular set of operating parameters.
This is due to the complicated and nonlinear nature of the welding process. It is necessary
to create a suitable model, optimise the process parameters, and anticipate and reduce
angular distortion. More effective techniques, such as artificial neural networks, are needed
to anticipate angular distortion and determine the ideal welding process parameters.

Statistical methods help to see and understand any patterns within the data. It is
challenging to determine why one system performs better than another without statistical
models. It provides intuitive visualisation that makes it easier to see how different factors
relate to one another and make predictions. The statistical method does not focus on
qualitative aspect and the results are true only on average whereas FEM requires large
amount of data as input for the mesh. The output result will vary considerably. The
neural network mode offers numerous advantages such as the ability to implicitly detect
complex nonlinear relationships between dependent and independent variable. Koichi
Masubuchi [4] studied the angular distortion that occurs at butt, lap, T, and corner joints
when single-sided or asymmetrical double-sided welding is used. They found that the
degree of angular distortion depends on the width and depth of the fusion zone in relation
to the plate thickness, joint type, weld pass sequence, and thermo-mechanical material
properties. Choobi et al. [5] used artificial neural networks to anticipate angular distortion
when welding 304-grade stainless steel plates in a single pass. They run a series of finite
element simulations for different plate sizes to provide the data for the neural network
model. Paulo Cezar et al. [6] discovered that the neural network model they had created
was able to predict angular distortions during the welding of single-pass plates that were
butt welded with accuracy. Mohd Hafiza Abdul Kadir et al. [7] examined the behaviour of
angular distortion in ASTM A36 structural steel plates welded using the GMAW process.
They varied the heat inputs between 0.6 and 2.5 kJ/min and built three equations in order
to predict angular distortion. They came to the conclusion that the model that was built
with the least amount of heat input could correctly forecast angular distortion. Woo-Jae
Seong [8] proposed a method for predicting transverse angular distortion in multi-layer
butt welding. He developed a algorithm to save saves computational time using databases
and geometry based on a numerical approach.

Navid Ansaripour et al.’s [9] research on the submerged arc welding method concen-
trated on minimising distortion and residual processing. By running tests with varying
cooling times and welding rates between the first and second passes, they were able to
collect training data. An artificial neural network model was created based on the training
data. The optimised, trained neural network was then input into single- and multi-objective
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genetic algorithms and single- and multi-objective harmony search techniques. Using the
findings as a guide, single- and multi-objective optimization techniques are utilised to
lessen residual stress and distortion.

An approach based on inherent strain was used by Vishvesha et al. [10] to analyse the
distortion in the GBC’s (Guide Blade Carrier) outer ring. They came to the conclusion from
their investigation that, using the above-described method, they could predict 3-D distor-
tion patterns with accuracy. They also found a strong correlation between projected and
observed values. A technique for computing deformation was developed by Wu et al. [11]
to more precisely estimate welding distortion. The welding-induced bending deformation
is calculated using this algorithm as a function of the bending angle. The authors concluded
that the algorithm was able to accurately estimate angular distortion in terms of bending
angle. Using gas tungsten arc welding, Zubairuddin et al. [12] investigated the distortion
of 3 mm-thick modified 9Cr-1Mo steel plates. The distortion was measured using a vertical
electronic height gauge. They created a 3D mesh model using the SYSWELD programme
to simulate deformation. They utilised both big and small distortion theories for the finite
element analysis of the weld joint. As a result of their analysis, they came to the conclusion
that the huge distortion theory yields precise experimental and numerical results.

Venkatesan et al. [13] investigated the 409 M ferritic stainless steels bending distortion.
In order to identify the bowing distortion, the investigators used a profile tracer and
a flux-cored arc welding technique. By developing a regression equation linking the
welding process parameters and bending distortion, the impacts of process factors such as
welding current, travel speed, voltage, and CO2 shielding gas flow rate were examined.
The regression equation was used to find the ideal values for the process parameters to
achieve the least distortion. Suman et al. [14] developed an enhanced equivalent load-
based method to predict welding distortions in large weld structures. When analysing a
large weld structure, the transient character of plastic strain distribution was taken into
consideration. The proposed method was validated by comparing the outcomes to the
experimental data. Comparing the two showed that they are perfectly compatible. The
procedure was validated by measuring welding distortions for various welding joints in
order to make sure it was effective. Ronget et al. [15] developed a hybrid model using
non-linear yield stress curves and multi-constraint equations in thermoplastic analysis
for predicting welding deformities in large-scale constructions. The dependability of the
integration model is supported by published experimental results of GMAW-welded T-joint
structural steel S355JR. The results show that the suggested integration model can reduce
computation time by 30.14 percent. The hybrid model can therefore be used to precisely
predict welding distortions in massive structures.

Wang et al. [16] investigated the distribution of deformation and residual stress in
lifting lugs, a frequently employed welded construction in the shipbuilding industry. They
recommended using a heat compensation strategy to boost lifting lug output. Based on
their numerical and experimental results, they came to the conclusion that the coupled
finite element model may be used successfully to address the challenges of industrial
production and that the proposed thermal compensation method may boost productivity.

For CO2 laser-MIG hybrid welding, Chaki et al. [17] developed an artificial neural
network (ANN) model to predict the relationship between laser power, welding speed, wire
feed rate, and tensile strength. They used a full-factorial experimental design to gather data.
A back-propagation algorithm was applied to radial function networks as a training method.
To find the model with the best predictive power, the authors have developed 65 different
architectures and tested them using 6 different training methods. They discovered that the
network 3-11-1 had a mean square error of 3.24×10 −4 and correctly predicted the outcome.

Using the Gas Tungsten Arc Welding (GTAW) method, Sudhakaran et al. [18] carried out
experiments on stainless steel plates of grade 202 in order to forecast the angular distortion by
creating an ANN model. A central composite five-factor level rotatable design is used for the
tests and data collection. Using the Levenberg–Marquette method, a feed-forward backward
propagation neural network model was trained on the experimental data. They came to the
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conclusion that the ANN model could predict angular distortion accurately. Pazooki et al. [19]
studied the distortion that happens in GMAW of 500 × 250 × 6 mm 3AH36 plates using
both experimental and numerical methods. They created a 3D finite element model to better
comprehend the distortion mechanism. The model was validated using temperature, distortion,
residual stress, and microstructure investigations. It is found that the numerical analytical results
and the experimental data are extremely close.

