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Abstract: Two surface modification techniques, the glow discharge plasma nitriding (GDPN) and the
cathodic cage plasma nitriding (CCPN), were compared regarding the mechanical and tribological
behavior of layers produced on AISI 316 stainless-steel surfaces. The analyses were carried out at the
micro/nanoscale using nanoindentation and nanoscratch tests. The nitriding temperature (◦C) and
time (h) parameters were 350/6, 400/6, and 450/6. Morphology, structure, and microstructure were
evaluated by X-ray diffraction, scanning electron and optical interferometry microscopies, and energy-
dispersive X-ray spectroscopy. GDPN results in stratified modified surfaces, solidly integrated with
the substrate, with a temperature-dependent composition comprising nitrides (γ’-Fe4N, ε-Fe2+xN,
CrN) and N-solid solution (γN phase). The latter prevails for the low treatment temperatures.
Hardness increases from ~2.5 GPa (bare surface) to ~15.5 GPa (450 ◦C). The scratch resistance of the
GDPN-modified surfaces presents a strong correlation with the layer composition and thickness,
with the result that the 400 ◦C condition exhibits the highest standards against microwear. In contrast,
CCPN results in well-defined dual-layers for any of the temperatures. A top 0.3–0.8 µm-thick nitride
film (most ε-phase), brittle and easily removable under scratch with loads as low as 63 mN, covers
a γN-rich case with hardness of 10 GPa. The thickness of the underneath CCPN layer produced at
450 ◦C is similar to that from GDPN at 400 ◦C (3 µm); on the other hand, the average roughness is
much lower, comparable to the reference surface (Ra ~10 nm), while the layer formation involves
no chromium depletion. Moreover, edge effects are absent across the entire sample´s surface. In
conclusion, among the studied conditions, the GDPN 400 ◦C disclosed the best tribo-mechanical
performance, whereas CCPN resulted in superior surface finishing for application purposes.

Keywords: plasma-based nitriding; thermal diffusion; deposition; thin film; iron nitrides; S-phase

1. Introduction

Glow discharge plasma nitriding (GDPN) is a surface treatment widely used to im-
prove the tribo-mechanical behavior of stainless-steels. Then, after the GDPN treatment,
steel surfaces are expected to increase in hardness and wear resistance. Furthermore,
depending on the microstructure of the formed layer, the corrosion resistance should be
maintained or even improved after nitriding. Keeping the corrosion resistance at the same
level as stainless-steel depends on the control of the formation of chromium and iron
nitrides, by performing treatments at low temperatures and suitable times [1]. The modi-
fied layers are generally desirable to be rich in nitrogen-expanded austenite (γN) phase,
promoting excellent characteristics in stainless-steels [2,3].
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There are some limitations associated with the use of GDPN treatment, such as the
difficulty in treating samples with complex geometries, and the formation of non-uniform
layers or edge effects. Both phenomena are associated with variations of the electric field
around the sample in the plasma [4–6]. Furthermore, after GDPN treatments, surfaces
undergo micrometric changes in the surface morphology due to sputtering/deposition
and orientation-dependent anisotropic swelling. A relatively new technique that avoids
these undesirable effects on the surface morphology is the cathodic cage plasma nitriding
(CCPN) [5–8].

In the CCPN, a type of Physical Vapor Deposition (PVD) process, the sample is
electrically isolated from the cathode and immersed in a floating electrical potential due to
the presence of the surrounding and biased cathodic cage. Scientific evidence shows that
a Kölbel’s-like “sputtering and re-condensation” model, supposedly valid to the GDPN
technique, is also applicable in a similar way to CCPN by considering the interaction
among species from the atmosphere and adsorption on the surface [9]. In this process,
electrons electrically trapped in the holes of the cage successively collide with atoms in
the atmosphere, increasing the ion density. In this region, the ions, in turn, bombard the
inner walls of the holes, sputtering atoms from the cage that will eventually be deposited
on the surface of the sample. Thus, the plasma atmosphere, chemical composition of the
cathodic cage, and arrangement of holes are parameters that govern the characteristics
of the deposited film. In general, even carbon steel cages result in the deposition of
iron nitrides on the electrically isolated substrates [5–7]. Another relevant feature of this
technique is forming films that are brittle and thinner than the modified layers obtained by
GDPN treatments, when employing the same treatment times [8,10]. However, the CCPN
also allows the formation of a modified layer below the film due to nitrogen diffusion in
the bulk, which is heated by thermal radiation. To our knowledge, it is not common to
evaluate the modified diffusion layer formed below the film in CCPN treatments.

