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Abstract: Low sintering flue gas temperatures and large temperature fluctuations require the devel-
opment of low-temperature and efficient SCR (selective catalytic reduction) catalysts suitable for the
sintering process. It has been shown that modified Mn-Ce/TiO2 catalysts have good denitration
capability and have potential commercial use. In this experiment, TiO2-loaded Mn and Ce SCR
catalysts were prepared using the impregnation method, and a series of characterizations of the
samples were carried out to illustrate the effect of the active material on the denitration efficiency.
The kinetic analysis provides theoretical as well as data support for the subsequent optimization of
the SCR catalysts. The results show that the denitration efficiency of the catalysts can reach 93.86%
when the Mn content is 10% and the Ce content is 3%. The doping of active substances can increase
the specific surface area, total pore volume and average aperture of the catalysts and improve the
adsorption capacity of the catalysts.
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1. Introduction

The iron and steel industry is an important guarantee for the security of the national
economy and national defense. In the past three decades, the rapidly developing iron
and steel industry has provided strong support for China’s economic construction. As
a high-energy and high-pollution industry, it will inevitably have a certain impact on
the environment. Within the industry, sintering flue gas in the traditional blast furnace
ironmaking process has always been a problem to be solved. SOx, NOx and other harmful
gases have caused certain damage to the environment, so discharged flue gas must be
pretreated [1,2]. The most mature synergistic approach to desulfurization and denitration
is semi-dry desulfurization coupled with low- and medium-temperature SCR denitra-
tion [3–5], which removes dust and sulfur oxides from the flue gas before entering the
denitration process. The dust and sulfur contents of the sintered flue gas do not have a
large impact on SCR catalysts [6].

The sintering flue gas temperature is low, but at present, commercial catalysts in
steel plants are generally high-temperature types, so this article aims to develop a low-
temperature catalyst suitable for the sintering process and to analyze the factors affecting
the performance of this catalyst from a kinetic point of view. MnOx-loaded catalysts
have low-temperature activity [7–9] and are the first choice for preparing low-temperature
catalysts [10–12]. During preparation, doped metal oxides, especially transition metals,
such as Fe, Ce, Cu, Nb, Sn, Ni and Cr [13–16], play a very important role in improving the
activity of SCR catalysts. Ce is easy to convert between its own oxide Ce2O3 and CeO2 and
has strong oxygen storage and release capacity. The addition of Ce has the most significant
effect on the denitration efficiency of the catalyst [17]. Xiang Gao et al. [18] prepared a series
of CeOx/TiO2 catalysts and found that the denitration efficiency of the CeOx/TiO2 catalysts
is up to 98.6% at 450 ◦C but less than 40% at 175 ◦C. Cimino et al. [19] explored the influence
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of acetate and nitrate as precursors in the denitration performance of MnOx/TiO2 catalysts.
The results showed that manganese oxide prepared with manganese acetate as a precursor
has a stronger reduction ability at low temperatures. Wang et al. [20] prepared a series
of Mn-Ce/Ti-PILCs catalysts. Mn (6%)-Ce (6%)/Ti-PILCs have good low-temperature
activity, and the NO conversion rate at 250 ◦C is more than 95%. Among them, the valence
conversion of Mn4+/Mn3+ and Ce4+/Ce3+ is conducive to the removal of NO.

This experiment used TiO2 as the carrier and adopted the impregnation method to
prepare Mn/TiO2 and Mn-Ce/TiO2 catalysts. By changing the amount of Mn and Ce added,
catalysts with different loading amounts were obtained, and the denitration performance
of the samples was measured. Finally, the samples were characterized via XRD, SEM, BET,
etc. By comparing the denitration efficiency of each sample and its characteristics, the
influence law of loading on the denitration efficiency was analyzed, the optimal parameters
for the preparation of Mn-Ce/TiO2-type catalysts were provided, and the mechanism of
the influence of each active substance on the denitration efficiency of the catalysts was
elaborated to provide data support for the subsequent optimization of low-temperature
SCR denitration catalysts. For the evaluation of the catalytic denitration performance, the
expression ηNOx is shown in Formula (1):

ηNOx = 1− NOxin −NOxout

NOxin
× 100%

where ηNOx is the denitration rate of catalysts, NOxin is the concentration of NOx at the
inlet of the catalytic unit, and NOxout is the concentration of NOx at the outlet of the
catalytic unit.

2. Materials and Methods
2.1. Instruments and Reagents

The main instruments used in this experiment are shown in Table 1.

Table 1. Experimental instruments.

Name Model Manufacturer

Precision Scales FA224L Shanghai Hengping
Mass Flow Controller KD800-4F Changzhou Kede

Horizontal Tube Furnace RS 80 Shanghai Bona Thermo
Drier BPJ-9023A Shanghai Hezheng

Magnetic Stirrer 79-1 Beijing Zhongxing
Ultrasonic Cleaner AK-040A/B Shenzhen Yujie

Flue Gas Analyzer PTM600-3 Shenzhen Yiyuntian
Electronics

X-Ray Photoelectron
Spectroscopy EscaLab Xi+ Thermo Fisher Scientific

X-Ray Diffraction D/MAX2500PC Rigaku Corporation
Physical Adsorption ASAP 2460 Micromeritics

FESEM S-4800 Hitachi Limited
FTIR Nicolet iS20 Thermo Fisher Scientific

The reagents used in this experiment are shown in Table 2.