Barclay et al. [20] employed ANN to estimate the refinement of weld distortion using
a travelling induction coil. The weld specimen was heated using a voyage, which is an
induction coil. To predict weld-induced distortion and its rectification using a travelling
induction coil, an ANN model was built based on experimental data. The results show
that distortion in DH36 steel plates with a thickness of 6 mm may be fully eliminated
and that distortion in plates with a thickness of 8 mm and 10 mm can be greatly reduced.
Liang Tian et al. [21] used the bead-on-plate method to anticipate angular distortion
and transverse shrinkage and created a back-propagation neural network model for gas
tungsten arc welding for S304L stainless steel plates. To mimic the welding process,
they used a finite element method. The neural network model was also evaluated using
experiment data. The experiment’s input parameters included welding voltage, welding
current and welding speed. The output parameters were transverse shrinkage and angle
distortion. They deduced from the findings that the neural network model could predict
angular distortion properly. Using a numerical and artificial neural network model, Cristian
Rubio-Ramirez et al. [22] predicted angular distortion in the GMAW process of thin-sheet
Hardox 450® steel. Comsol Multiphysics’ thermo-elastic-plastic model was used to create
the 3D finite element model. The finite element model was validated through a number
of trials. They developed a model that included the effects of heat input, filler metal
dilution percentage, and angular distortion. The neural network model received the finite
element model’s outputs as input data. The deformation and residual stresses in 20-mm-
thick austenitic stainless steel plates welded using the GTAW technique was examined
by Sayantan Das Banik et al. [23]. Heat input, welding speed, and restrictions are the
variables taken into account during the inquiry. Distortion and residual strains were the
outputs that were measured. They performed the heat study and used FEM to model
the weld joint. They deduced from the analysis that there was good agreement between
the experimental and numerical results. The effects of welding parameters and welding
method on residual stress and distortion in Al6061-T6 aluminium alloy for a T-shaped
welded joint using GMAW technology were examined by Amirreza Khoshroyan et al. [24].
They created a three-dimensional thermo-mechanical coupled finite element model with the
use of Ansys software to analyse distortion as a function of welding current, welding speed,
and welding sequence. They discovered that while welding speed causes angular distortion
to decrease, welding current induces plate and stiffener deformation. The alteration in
welding procedure caused the deformation to spread throughout the entire plate. Garca-
Garca et al. [25] developed a finite element model to simulate welding residual stresses
and deformation in Ti-containing TWIP steel. The welding heat cycle of TWIP-Ti steel
was investigated using the thermo-mechanical model. The residual stress crucial zone
was defined using maximum tensile residual stress and hardness, two properties found
in the fusion zone and the heat-impacted zone. To validate the results, X-ray diffraction
was performed at the welds’ crucial areas. As a result of their research, they were able to
quantify improved weldability for TWIP-Ti steel throughout the GTAW process.

Venkat Kumar et al. [26] used finite element analysis to analyse the effects of heat on
temperature, distortion, and residual stress in butt-welded plates. They investigated the
effects of five different heat inputs on the weld bead shape, residual stress, and distortion
of 304 stainless steel butt welded plates using 3D finite element analysis. Based on the
results, they came to the conclusion that heat significantly affects welding distortion and
residual strains. Vasantharja et al. [27] examined the deformation and residual stresses in
316LN stainless steel weld joints produced by both TIG and A-TIG methods for various
joint configurations. After radio graphing the weld connections, the microstructure was
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characterised using an optical microscope. The distortion was calculated using a height
gauge. Their investigation led them to the conclusion that double-sided A-TIG welding pro-
duced the least distortion in weld connections. Remaining stresses and distortion in the gas
metal arc welding of two thin, different aluminium alloy plates, AA5052 and AA6061, were
examined by Tapas Bajpei et al. [28]. The distortion of the weld samples was assessed using
coordinate measurement equipment. The results were validated using a three-dimensional
thermo-mechanical finite element model made with the ANSYS programme. They came
to the conclusion that the numerical and experimental data were in good agreement and
that the AA6061 plates shrank considerably less than the AA5052 plates based on their
comparison. Laksha et al. [29] explored angular distortion in the MIG welding process
by creating a mathematical model. The mathematical model was developed by linking
welding process variables to angular distortion. The tests were created using a central
composite rotatable design, and the model’s applicability was then examined. The results
were graphically examined using the Response Surface Methodology. The analysis led them
to the conclusion that the mathematical model could correctly forecast angular distortion.

In order to predict angular distortion in structural steel plates that had been connected
by gas metal arc welding, Lohate and damale et al. [30] focused on studying the effect
of process variable such as arc voltage, travel speed, welding current, wire feed rate, gas
flow rate on angular distortion. Fuzzy logic has been employed for prediction of angular
distortion. The effects of process parameters were represented graphically and compared
with the experimental results. The outcome of the research was the results obtained by
Fuzzy logic tools shows agreement with the experimental results. Baskoro et al. [31]
examined how GMAW variables impacted the deformation of A36 mild steel. To determine
the welding process settings that would cause the least amount of distortion, they used
the Taguchi technique. They used welding current and speed as the input and angular
distortion as the response. The trial runs are carried out using a L9 orthogonal array. The
minimal criteria were defined using the S/N ratio and the quality character “smaller is
better.” The findings demonstrate that a welding current of 170 A and a welding speed of
4.0 mm/s can create the least amount of distortion, with welding speed having a bigger
impact on angular distortion. DeqiaoXie et al. [32] used an asymmetric cross-sectional
form on the thickness side to explore the cause of angular distortion in fusion welding.
They developed a mathematical model that connected the melting-solidification process to
angular distortion. The experiments were carried out using laser welding on 316L stainless
steel, and the results were compared with the expected values. Based on the results, they
came to the conclusion that an asymmetric cross-sectional profile significantly leads to
angular distortion. Yu R et al. [33] researched the weld reinforcement prediction in the
GMA additive manufacturing process using the visual-sensing system for molten pool
and created a laser locating method to match every frame of the molten pool image with
the actual weld site. They created the prediction model for weld reinforcement in the
GMA additive manufacturing process by extracting the shape and location properties of
the molten pool as visual features using a back-propagation (BP) neural network. They
concluded from their experimental investigation that the model could correctly forecast
welding reinforcement.