The wear performance of nitride layers depends on two aspects involving deformation.
The first one is the level of the strain of the substrate, which can deform during contact
between two bodies and correlates with hardness. Pintaude et al. [11] applied a method
similar to CCPN, named active screen plasma nitriding (ASPN), for two duplex stainless-
steels. They verified, after scratch tests, an occurrence of microcracks much more significant
on the softer substrate than the harder one, featuring an eggshell effect. The other aspect is
the relation between the load conditions and the layer thickness. For thicker nitrided layers
processed onto martensitic stainless by ASPN, Rovani et al. [12] described less occurrence
of cracks, as the thickness of the layers increased. In the same work, when the load in the
scratch tests was reduced from 15 N to 8 N, cracks were not observed on the worn surfaces
of the nitrided layers, emphasizing that the treated surfaces have a critical loading value
that is important for the application of these layers [12]. These characteristics are important
for films processed by CCPN and will be explored in the present study.

The surface mechanical strengthening of the AISI 316 stainless-steel finds applications
in several areas, such as in biomedical devices, making it a good reason to investigate
varied methods of nitriding for this alloy. Samanta et al. [13] carried out a detailed study
of the mechanical and tribological behavior of nitrided AISI 316L surfaces, however they
employed only one technique, the GDPN. Herein, the tribo-mechanical performance of
316 surfaces modified by GDPN, analyzed in micro/nanoscale, were contrasted with those
subjected to CCPN. The study aims to contribute to the understanding of how the structure
and microstructure of the layers affect the wear performance, as well as to the proper
selection of the nitriding method.

2. Materials and Methods

Commercial samples of AISI 316 austenitic stainless-steel (15.7% Cr, 11.6% Ni, 1.7%
Mn, 1.9% Mo, 0.3% Si, 0.1% C, 0.03% S, and 0.03% P, with Fe in balance) supplied by
the company Villares Metals (São Paulo, SP, Brazil) were mechanically polished with
sandpapers (SiC) and diamond pastes up to a 1 µm particle size, and the final polishing
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was carried out in a 15% volume solution of colloidal silica in H2O2. Before nitriding, the
samples were cleaned with two ultrasound baths in acetone.

The equipment used for GDPN and CCPN is a custom-made equipament consisting
of a vacuum chamber, an exhaust and a gas supply system, a voltage source, a K-type
thermocouple and electronic sensors, described in detail in previous reports [6,14,15]. The
treatment atmosphere was controlled by a flowmeter (model MKS 1179A, MKS Instruments,
Andover, MA, USA), and the temperature by a thermocouple connected to the center of
the sample holder (cathode). Voltage and current were monitored by a voltmeter and
ammeter , both supplied by the company Minipa (São Paulo, SP, Brazil) and integrated into
the voltage source. The chamber’s internal pressure was measured by an Active Gauge
controller RS 232 Edwards pressure gauge (Edwards Ltd., Burgess Hill, UK).

The samples were subjected to sputtering with H2 at (150 ± 10) ◦C and 300 Pa for one
hour to remove the oxide surface layer and then nitrided by GDPN. An atmosphere of 1:4
(N2:H2) (in volume), resulting in a total pressure of 300 Pa and a total flux of 20 sccm, was
used. Both nitriding treatments by CCPN and GDPN were carried out at temperatures of
350 ◦C, 400 ◦C, and 450 ◦C for 6 h.