The primary cause of angular distortion was plastic deformation of the work piece in
an angular direction caused by uneven contraction along the thickness. Factors including
the relative depth of penetration, the relative bead width and shape, and the mechanical
and thermal properties of the base and filler material all have an impact on the creation
of angular deformation. Angular distortion is controlled by welding process settings that
regulate bead geometry, welding speed, wire feed rate, time between passes, nozzle to
plate angle, number of passes, voltage, and current—all critical welding parameters that
determine angular distortion. The most common method for predicting angular distortion
was simulation using finite element analysis, whereas ANN can be used for more precise
predictions. For performing trials, the majority of studies employed either Taguchi Design
or Central Composite Rotatable Design; however, additional test data is required for
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constructing an ANN model. As a result, the experiments in this study were carried out
using fractional factorial with 125 experimental runs. A neural network structure with
four input neurons, three output neurons, and several nodes in the hidden layer was
constructed using the experimental data. The networks 4-2-3, 4-4-3, 4-8-3, and 4-9-3 are
engaged. The input parameters for the networks were time between passes (t), angle of
electrode with work piece (θ), wire feed rate (F), welding speed (S), and number of passes
(N). At the end of the second, third, and fourth passes (two, three, and four, respectively)
of the welding process, the output parameter angular distortion (α) was measured. The
network was developed using the Levenberg–Marquardt method. In comparison to the
other networks, the ANN model based on 4-9-3 were better at predicting angular distortion
at the conclusion of the second, third, and fourth passes.

2. Experimental Process

Data must be produced through experiments that are representative of actual fab-
rication circumstances in order to study how process control parameters affect angular
distortion. In order to effectively develop a mathematical/neural network model, the
experiments should be conducted in a systematic approach this will enable to study the
relationship between multiple input variables and key output variables. Finally, we would
be able to get the desired results of minimizing angular distortion.

To conduct experiments, a well-prepared and designed experimental plan and pro-
gramme are required. The studies were carried out using a design matrix based on fractional
factorials and 125 experimental runs. The base metal for the current investigations was
300 mm × 150 mm × 25 mm of IS: 2062 (Grade A) structural steel made by Steel Authority
of India Limited (SAIL). The filler material used to weld the specimen is ER 70S—6 solid
wire with a diameter of 1.2 mm. Table 1 shows the mild steel’s chemical composition and
key mechanical properties. The cross section of the specimen with edge preparation is
shown in Figure 1. Parts 1–6 of EN 10025 are a set of European standards that define the
technical delivery conditions for hot-rolled structural steel products. The current version is
EN 10025:2019.

Table 1. Chemical composition of structural steel IS: 2062 Grade A.

C% (Max) Mn% (Max) S% (Max) P% (Max) Si% (Max) CE% (Max)

0.23 1.50 0.050 0.050 0.40 0.42
Minimum yield strength = 240 MPa. Minimum ultimate tensile strength = 410 MPa. % of elongation = 23.

Figure 1. Cross section of the specimen.

A semi-automatic, thyristor-controlled metal-inert gas welding machine from M/s
Icon Welding Equipment was used for all of the studies (Model IWE-MG-TC-400, 2019).
The wire feed rate can be fine-tuned, and metres to display arc voltage and welding
current are included on the control panel. The automatic MIG welding technique used
a constant-potential (flat-characteristic) transformer and rectifier power supply. It had a
supply voltage of 415 VAC at 50 or 60 Hz and could deliver currents ranging from 50 to
400 amps. The welding sample was moved in opposition to a fixed welding torch with
the aid of a servo-motor-controlled linear manipulator. This linear manipulator can move
the base plate in the X and Y directions at a predetermined welding speed, and to secure
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the welding specimen, the base plate has a T-slot. The layout of the gas metal arc welding
process is shown in Figure 2 and the experimental shown in Figure 3.

Figure 2. Layout of Gas Metal Arc Welding Machine.

Figure 3. Experimental Setup.

3. Plan of Investigation
3.1. Choosing the Appropriate Design

The factorial design is the experimental design that will be used in this study. This is a
common statistical method for conducting an experiment in the most efficient manner [34,35]
and investigating the effects of variables on the response or output parameter. The most
significant benefit of this design is that it allows for the simultaneous examination of a
large number of factors, allowing for a better understanding of the combined impact of the
parameters on the response. The experimental approach is to choose a predetermined number
of levels for each parameter or factor before conducting trials with every possible combination
of the parameters or factors. A fractional factorial with 125 experimental trial runs was selected
as the study’s design matrix [36–38].
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3.2. Identification of the Process Variables

The best welding circumstances can be achieved by carefully choosing the indepen-
dently controllable process variables or factors that affect weld quality. Among the several
independently controllable process parameters affecting angular distortion, the angle of
the electrode to the work piece (q), time gap between passes (t), wire feed rate (F), and
welding speed (S) were selected as factors to carry out the experimental work and build
mathematical models. Because welding current is dependent on the wire feed rate, it cannot
be regulated directly. In place of welding current, wire feed rate was used as a factor. In
MIG welding, open circuit voltage was used instead of arc voltage [39–42].

3.3. Determining the Limits of the Process Variables

All of the selected process variables’ working ranges had to be established in order
to fix their levels and create the design matrix. This was accomplished by conducting
experimental runs in which one of the process variables was changed while the others
remained constant. To determine the operating range of the process parameters, a large
number of trial runs were carried out, and the weld bead was assessed for smoothness and
any obvious flaws such as surface porosity, undercut, and so on. The following relationship
was used to obtain the coded values for intermediate values: A factor’s upper and lower
bounds were both coded as +2 and −2, respectively.

Xi =
2(2X − (Xmax + Xmin))

(Xmax − Xmin)
(1)

where,

Xi—The required coded value of a variable X,
X—Is any value of the variable from Xmin to Xmax
Xmin—Is the lower limit of the variable.
Xmax—Is the upper limit of the variable.

Table 2 shows the finalised levels of the selected process parameters in both GMAW
trials, together with their units and notations.

Table 2. Welding process parameters and their levels.

Process Parameters Units Notation
Limits

−2 −1 0 +1 +2

Angle of electrode
to work piece Deg θ 70 80 90 100 110

Time gap between
passes minutes T 5 10 15 20 25

Wire feed rate m/min F 5 5.25 5.5 5.75 6
Welding speed cm/min S 8.4 9 9.6 10.2 10.8

3.4. Development of Design Matrix

The studies in factorial design try to investigate all conceivable combinations of
parameter levels, and these combinations are recorded as a table, where the rows correspond
to different trials and the columns to parameter levels, and they combine to produce a
design matrix [43–46]. A total of 125 trial runs make up the design matrix. The design
matrix is used to lay out the variables of the welding process. The design matrix allows for
a systematic approach to conducting random experiments while also preventing systematic
errors from entering the system [47].

3.5. Measurement of Angular Distortion

Using a laser cutter, structural steel plates (IS: 2062) of the required number of samples
of 300 mm × 150 mm each were cut. A milling machine was used to prepare the edges for
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the oxy-acetylene gas cutting machine by cutting a single “V” groove with a 30◦ included
angle. Cutting fluids were used to reduce residual stresses created during machining, and
the depth of cut was kept as low as feasible during groove preparation. This experiment
looked at four welding process variables: angle of the electrode to the work piece (q), time
gap between passes (t), wire feed rate (F), and welding speed (S). 125 experiments were
conducted as per the design matrix. The welding sequence is shown in Figure 1, and the
number of iterations was set to four. The angle of the electrode with the work piece is
one of the process variables in this experiment (θ) [48–52]. It was also planned to conduct
an analysis of angular distortion progress by measuring angular distortion at the end of
the second, third, and fourth passes of welding (passes two, three, and four, respectively).
The values of angular distortion corresponding to the time gap between the passes are
represented as α2, α3 and α4 respectively [53–57]. In this study, the angular distortion at
the end of the first pass is eliminated because the process variable time gap between passes
(t) refers to the time between the end of the previous pass and the start of the current pass.
The angular distortion won’t be affected by the time interval between passes for the first
pass because the first pass has no preceding pass. The response angular distortion (α) was
measured using the following method: With the use of a vernier height gauge, the angular
distortion (α) was measured using the sine bar concept. The ASTM A1030/A1030M-05
standard was used as the reference for angular distortion measurement. These established
models are highly helpful in quantifying angular distortion in the negative direction,
ensuring that the component will not have angular distortion after welding [58–62]. They
can also be used to choose the best process parameters to reduce distortion in welded
structures. Figure 4 illustrates the measurement principle for angular distortion. Figure 5
shows a welded specimen with varying degrees of deformation. In Table 3, the measured
values of α are listed.

Figure 4. SINE BAR arrangement for measuring angular distortion.

α = Sin−1
[

h1 − h2

b

]
(2)
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Figure 5. Photograph showing angular distortion.

Table 3. Design matrix and measured value of angular distortion.

S. No. θ T F S α 2
Degrees

α 3
Degrees

α 4
Degrees

1 0 0 0 0 1.38 2.32 3.15
2 0 0 −1 2 1.88 2.44 2.81
3 0 0 0 1 1.38 2.22 2.96
4 0 0 1 0 1.34 2.3 3.03
5 0 0 2 −1 1.76 2.68 3.02
6 0 −1 0 2 1.56 2.02 2.57
7 0 −1 −1 1 2.32 3 3.62
8 0 −1 0 0 1.56 2.24 3.05
9 0 −1 1 −1 1.26 1.78 2.4

10 0 −1 2 0 1.42 2.2 2.71
11 0 0 0 1 1.38 2.22 2.96
12 0 0 −1 0 1.88 2.84 3.57
13 0 0 0 −1 1.38 2.22 2.96
14 0 0 1 0 1.34 2.3 3.03
15 0 0 2 2 1.76 2.38 2.45
16 0 1 0 0 1.2 2.24 3.05
17 0 1 −1 −1 1.44 2.5 3.22
18 0 1 0 0 1.2 2.24 3.05
19 0 1 1 2 1.42 1.89 2.09
20 0 1 2 1 2.1 3.01 3.18
21 0 2 0 −1 1.02 2.08 2.84
22 0 2 −1 0 1 2.02 2.77
23 0 2 0 2 1.02 1.24 1.43
24 0 2 1 1 1.5 2.2 2.56
25 0 2 2 0 2.44 3.46 3.61
26 −1 0 0 2 1.66 1.92 2.42
27 −1 0 −1 1 1.82 2.44 3.09
28 −1 0 0 0 1.4 2.1 2.94
29 −1 0 1 −1 1.44 2.06 2.71
30 −1 0 2 0 2.2 2.94 3.4
31 −1 −1 0 1 1.36 1.78 2.59
32 −1 −1 −1 0 1.78 2.26 2.94
33 −1 −1 0 −1 1.1 1.38 2.07
34 −1 −1 1 0 1.14 1.6 2.4
35 −1 −1 2 2 1.77 2.02 2.34
36 −1 0 0 0 1.4 2.1 2.94
37 −1 0 −1 −1 1.56 2.22 2.85
38 −1 0 0 0 1.4 2.1 2.94
39 −1 0 1 2 1.83 2.09 2.5
40 −1 0 2 1 2.33 2.95 3.33
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Table 3. Cont.