For CCPN treatments, a cathodic cage made of AISI 1008 steel was placed into the
same GDPN equipment. Schematic diagrams for the GDPN and CCPN are shown in
Figure 1. The material´s chemical composition was 0.1% C, 0.5% Mn, 0.04% P, and 0.05%
S (wt.%), in balance with Fe. The cage dimensions were 112 mm × 25 mm × 0.8 mm
(diameter × height × thickness), the diameter of the cage holes was 8 mm, and the distance
between the center of adjacent holes was 9.2 mm. The samples were placed on an alumina
insulator with a diameter of 55.8 mm. The cage was positioned above the cathode to enclose
the alumina insulator assembly and the samples. The samples remained electrically isolated
in this arrangement, and the cage was in electrical contact with the cathode. Initially, the
cage was sputtered with H2 at 200 ± 5 ◦C for one hour at 30 Pa. After sputtering, the
samples were nitrided by CCPN in an N2:H2 atmosphere of 4:1 (in volume), resulting in a
total pressure of the order of 80 Pa and an N2/H2 gas flow of 16/4 sccm. These flow and
pressure values in CCPN treatments were defined based on optimized sample properties
in previous work [6,14,15]. The pressure value was defined as being the hollow cathode
pressure the cage uses for that gaseous mixture, which is necessary to maximize the film
thickness. The voltage varied between 464 V and 588 V during nitriding, according to the
treatment temperature. A temperature of 450 ◦C was chosen to evaluate the formation of
chromium nitrides in the different techniques. The nitriding of AISI 316 steel for this work
by GDPN and CCPN was carried out concomitantly with other martensitic steels, whose
research was previously published [8,10].
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The cross-sections of the samples were mechanically polished and analyzed by field-
emission gun scanning electron microscopy (FEG-SEM) model Mira3) (TESCAN, Ko-
houtovice, Czech Republic) equipped with energy dispersive spectroscopy (EDS) model
XMaxN SDD (Oxford, Abingdon, UK) to evaluate the nitrogen uptake in the modified
layers. Then, the chemical etching was carried out with Murakami’s reagent composed by
10 g KOH and 10 g K3Fe(CN)6 from the brand Sigma Aldrich (San Luis, MO, USA) and
50 ml H2O, allowing the thickness of the modified layers to be measured through FEG-SEM
analysis. In the samples treated by the CCPN technique, the thickness of the films was
determined by optical interferometry (OI) model Talysurf CCI—Lite 3D (Taylor Hobson,
Leicester, UK) on the surfaces of the samples, analyzing the height difference between the
film surface and the interface with the modified layer in regions where the nitrides film
was detached. OI estimated the roughness of all surfaces.

X-ray diffraction (XRD) data were collected by the X-ray diffractometer model Ultima
IV (Rigaku, Tokyo, Japan.), with CuKα radiation (λ = 0.15406 nm), Bragg–Brentano geome-
try (θ–2θ), a 0.02◦ step, and a counting time of 4 s. The diffraction peaks were identified
using powder crystallographic data sheets and literature data to γN phase peaks [3,16].

The nanoindentation technique was applied according to the ISO 14577-1 (2002) stan-
dard to measure the hardness and elastic modulus. The equipment used in the tests was
an Nanoindenter XP (MTS Systems Corporation, Eden Prairie, MN, USA). Here, 25 in-
dentations were performed with a Berkovich indenter arranged in a matrix with 100 µm
between the indentations. To obtain profiles of hardness and modulus of elasticity by depth,
multiple-loading cyclic nanoindentation was used. The tests were carried out in the central
regions of the samples with a maximum load of 400 mN and 8 loading–unloading cycles.
For the analysis of the loading curves, the contact stiffness technique was used to minimize
the roughness effect [17].

The nanoscratch tests were performed on the same equipment used in the nanoin-
dentation tests. They were carried out with the Berkovich tip, with displacement towards
one of the vertices, ramp loading (linear from zero), and a maximum load of 400 mN.
The sliding speed was 10 µm/s, and the scratch length was 600 µm. The images of the
nanoindentations and scratches were performed with a SEM model JSM-6360LV (JEOL,
Peabody, MA, USA).

3. Results and Discussions
3.1. Microstructural and Morphological Analysis

The microstructures of surfaces nitrided by GDPN and CCPN can be seen in Figure 2.
All the surfaces were homogeneous after the treatment but, while the CCPN-nitrided
surfaces showed small, sharp needle-shaped peaks, characteristic of the deposition process,
the GDPN-treated samples disclosed broader peaks and valleys. For all the treatment
conditions and at the same temperature, the difference in height between peaks and valleys
was always smaller in the CCPN-nitrided surfaces when compared to GDPN-nitrided
surfaces. This indicates that the mean roughness of samples treated by GDPN was always
higher for the same treatment temperature and time.

Table 1 summarizes the thickness, roughness, and hardness (measured at a 200 nm
depth) of layers and films produced by GDPN and CCPN techniques. The compared
average roughness values were higher for all the GDPN conditions. Some possible expla-
nations are plasma sputtering and swelling of grains, with the latter being more evident in
GDPN than in CCPN. It is a result of the anisotropic retention of nitrogen in solid solution,
dependent on the crystal direction of the grain, which is restrained laterally and grows
toward the free surface [18]. The sputtering occurs via the non-uniform electric polarization
of the sample in the plasma. According to accepted models [19], it plays an important role
in the nitriding process since released atoms combine with ions from the plasma and fall
with the ion flux toward the surface. This is likely a non-uniform process across the treated
area and can result in the observed topography. On the contrary, average roughness values
of the electrically isolated CCPN surfaces were similar to the reference one.
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Table 1. The thickness of modified layers and films, roughness, and hardness of the untreated and
nitrided samples.