S. No. θ T F S α 2
Degrees

α 3
Degrees

α 4
Degrees

41 −1 1 0 −1 1.44 2.24 2.99
42 −1 1 −1 0 1.6 2.44 3.18
43 −1 1 0 2 1.83 2 2.36
44 −1 1 1 1 2.13 2.7 3.23
45 −1 1 2 0 2.89 3.7 4.02
46 −1 2 0 0 1.74 2.46 3.18
47 −1 2 −1 2 1.77 1.75 1.92
48 −1 2 0 1 1.87 2.29 2.83
49 −1 2 1 0 2.43 3.13 3.66
50 −1 2 2 −1 3.45 4.27 4.41
51 0 0 0 1 1.38 2.22 2.96
52 0 0 −1 0 1.88 2.84 3.57
53 0 0 0 −1 1.38 2.22 2.96
54 0 0 1 0 1.34 2.3 3.03
55 0 0 2 2 1.76 2.38 2.45
56 0 −1 0 0 1.56 2.24 3.05
57 0 −1 −1 −1 2.32 2.82 3.34
58 0 −1 0 0 1.56 2.24 3.05
59 0 −1 1 2 1.26 1.75 2.25
60 0 −1 2 1 1.42 2.19 2.66
61 0 0 0 −1 1.38 2.22 2.96
62 0 0 −1 0 1.88 2.84 3.57
63 0 0 0 2 1.38 1.92 2.39
64 0 0 1 1 1.34 2.2 2.84
65 0 0 2 0 1.76 2.78 3.21
66 0 1 0 0 1.2 2.24 3.05
67 0 1 −1 2 1.44 1.93 2.23
68 0 1 0 1 1.2 2.05 2.72
69 0 1 1 0 1.42 2.47 3.13
70 0 1 2 −1 2.1 3.19 3.46
71 0 2 0 2 1.02 1.24 1.43
72 0 2 −1 1 1 1.74 2.3
73 0 2 0 0 1.02 2 2.75
74 0 2 1 −1 1.5 2.56 3.12
75 0 2 2 0 2.44 3.46 3.61
76 1 0 0 0 1.58 2.54 3.36
77 1 0 −1 −1 2.42 3.26 3.91
78 1 0 0 0 1.58 2.54 3.36
79 1 0 1 2 1.07 1.71 2.04
80 1 0 2 1 1.41 2.41 2.71
81 1 −1 0 −1 2.24 2.72 3.37
82 1 −1 −1 0 3.08 3.76 4.4
83 1 −1 0 2 1.85 2.36 2.86
84 1 −1 1 1 1.47 2.22 2.89
85 1 −1 2 0 1.55 2.38 2.84
86 1 0 0 0 1.58 2.54 3.36
87 1 0 −1 2 2.03 2.63 2.98
88 1 0 0 1 1.45 2.33 3.05
89 1 0 1 0 1.33 2.33 3.04
90 1 0 2 −1 1.67 2.63 2.95
91 1 1 0 2 0.79 1.32 1.66
92 1 1 −1 1 1.37 2.28 2.91
93 1 1 0 0 1.05 2.12 2.94
94 1 1 1 −1 1.19 2.26 2.89
95 1 1 2 0 1.53 2.7 3
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Table 3. Cont.

S. No. θ T F S α 2
Degrees

α 3
Degrees

α 4
Degrees

96 1 2 0 1 0.39 1.15 1.73
97 1 2 −1 0 0.71 1.75 2.54
98 1 2 0 −1 0.65 1.73 2.53
99 1 2 1 0 0.79 1.83 2.4
100 1 2 2 2 1.26 1.64 1.22
101 2 0 0 −1 2.26 2.88 3.62
102 2 0 −1 0 2.92 3.66 4.39
103 2 0 0 2 1.48 1.92 2.33
104 2 0 1 1 1.28 2.04 2.62
105 2 0 2 0 1.54 2.46 2.83
106 2 −1 0 0 2.88 3.36 4.11
107 2 −1 −1 2 3.54 3.85 4.17
108 2 −1 0 1 2.62 3.13 3.82
109 2 −1 1 0 2.16 2.71 3.39
110 2 −1 2 −1 2.16 2.59 2.88
111 2 0 0 2 1.48 1.92 2.33
112 2 0 −1 1 2.66 3.34 3.96
113 2 0 0 0 2 2.76 3.57
114 2 0 1 −1 1.8 2.48 3.1
115 2 0 2 0 1.54 2.46 2.83
116 2 1 0 1 0.86 1.59 2.26
117 2 1 −1 0 1.78 2.65 3.45
118 2 1 0 −1 1.38 2.21 3.02
119 2 1 1 0 0.92 1.85 2.51
120 2 1 2 2 0.66 1.18 0.97
121 2 2 0 0 0.24 1.08 1.89
122 2 2 −1 −1 0.9 1.78 2.64
123 2 2 0 0 0.24 1.08 1.89
124 2 2 1 2 −0.22 −0.02 −0.03
125 2 2 2 1 0.56 1.28 1.24

4. Mathematical Model Development

Angular distortion can be expressed in the form of

Y = f [θ, t, F, S]

where, Y = Response function e.g., Angular Distortion, degrees, θ = Angle of the nozzle,
degrees◦ t = Time gap between passes, min, F = Wire feed rate, m/min and S = Welding
speed, cm/min

The response surface for k factors is represented by the second order polynomial
(regression) equation, which is:

Y = b0 +
k

∑
i=1

biXi +
k

∑
i,j=1

bijXiXj +
k

∑
i=1

biiX2
i (3)

where b0 is the free term of the regression equation, the coefficient b1, b2 . . . bk are linear
terms, the coefficients b11, b22, . . . bkk are quadratic terms and coefficients b12, b13, . . .
bk−1,k are the interaction terms.

The values of these coefficients were calculated using the statistical programme Qual-
ity America DOE PC IV. The regression coefficients’ values indicate to what extent the
control factors have a quantifiable impact on the response. Without compromising much
accuracy, the less significant coefficients are removed together with the replies to which
they are linked. The student’s t-test is used to accomplish this. According to this test,
the coefficient becomes significant when the estimated value of t pertaining to it exceeds
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the usual tabulated value for the probability criteria fixed at 0.75; otherwise, it becomes
insignificant [63–67]. Only the most significant coefficients were used to generate the final
mathematical models. Table 4 shows that Calculation of variance for testing the adequacy
of the model.