Sample Layer Thickness
Modified Layer (µm)

Layer Thickness
Film (µm)

Roughness Ra
(nm)

Roughness Rq
(nm)

Top Hardness
(GPa)

Untreated - - 11.6 ± 1.7 14.7 ± 2.4 3.3 ± 0.3
GDPN 350 ◦C 1.2 ± 0.5 - 48.1 ± 6.5 37.8 ± 4.5 8.5 ± 2.9
GDPN 400 ◦C 4.3 ± 1.1 - 65.4 ± 7.5 83.6 ± 8.5 12 ± 0.7
GDPN 450 ◦C 18.4 ± 2.5 - 246.1 ± 30.1 319.1 ± 35.1 15.1 ± 1.6
CCPN 350 ◦C 0.5 ± 0.1 0.3 ± 0.1 8.7 ± 0.9 10.8 ± 1 3.8 ± 0.3
CCPN 400 ◦C 1.2 ± 0.1 0.5 ± 0.1 9.5 ± 0.9 11.7 ± 1.3 4.9 ± 0.4
CCPN 450 ◦C 3.0 ± 0.5 0.8 ± 0.1 18.7 ± 2.1 24.6 ± 2.9 3.6 ± 0.3

Figure 3 shows the cross-section SEM images of surface plasma nitrided by GDPN and
CCPN at the indicated temperatures, etched with Murakami’s reagent. Modified layers are
visible for all the nitriding treatments. At a same temperature, the thickness of the modified
layer was smaller for the CCPN technique than for the GDPN technique. This difference
increased with temperature, as seen in Table 1.

The nitrogen concentration shown in Figure 4 was obtained by EDS point analysis
carried out in several points through the cross-section of the GDPN- and CCPN-treated
samples. The N concentration was relatively higher for the GDPN technique than the CCPN
one, for the same temperatures. In addition, the concentration profiles were consistent with
the layer thicknesses, identified and measured after chemical etching, as seen in Figure 3
and summarized in Table 1.

In Figure 5, the nitride films produced by the CCPN technique were brittle and could
be removed from the surface. The regions where the film was detached, such as the one
shown in Figure 5a, were convenient to infer the film thickness, by measuring the height
difference with the yN-rich surface below it. These height differences are presented in
Figure 5b–d.

The average thickness of the films varied between 0.3 µm and 0.8 µm for CCPN 350 ◦C
and CCPN 450 ◦C samples, respectively, as shown in Table 1. The values are close to those
obtained by (Atomic Force Microscope) AFM in martensitic steels treated by the CCPN
technique under the same conditions [8]. Thus, even by adding thicknesses of the nitride
films with the modified layers produced by the CCPN technique, they were still thinner
than those produced by the GDPN technique, in agreement with other studies [8,10,20].
On the other hand, standard deviations of films + layer thicknesses produced by CCPN
were smaller, for all the treatment conditions, than the corresponding ones from the GDPN
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technique. This result corroborates the homogeneity and uniformity of layers produced by
the CCPN technique.
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3.2. XRD Analysis

Figure 6 shows the X-ray diffractograms for the untreated sample and the samples
nitrided by GDPN. The reference sample presented only the expected austenite peaks
(γ). After nitriding, the diffractogram of the GDPN 350 ◦C sample showed the nitrogen-
expanded austenite (γN phase), which corresponded to the presence of nitrogen in solid
solution in the steel’s crystalline structure. The γN peak was wide, displaced to greater
interplanar distances with regard to the γ phase. This phase corresponded to the superpo-
sition of several Fe(N) sub-stoichiometries of the nitrogen in solid solution, consisting in a
gradient of lattice micro-strains.

In the sample GDPN 400 ◦C, the contribution of the γ phase peak considerably de-
creased compared to the GDPN 350 ◦C sample due to the increased thickness of the mod-
ified layer (Table 1). At this treatment temperature, the γN phase peak was displaced to
greater interplanar distances, indicating a more significant expansion of the crystal lattice.

In the GDPN 450 ◦C sample, the diffractogram disclosed the formation of iron nitrides
γ’-Fe4N and ε-Fe2+xN (with x between 0 and 1), in addition to the drastic reduction of the
peak’s intensities corresponding to austenite. The formation of the γ’ phase indicated that
this temperature and treatment time were sufficient to cause the supersaturation of nitrogen
in interstitial solid solution, resulting in the precipitation of nitrides [3]. After reaching the
supersaturation limit, the formation of nitrides that have a lower enthalpy of formation
occurred, such as the γ’-Fe4N phase. With increasing temperature, conditions became
more favorable for the formation of nitrides that have a higher enthalpy of formation than
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the γ’ phase, i.e., the ε phase [21]. Then, with the increase in temperature from 400 ◦C
to 450 ◦C, the replacement of γN by γ’ and ε is expected. In addition, the increase of the
temperature provided more favorable conditions for the diffusion of nitrogen into the
steel. Thus, the increase in temperature led to forming a thicker modified layer with more
precipitates [2,22,23].
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At 450 ◦C, it was also possible to attribute contributions of the chromium nitride CrN
in the diffractograms, a result of the chromium depletion in the steel [3]. This phenomenon
is undesirable since the presence of Cr in the austenitic matrix is a determining factor for
the “stainless” characteristic of the steel.

Figure 7 shows the diffractograms for the untreated and CCPN-nitrided samples. They
significantly differed from the GDPN ones. Regardless of the treatment temperature, there
was the formation of the ε phase. The analysis carried out from the crystallographic files
revealed that this phase had predominantly the Fe2N stoichiometry. The γ’-Fe4N phase
became more evident in the diffractogram corresponding to the 400 ◦C treatment. The
expanded austenite phase (γN) was also present in all treatment conditions but exhibiting
smaller lattice expansions. The peak at ~43◦ at temperatures of 350 ◦C and 400 ◦C and
the peak at ~42.5◦ in the sample nitrided at 450 ◦C were broad, as they have contributions
from the γ and γN phases. The identified phases follow the literature results for this
austenitic steel treated by CCPN [6,7,15]. In the CCPN process, the deposition phenomenon
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prevails over diffusion, so iron nitride phases can be formed and deposited regardless of
the treatment temperature.
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Figure 5. (a) Optical interferometry image of a region, on the CCPN 450 ◦C surface, showing the
boundary between the nitride film and the hardened surface below it. (b–d) Analyses of the height
differences between the film and modified layer surfaces.
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Figure 7. X-ray diffractograms of samples untreated and nitrided by CCPN AISI 316 at
different temperatures.

One advantage of the CCPN is a concomitant formation of a diffusion zone beneath
the film. After removing the nitride layer from the GDPN 450 ◦C sample, the γ’ phase
was no longer identified in the diffractogram (Figure 8), while the predominant phase
was γN. Hence, the N-solid solution laid mostly below the film, instead of composing
it. The small ε phase peaks in this diffractogram may be due to some layer residues that
remained adhered to the surface. In the CCPN 450 ◦C sample, perhaps because the level of
nitrogen supersaturation was low in the γN region below the film, it did not decay into ε,
γ’, or chromium nitride phases. This result proves that a modified layer also formed below
the film, despite the sample in the CCPN technique being electrically isolated from the
cathode. Furthermore, after the formation of the film, it can act as a shield for the diffusion
of nitrogen to the bulk. The diffusion of nitrogen into the matrix can be due to the release
of N from unstable deposited phases, such as FeN [9].
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Comparing the techniques studied, GDPN and CCPN, it is relevant to stress that XRD
did not identify chromium nitrides neither in the film nor in the modified layer produced by
the CCPN technique. It can be attributed to the low nitrogen content in such coating. The
absence of chromium nitrides is beneficial to preserve or increase the corrosion resistance
of treated materials [24].

3.3. Nanoindentation Measurements

Figure 9 shows SEM micrographs of residual impressions produced by a Berkovich tip
on the untreated and GDPN-nitrided AISI 316 steel samples. Lateral cracks were visualized
in the GDPN 350 ◦C sample; however, none of the impressions disclosed radial cracks. The
smaller residual impression on the GDPN 450 ◦C sample was a result of the high hardness
of the layer. The surface morphology of the samples treated at 350 ◦C and 400 ◦C were
similar to that of the untreated sample. In Figure 9d, the vertical structures around the
indentation can be attributed to deformation twins.
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Figure 9. SEM micrographs of residual impressions produced by Berkovich tip indentation on
untreated (a) and GDPN-nitrided (b–d) AISI 316 steel samples.

In CCPN treatments, however, the surface morphologies, shown in Figure 10, differed
considerably from the original surface due to the film deposited on it, uniformly covering
the surface. The residual impressions presented cracks for all the treatment temperatures,
indicating the brittle behavior of these layers. The CCPN layer was not detached since
the same surface morphology was also seen inside the indentation imprints. The residual
impressions of the nitrided samples presented a reduction in the projected area compared
to the impressions on the untreated sample, a conjoined result of the high hardness of
CCPN layers and the nitrogen diffusion through the subsurface region (Figure 8).