The foregoing analysis yielded the following mathematical models:

α2 = 1.38 + 0.09 × θ − 0.18 × t−
0.27 × F + 0.11 × θ2 + 0.23 × F2 − 0.35 × θ × t
+0.21 × θ × F − 0.13 × θ × S + 0.26 × t × F

(4)

α3 = 2.23 + 0.22 × θ − 0.27 × F−
0.08 × t2 + 0.25 × F2 − 0.10 × S2 − 0.34 × θ × t
−0.19 × θ × F − 0.11 × θ × S + 0.26 × t × F − 0.09 × t × S

(5)

α4 = 3.15 + 0.21 × θ − 0.27 × F+
0.10 × t2 + 0.15 × F2 − 0.19 × S2 − 0.32 × θ × t
−0.20 × θ × F − 0.12 × θ × S + 0.20 × t × F − 0.14 × t × S

(6)

Table 4. Calculation of variance for testing the adequacy of the model.

Parameter Factors
(SS) df Lack of Fit

(SS) Df
Error
Terms
(SS)

df F
Ratio R Ratio

Whether the
Model Is
Adequate

(α2) 19.34 14 5.45 10 1.08 6 3.02 7.67 Adequate
(α3) 21.293 14 7.67 10 1.36 6 3.37 6.68 Adequate
(α4) 19.01 14 8.23 10 2.04 6 2.026 4.02 Adequate

5. Neural Network Model Development

In many engineering fields, artificial neural networks (ANN) are one of the most
astonishing statistical modelling techniques currently in use for simulating complicated
interactions that are challenging to represent using traditional models. Neural networks’
extraordinary data-handling abilities, which also include nonlinearity, high parallelism,
fault and noise tolerance, as well as learning and generalisation capabilities [37], are
what make them so alluring. The use of artificial neural networks in the modelling and
monitoring of welding processes has sparked a never-ending surge in research interest.
The goal is to use ANN to create models that forecast angle distortion for time gaps of two,
three, and four passes.

5.1. Neural Network Model Development

In this case, a feed-forward back-propagation network was utilised to forecast angular
distortion. A multi-facet network was used because it has ability to solve complex nonlinear
problems by employing hidden layers. Multi-facet network had three layers: an input
layer for handling input data information, an output layer for providing responses, and a
hidden layer for handling information and yielding output. The hidden layers enhance the
separation capacity of the network. Hence it is called as multi-facet network. To reduce
error, this network uses the network training function, which uses gradient descent to
update weights and bias values. At the learning step, information from the tests, such as
welding parameters and angular distortion values, was passed on to a network. During
network learning, the output of the network was compared to the desired output, and the
connector weights within the network were adjusted to lessen the discrepancy. The error
was propagated backwards through the network based on the back-propagation learning
process, and weights were changed. Learning will come to an end in this iterative learning
system after a suitable mistake has been acquired. The prepared network responds in
accordance with the knowledge it has learned when new data (beyond training) is supplied.



Metals 2023, 13, 436 14 of 31

5.2. Network Training

The neural network model was built using a total of 125 experimental data sets.
The data should be standardised to alleviate the training issue and balance the value of
the training process. Learning will be delayed or nonexistent if the sigmoid function is
saturated. To circumvent this, the data is standardised between marginally offset values
like 0.1 and 0.9 rather than 0 and 1. The normalised input and output data set values for
each row are calculated using Equation (7).

xi = 0.1 + 0.8
(

zi − zmin

zmax − zmin

)
(7)

where

Xi = Normalized input/output value
Zi = Actual input/output value
Zmax = Maximum input/output value
Zmin = Minimum input/output value

The data must be separated into training and testing data in order to calculate the ratio
between the two. For this, there is no particular guideline. However, the proportions can
be expressed as 90:10%, 85:15%, 80:20%, and 70:30%. In this study, the 125 experimental
data points were divided into three categories: training, testing, and validation. As a
result, 87, 19, and 19 experimental samples were used for training, testing, and validation,
respectively, out of a total of 125 samples.

The network structure was built using a trial-and-error approach. The trial-and-error
process was carried out by varying the number of nodes in the hidden layer of the network
structure. However, for the hidden layer, depending on the complexity of the mapping, the
available computer memory, the computation time, and the desired impact on data control,
it was feasible to view the network with any number of nodes. An excessive number of
nodes could waste computer memory and calculation time, while a small number of nodes
would not provide the required data control effect [38]. The recommended number of
nodes for the hidden layer in this work is “n/2,” “1n,” “2n,” and “2n + 1,” with “n” being
the number of input nodes. Because there are four choice factors in this study, the optimal
number of hidden layer nodes is 4/2 = 2, 1(4) = 4, 2(4) = 8, and 2(4) = 8 and 2(4) +1 = 9. This
study’s trial and error was limited to four networks: 4-2-3, 4-4-3, 4-8-3, and 4-9-3. MATLAB
8.5 was used to create the networks. Figure 6 hidden layer network with nine neurons.

Figure 6. Network 4-9-3 with nine neurons.

The learning rate and momentum parameters must be set after the network archi-
tecture has been completed. The extent of the weight and bias changes that take place
during learning is controlled by the learning rate, a preliminary parameter. Its value is 0.3
because if it is too high, the system will either not be able to determine the right answer
or completely diverge. It will take the system a substantial amount of the day to reach
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a final solution if it is too low. The system is prevented from reaching a local minimum
or saddle point by the momentum parameter. In essence, it adds the value “m” from the
previous update to the current one. The system’s convergence is accelerated by a high
momentum parameter, but if it is set too high, the minimum value may be exceeded. By
doing this, future system instability will be avoided. If the momentum parameter is set too
low, the system’s setup may be slowed. As a result, the momentum parameter is set at 0.05
in this study.