Figure 11 shows hardness profiles of AISI 316 steel samples without treatment and
treated by GDPN at different temperatures. The hardness profile of the reference sam-
ple was not constant due to the polishing-induced work hardening: it converged to
2.5 ± 0.2 GPa. The GDPN 350 ◦C sample presented high hardness only on the top surface,
decaying until reaching the substrate values at a depth of approximately 1100 nm, while
the GDPN 400 ◦C sample had an initial “plateau”-shaped profile (values constant or within
error bars) to approximately 280 nm, then decayed towards the substrate value. The hard-
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ness profile for the GDPN 450 ◦C sample was approximately constant over the entire depth
range analyzed, converging to 15.2 ± 1.5 GPa at a depth of 730 nm. The large error bars for
the 350 ◦C surface may, in addition to roughness effects, be due to the formation of lateral
cracks (Figure 9) in the first stages of loading.
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untreated (a) and CCPN-nitrided (b–d) AISI 316 steel samples.
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The hardness profiles agreed with the X-ray diffractograms of these samples (Figure 6).
In the samples treated at 350 ◦C and 400 ◦C, due to the predominant formation of the
γN phase, the primary hardening mechanism was solid solution formation, in which
interstitial atoms can migrate to sites in the dislocations. This phenomenon, known as
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the “Cottrell atmosphere,” prevents the movement of dislocations and can reduce the
number of slip systems, increasing the material’s resistance to plastic deformation. The
GDPN 450 ◦C sample may also present the precipitation hardening and dispersion as a
contributing mechanism due to the formation of ε and γ’ precipitates that act as obstacles
to the movement of dislocations, increasing the material’s resistance to plastic deformation.

The graph in Figure 12a shows hardness profiles of the untreated and CCPN-nitrided
AISI 316 steel surfaces. The behavior of the 350 ◦C and 450 ◦C conditions was similar to
the untreated one at depths below ~200 nm. The sample treated at 400 ◦C showed an
increase in hardness profiles from 3.3 ± 0.3 GPa to 5.5 ± 0.5 GPa. However, the CCPN
450 ◦C curve presented an elevation at shallow depths and then a decrease after ~600 nm.
This phenomenon may be related to the intense brittleness of the layer produced by CCPN
when it is subjected to normal loading, as it can be seen in the indentation imprints shown
in Figure 10. The imprints disclosed radial or lateral cracks, which caused errors in the
calculated hardness values. In addition, all hardness profiles of the nitrided samples
converged to substrate values (untreated sample) at a ~2600 nm depth.
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Figure 12. (a) Hardness profiles of untreated and CCPN-nitrided samples and (b) loading curves for
all samples. The inset shows a pop-in event in the loading curve of the CCPN 450 ◦C sample.

In Figure 12b, loading curves for all samples are presented. Analyzing the loading
curves of the sample treated at 450 ◦C (Figure 12b), it is observed that a significant change
in inclination and a pop-in occurred in the first stages of loading which, in this case, can
be attributed to the formation of fractures. The film yielded under the indenter, causing
incursions into the material without the need of increasing the applied load. Consequently,
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the algorithm of the equipment underestimated the hardness values obtained by the Oliver
and Pharr method (in which H α 1/hc

2) [25].
Figure 13 shows the hardness profile obtained after the removal of the film from the

CCPN 450 ◦C sample surface, which revealed a nitrogen diffusion zone, as identified by
XRD (Figure 8). The hardness profile no longer presented the anomalous behavior shown
in Figure 12a while disclosing a GDPN-like behavior (Figure 11) at this modified layer. The
hardness at a depth of ~200 nm was 9.2 ± 0.7 GPa, that is, greater than that (3.6 ± 0.3 GPa)
for the nitride film over the same sample. It was also of the same order of values, reported
by others, for cross-sectional profiles measured in the same AISI 316 and AISI316L treated
by CCPN [6,26]; probably, with the microhardness method, they could not test the thin
nitride layer separately. The hardness obtained for the CCPN 450 ◦C condition, below
the nitride film, was lower than that measured on surfaces treated by GDPN at the same
temperature, in agreement with other works [8,10,20,26,27]. Moreover, the hardness values
were very close to those obtained for the GDPN 350 ◦C condition (Figure 11), where γN
was the main phase (Figure 6). In the absence of a plateau in the profiles and considering
the 10% rule [28], we can estimate that this modified layer had a thickness of ~1 µm. As
already mentioned, the origin of this nitrogen diffusion zone in samples electrically isolated
in the plasma chamber may be related to the deposition and subsequent dissociation of
unstable nitride species (FeN) and their diffusion by thermal effects [9,29].
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Figure 13. Hardness profiles of the CCPN 450 ◦C sample in the film and the region below the
deposited film compared to the untreated sample.

These results suggest that the anomalous and low hardness profiles (compared to
GDPN treatments under similar conditions) shown in Figure 12a are related to the brittle
nitride layer produced by the cathodic cage. The true hardness of the layer can even be
high, in the order of values observed for conventional plasma treatments, since it is made
up of iron nitrides (Figure 7). However, the generation of cracks prevents the correct
determination of hardness by normal loading indentation.

3.4. Scratch Tests

Figure 14 presents profiles obtained during and after scratching of untreated and
GDPN-nitrided surfaces, with micrographs from central regions of the grooves.

The maximum depth and elastic recovery values are summarized in Table 2. The
penetration depth profiles during loading, the residual depth of the nanoscratch tracks,
and the track widths were smaller in the nitrided samples than in the reference sample
(not shown). These characteristics agree with the mechanical strengthening of the surfaces,
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which increased with treatment temperatures. On the surface nitrided at 450 ◦C, the
morphology influenced the nanoscratch path so that the tip course deviated near structures
that can be swelled grain boundaries. On this surface, a step-like topography in the inner
region of the track can also be observed, which is reflected in the “rough” aspect of the
scratch profile. In all the nitrided samples, the elastic recovery of the surface after the load
removal was more significant than in the untreated condition. The maximum scratch depth
in samples treated at 400 ◦C and 450 ◦C was within the range evaluated for layer thicknesses
(≥3.2 µm). However, the overall behavior of the scratch profiles did not significantly differ
from the untreated sample, despite the ~4-fold increase in hardness. This fact may be
associated with the abrasive action of hard nitride precipitates that were removed and
displaced by the tangential movement of the tip. The samples GDPN 350 ◦C and GDPN
450 ◦C had elastic recovery close to those of the reference sample, and the sample GDPN
400 ◦C had a maximum scratch penetration depth of approximately half the value of the
untreated sample.
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graphs obtained by backscattered SEM.

Table 2. Critical load, maximum depth, and elastic recovery (under 200 mN load) of untreated and
nitrided samples.

Sample Critical Load (mN) Maximum Depth (nm) Elastic Recovery (%)

Untreated - 1375 ± 64 22 ± 8
GDPN 350 ◦C - 1281 ± 66 33 ± 5
GDPN 400 ◦C - 698 ± 67 55 ± 6
GDPN 450 ◦C - 1254 ± 35 35 ± 3
CCPN 350 ◦C 9 ± 1 1434 ± 39 -
CCPN 400 ◦C 63 ± 13 1225 ± 24 -
CCPN 450 ◦C 24 ± 2 1575 ± 22 -

Figure 15 shows electron micrographs of the scratch path produced on the untreated
and CCPN-treated samples. It is possible to observe regions where the film was delaminated
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and fractured, while in the rest of the track the scratching caused fragmentation and
detachment of the nitride layer.
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GDPN 350 °C - 1281 ± 66 33 ± 5 

GDPN 400 °C - 698 ± 67 55 ± 6 

GDPN 450 °C - 1254 ± 35 35 ± 3 
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Figure 15. Nanoscratch micrographs of untreated and CCPN-treated AISI 316 steel samples obtained
by SEM.

The critical load of scratching at which the film remained adhered to the substrate
can be taken as a comparison measurement of the performance among the different CCPN
surfaces. Figure 16 shows the profile graph and nanoscratch micrograph of the AISI 316
steel sample treated at 400 ◦C for 6 h. In Figure 16, in the backscattered SEM image, it is
possible to identify by contrast (due to the different chemical compositions) the nitride
film and regions where it was chipped. Therefore, the lighter region corresponds to the
substrate exposed after removing the nitride film (the darker region). The distance from
which the film chipping occurred was approximately 112 µm from the scratch beginning.
At this distance, the penetration curve changed in slope and roughness during loading;
from this position on, the removal of the film became more pronounced. The critical load
for scratch resistance at this point was 63 mN. With this methodology, we obtained the
critical load values for the scratch resistance of the CCPN-nitrided surfaces, which are
summarized in Table 2. Among the treatments with a cathode cage, the CCPN 400 ◦C
sample showed the highest critical load value for scratch resistance, with a mean value of
(63 ± 13) mN. A similar behavior was observed in treatments performed on martensitic
steels nitrided under the same conditions [8].