For network training, the Levenberg–Marquardt (LM) algorithm was utilised. The
LM algorithm uses an error corrective learning rule. In the LM algorithm, operating
phases make use of forward connections, whereas learning phases make use of backward
links. Because it is a Hesian-based method and allows the network to learn more delicate
characteristics of a complicated mapping, the LM algorithm is preferred over the others.
The training phase of the LM method converges quickly as the solution is approached
because the Hessian vanishes at the solution. During training, the inputs from the neurons
were weighted. Using a tan -sigmoid transfer function, the weight input and bias sum were
changed. In a similar manner, the output of the final hidden layer was tailored using a
suitable weight, and the sum of the tailored output signal was afterwards modified using a
tan—sigmoid transfer function. The complete item was gathered at the output layer. Using
a transfer function, the sum of the weight input and bias was modified.

5.3. Testing the Network

The effectiveness of the ANN model for forecasting angular distortion with time gaps
of two, three, and four passes was investigated using four networks: 4-2-3, 4-4-3, 4-8-3,
and 4-9-3. During each training session, a set of inputs from the training sample (‘Xi’) was
presented, and the results (‘Oi’) were produced. The network model’s projected value is
then compared to the actual value ‘di.’ To evaluate the results, the mean squared error
(MSE) between “di” and “Oi,” as stated in Equation (8), was utilised. The algorithm’s main
objective was to reduce the mean squared error for all experimental data. [39,40].

MSE = (d i−Oi)
2 (8)

5.4. Network Analysis

For each network, the following must be looked at to figure out how well it can predict
angular distortion with time gaps of two, three, and four passes.

1. Performance analysis
2. Error analysis
3. Regression analysis

Performance analysis [41,42] is used to determine MSE. When MSE is near zero,
the network has been carefully considered the best. During the error investigation, the
percentage error between the predicted and experimental values was computed. The
network has a high level of accuracy in predicting angular distortion if the percentage
error is less than 5%. When performing a regression analysis, the correlation coefficient
is calculated. This approach aids in the identification of the link between expected and
observed values [43].

The performance graph of the network 4-2-3 is shown in Figure 7. The network was
trained for 175th epochs. After 175th epochs, no more progress was found. At the 169th
epoch, the best value was 0.0053773. The percentage error between the observed and
anticipated values for angular distortion with time gaps of two, three, and four passes is
shown in Figures 8–10 for the network 4-2-3. Any model is considered to be accurate if the
percentage of error between the predicted and experimental values is reasonably low. For
a good measurement system, the accuracy error should be within 5% and the precision
should be within 10% Figures 8 and 9 depicts percentage of error for angular distortion
showing time gap between two passes. The error percentage is between 0 to 0.5% which
depicts that the network 4-2-3 is able to predict angular distortion with good accuracy.
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The following Equation (9) is used to calculate the neural network model’s error
percentage. (

Observedvalue − Predictedvalue
Observed value

)
× 100 (9)

Figure 7. Network 4-2-3 performance graph for angular distortion showing time gap between two,
three and four passes.

Figure 8. Network 4-2-3 error graph for angular distortion showing time gap between two passes.
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Figure 9. An angular distortion network 4-2-3 error graph demonstrating the time gap between
two passes.

Figure 10. Network 4-2-3 error graph for angular distortion showing time gap between four passes.

According to the Figure 10, the error percentage ranges between −1.5% and +0.5%
for angular distortion with a time gap between two passes and −1.2% to 0.3% for angular
distortion with a time gap between three and four passes. The percentage error is within 5%.
Hence, the network model is able to predict the angular distortion with reasonable accuracy.

The regression graph of network 4-2-3 is shown in Figure 11. The regression analysis
helps determine the correlation connecting the predicted and observed values. The R
value of “0” implies an arbitrary correlation, whereas an R value of “1” implies a close
correlation. From the regression graph, it can be inferred that the regression coefficients
for training, testing, and validation are 0.89, 0.92, and 0.88, respectively. This implies that
further improvement in the result is possible by training with other suitable networks.
Hence, the network 4-2-3 is not suitable for predicting angular distortion with a time gap
between two, three, and four passes.
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Figure 11. Regression graph of network 4-2-3 for angular distortion with time gap between two, three
and four passes.

Figure 12 depicts the network’s 4-4-3 performance graph. 216th epochs were used
to train the network. After 210th epochs, there was no noticeable progress. At the 210th
epoch, the best result was 0.00055323.
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Figure 12. Performance graph of network 4-4-3 for angular distortion with time gap between two,
three and four passes.

Figure 13 depicts the regression graph for the network 4-4-3. For training, validation,
and testing, R values of 0.98503, 0.9809, and 0.9908 are obtained. The R value is near one,
indicating that the observed and anticipated values are closely related.

Figure 13. Cont.
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Figure 13. Regression graph for angular distortion with time gap between two, three and four passes
pertaining to network 4-4-3.

The % error for angular distortion is shown in Figures 14–16 for time gaps of two,
three, and four passes, respectively. The error percentage for angular distortion varies
from −5 to +6%, as shown in the figures. As a result, this network’s prediction ability is
lower than that of network 4-2-3. Although the R value is near one, the error percentage
is higher, implying that the network is unsuitable for forecasting angular distortion in all
three circumstances.

Figure 14. Network 4-4-3 error graph for angular distortion with a time gap between two passes.
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Figure 15. The network 4-4-3 error graph for angular distortion with a time gap between three passes.

Figure 16. Network 4-4-3 error graph for angular distortion with a time gap between four passes.

Figure 17 depicts the performance of the network 4-8-3. 427th epochs were used to
train the network. There has been no improvement in training after 427th epochs. As a
result, the training was halted. At the 421st epoch, the best value was 3.5427 × 10−7. In
Figure 18, the network’s regression graph is depicted. The R values for training, testing,
and validation have been calculated from the graph and is 1, 0.99, and 0.99, respectively.
Because R is close to 1, the observed and predicted values of angular distortion with time
gaps of two, three, and four passes are closely related for training, testing, and validation.
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Figure 17. Performance graph of network 4-8-3 for angular distortion with time gap between two,
three and four passes.

Figure 18. Cont.
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Figure 18. Regression graph of network 4-8-3 for angular distortion with time gap between two, three
and four passes.

Figures 19–21 show the % error for angular distortion for the network 4-8-3 with time
gaps of two, three, and four passes. The error percentage for angular distortion varies
between −0.8 and 0.5 percent for two passes, −1 to +1.3 percent for three passes, and
−1.1 to 0.3 percent for four passes, according to the results. This network has a low rate of
error, an R value near 1, and an MSE near 0. In comparison to the other two networks, the
network’s prediction capability is high.

Figure 19. Error graph of network 4-8-3 for angular distortion with time gap between two passes.
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Figure 20. Error graph of network 4-8-3 for angular distortion with time gap between three passes.

Figure 21. Error graph of network 4-8-3 for angular distortion with time gap between four passes.

Figure 22 depicted the network’s performance graph. The training was carried out for
1000 iterations, with an MSE of 6.1041 × 10−8 observed at the 1000th epoch, as shown in
the figure.

Figure 22. Performance graph of network 4-9-3 for angular distortion between two, three and
four passes.
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Figures 23–25 show the percentage of difference between what was seen and what
was expected for angular distortion with time gaps of two, three, and four passes.

Figure 23. Error graph of network 4-9-3 for angular distortion with time gap between two passes.

Figure 24. Error graph of network 4-9-3 for angular distortion with time gap between three passes.

Figure 25. Error graph of network 4-9-3 for angular distortion with time gap between four passes.

The error percentage of angular distortion varied from −0.7% to +0.1%, −1% to +0.4%,
and −0.9% to +0.1% for time gaps between two, three, and four passes, respectively, as
shown in the figures.



Metals 2023, 13, 436 26 of 31

Figure 26 depicts the network 4-9-3’s regression graph. For training, testing, and
validation, the R value of the network is “1”. This demonstrates a very close relationship
between observed and projected values.

Figure 26. Regression graph of network 4-9-3 for angular distortion with time gap between two, three
and four passes.

In comparison to the networks 4-2-3, 4-4-3, and 4-8-3, the network 4-9-3 has a very low
MSE value, a regression coefficient of “1” for training, testing, and validation, and an error
percentage of less than 2% for angular distortion between two, three, and four passes. As a
result, the network (4-9-3) predicts angular distortion with high accuracy.
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6. Confirmation of Results and Discussion

The results were confirmed by doing further tests with the identical experimental setup
and comparing the results to those predicted by the network 4-9-3. The process variables
consider for the Validation tests are combination of parameters that were not considered in
design matrix of 125 trail runs. Tables 5–7 shows the results of validation tests.

Table 5. Results of Validation Tests.

Test.
No

Input Values of Process Variables for which Validation Tests Were Conducted

θ◦ T F S

1 70 10 5.5 10.2
2 80 15 5.75 10.8
3 90 20 6 8.4

Table 6. Continued.

Angular Distortion in Degrees for Time Gap
between Two Passes

Angular Distortion in Degrees for Time Gap
between Three Passes

O.V P.V Error% O.V P.V Error%

1.38 1.397 −1.21 1.33 1.321 0.68
1.83 1.797 1.83 2.09 2.115 −1.18
2.1 2.056 2.14 2.98. 2.947 1.12

Mean Error 0.92 Mean Error 0.20

Table 7. Continued.

Angular Distortion in Degrees for Time Gap between Four Passes
O.V P.V Error%

2.18 2.196 −0.72
2.50 2.466 1.37
3.03 2.979 1.71

Mean Error 0.79
O.V—The process parameters observed value as determined by experiment. P.V—derived from the ANN model,
predicted value of the process parameter.

According to the validation tests, network 4-9-3 was able to accurately forecast angle
distortion with time gaps of three, four, and five passes. The deviation between the observed
value and the predicted value is very minimal. Fromm the table deviation is observed
less than 5%. The mean error was found to be 0.92 percent, 0.20 percent, and 0.79 percent,
respectively, for angular distortion with time gaps of two, three, and four passes. This
suggests that compared to the other three networks, the model based on network 4-9-3 is
more successful at predicting angular distortion with time gaps between two, three, and
four passes (4-2-3, 4-4-3, and 4-8-3). More than 95% of predictions are correct.

7. Conclusions

Based on the findings, the following conclusions can be drawn:

1. In the gas metal arc welding technique, the structural steel studied in this work had
good weld quality to achieve products of high quality. The products obtained from
the GMAW of structural steel plate meets the required strength and free from angular
distortion, which are the good weld quality criteria. As a result, it can be used in
residential, commercial, and aviation hangar construction, as well as for construction
purposes in metro stations, stadiums, and bridges.

2. The fractional factorial-based 125 experimental runs were successful in collecting the
data needed to create a neural network model.
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3. Validation experiments were carried out to ensure the network’s accuracy in fore-
casting angular distortion. The mean error for angular distortion with time gaps of
two, three, and four passes was determined to be 0.92 percent, 0.20 percent, and 0.79
percent, respectively. This indicates that the model based on network 4-9-3 is more
effective in forecasting angular distortion with time gaps between two, three, and four
passes than the other three networks (4-2-3, 4-4-3, and 4-8-3). Prediction accuracy is
more than 95 percent.

4. The result shows that for training data, testing data, validation data, and all data, a
correlation coefficient of R = 1 was found. Henceforth, there exists a good correlation
between the observed and the predicted models.

5. According to the study, different angular distortion values can be predicted by varying
the hidden layer’s node count and applying a similar training method. The butt weld
plate production process can be controlled using the neural network model developed
in this paper to achieve the desired weld quality.

6. The neural network model developed in this study can be used to manage the welding
cycle in structural steel weld plates to achieve the best possible weld quality with the
least amount of angular distortion.

7. It is possible to develop a neural model for the prediction of angular distortion in
thinner materials. As far as thinner materials are concerned, the gas tungsten arc
welding process will be more appropriate because GTAW welds are preferable for
thinner metals because they result in accurate and clean welds. Larger jobs requiring
longer, continuous runs and thick metals respond well to GMAW welding.
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