Steels that undergo nitriding processes are typically employed under severe wear and
abrasion conditions. Therefore, the film deposited for these applications should withstand
loads higher than those used in this test (400 mN = 40 gf); however, the maximum critical
load of the formed films was only ~63 mN. In practice, this brittle and nitride-rich film
can act as a sacrificial layer, where wear and corrosion simultaneously occur. In addition,
according to the literature, the CCPN treatments can enhance the corrosion resistance of
austenitic steels [30]. After the rupture of this top layer, a modified and homogeneous
surface where γN is the predominant phase will be exposed to the working conditions.
It is expected that in this condition, the sample will show good tribological performance
associated with good corrosion resistance. Therefore, additional tribological and corrosion
resistance studies are necessary to evaluate if the nitrides and γN layer may act together as
a complex system.

Regarding the maximum depths, the lowest value was observed for the GDPN 400 ◦C
sample. In this situation, there was a ~50% reduction in the maximum depth compared
to the untreated sample. In contrast, the maximum depth reached by the CCPN-treated
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samples was very close to or higher than that of the untreated sample, possibly due to film
breakage and incorporation of debris in the abrasion process within the wear track.
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Figure 17 presents the cross-section topographies of grooves produced on surfaces
nitrided at 400 ◦C by CCPN and GDPN, which were the ones that presented the best
tribological performance in each of the nitriding techniques.
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of applied load.

In agreement with the previous analyses, the grooves’ profiles of the GDPN 400 ◦C
surface were consistent with the best wear resistance, as evidenced by the reduction in the
residual depth (analyzed after removing the load) and a considerably lower pile-up.
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4. General Remarks

To sum up, the results obtained for the GDPN 400 ◦C sample were superior to those
obtained for the samples treated by CCPN, and they also corroborated the best performance
of this GDPN treatment, among the conditions studied here, for improving the tribological
behavior of the AISI 316L steel at typical applications.

On the other hand, below a brittle thin layer, the CCPN resulted in graded γN-rich
cases, which were also well-established with the substrate and (an important feature) free
from the undesirable edge effect. A possible solution to achieve the best of both processes,
avoiding the brittleness of nitride films, is to keep the material under treatment in the
cathodic cage but electrically biased, instead of in a floating potential. This condition
is expected to prioritize the formation of the modified layer to the detriment of the film
deposition process, therefore reducing the edge effect. Some researchers have reported
good results in this treatment condition [31], which is planned to be investigated by
nanoindentation and nanoscratch in the future.

5. Conclusions

At temperatures between 350 ◦C and 450 ◦C, the surface modification by CCPN pro-
duced 0.3–0.8 µm-thick nitride films with low roughness (8.7 nm < Ra < 18.7 nm), laying
above and presenting a well-defined interface with a 0.5–3 µm-thick nitrogen solid solution
(γN) region. The GDPN treatments produced thicker modified layers (1.2–18 µm), com-
posed of γN phase and nitrides, with higher roughness (48 nm < Ra < 246 nm) than CCPN.

In the GDPN technique, different phases (γN, γ’-Fe4N, ε-Fe2+xN, CrN) were formed
with a predominance of the γN phase in treatments carried out at low temperatures (up to
400 ◦C). In the CCPN treatments, the formation of the ε phase occurred independently of
the treatment temperature due to the deposition process. High temperatures (from 450 ◦C)
in CCPN treatments favored the formation of a modified layer rich in γN phase below the
film due to the greater diffusion of nitrogen to the substrate; however, chromium nitrides
were absent from both layers, which is an interesting feature for the corrosion resistance.

The GDPN 450 ◦C sample presented the highest hardness values (15.5 GPa) among
the studied conditions, while in the CCPN 450 ◦C sample, below the brittle nitrides layer,
hardness was 10 GPa, 35% smaller than the GDPN 450 ◦C sample.

The scratch resistance of the GDPN-nitrided surfaces significantly increased as com-
pared to the untreated sample. The film from the CCPN-treated samples showed less
scratch resistance due to delamination and cracking of the films during the analyses. The
highest critical load for scratch resistance was 63 ± 13 mN.

The layers produced by the GDPN technique were more mechanical-resistant than
those produced by the CCPN technique. However, depending on the application, the
corrosion resistance of these layers must be evaluated. In addition, due to uniformity, low
roughness, and absence of chromium depletion, surfaces modified by CCPN may perform
better than the ones subjected to the GDPN technique, providing that the top brittle nitride
layer can be removed or is irrelevant for application purposes.
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