Table 2. Experimental reagents.

Name Formula Fineness Manufacturer

Titania TiO2 Analytically pure SCRC
Cerium nitrate Ce(NO3)3·6H2O Analytically pure SCRC

Manganese Mn(NO3)2 50% SCRC
Copper nitrate Cu(NO3)2·3H2O Analytically pure SCRC

Absolute alcohol CH3CH2OH 99.5% SCRC
Deionized water H2O 100% SCRC
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2.2. Preparation of Mn/TiO2 Catalysts

The Mn/TiO2 catalysts were prepared by loading manganese nitrate as a metal active
component on TiO2. The operating method was as follows: A certain amount of TiO2
powder was weighed in a beaker. Then, a manganese nitrate solution was added, followed
by the addition of a certain amount of deionized water, with stirring at room temperature
for 2 h. The sample was placed in an ultrasonic cleaner for auxiliary impregnation for
2 h. After removal, it was stirred evenly with a glass rod, placed in an oven, heated up
to 105 ◦C and dried for 12 h. Then, the completely dried sample was taken out, ground
to a powder and transferred to a crucible. The sample was roasted in a muffle oven at
500 ◦C for 4 h; after cooling, it was removed, ground again and sealed for reserve [21]. The
obtained catalysts are shown in Table 3.

Table 3. Name and content of Mn-based catalysts.

Name M4 M6 M8 M10 M12 M14

Mn
content (%) 4 6 8 10 12 14

2.3. Preparation of Mn-Ce/TiO2 Catalysts

In addition to single-component Mn/TiO2 catalysts, Mn-Ce/TiO2 catalysts were also
prepared for this experiment. The effect of the amount of Ce added on the Mn/TiO2-based
catalyst was explored. On the basis of adding the manganese nitrate solution, a certain
amount of cerium nitrate was weighed and stirred with water with TiO2 powder. The
preparation method for these catalysts was the same as that for the above catalysts, as
shown in Table 4.

Table 4. Name and content of Mn-Ce catalysts.

Order Number Name Mn Content (%) Ce Content (%)

1 M10C1 10 1
2 M10C2 10 2
3 M10C3 10 3
4 M10C4 10 4
5 M10C5 10 5
6 M3C3 3 3
7 M4C3 4 3
8 M5C3 5 3
9 M6C3 6 3
10 M7C3 7 3
11 M8C3 8 3
12 M9C3 9 3
13 M10C3 10 3
14 M11C3 11 3
15 M12C3 12 3

2.4. Experimental Method

The experimental method was as follows: The tubular resistance furnace was started,
the heating rate was set to 5 ◦C/min, and the temperature was kept constant for 1~2 h
after reaching the target temperature. A certain amount of the catalyst was weighed, it
was spread evenly on the quartz cotton, and the quartz cotton was placed in the quartz
tube. At both ends of the sealed tube furnace, high-purity N2 was introduced to discharge
other gases in the pipe, and then O2, NO and NH3 were introduced to regulate each gas at
the required flow. The gas entered the catalytic reaction device after passing through the
gas-mixing device. The mixed gas reacted with the catalyst, and the reaction gas entered
the PTM600-3 gas analyzer. The analyzer used the pumping detection method to suck
the gas in the environment into the instrument for detection. If the gas concentration in
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the environment was uniform and stable, the reading could be stable for about 30 s. The
conceptual diagram of the whole installation is shown in Figure 1.
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Figure 1. Experimental device diagram.

2.5. Working Mechanism of Catalyst

The schematic diagram of the SCR denitration technology is shown in Figure 2, and
the main reactions occurring on the catalyst are shown in Formulas (1)–(4). When the flue
gas passing through the SCR catalyst contains NH3, NOx and O2, these three gas molecules
react with the comproportionation of N on the catalyst surface, and the oxidation of NO
and the reduction of NH3 generate harmless N2, thus realizing the removal of NO.

4NH3 + 4NO + O2
catalyzer−−−−−−→ 4N2 + 6H2O (1)

4NH3+6NO
catalyzer−−−−−→ 5N2+6H2O (2)

4NH3+2NO2+O2
catalyzer−−−−−→ 3N2+6H2O (3)

8NH3+6NO2
catalyzer−−−−−→ 7N2+12H2O (4)
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2.6. Catalyst Characterization
2.6.1. X-ray Diffraction Analysis

The D/MAX2500PC X-ray diffraction instrument from Rigaku Co., Ltd. (Akishima,
Japan), was used to examine the powdered catalyst with a scanning diffraction angle
ranging from 2θ = 5◦ to 80◦ and a scanning speed of 10◦/min. The diffraction pattern
obtained could be used to determine the crystalline phase of TiO2 in the catalyst and the
type and morphology of the compound produced after loading the active material.
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2.6.2. Scanning Electron Microscope Analysis

The S-4800 field emission scanning electron microscope from Hitachi, Japan, was used
to scan the catalyst, which had an acceleration voltage of 0.5~30 kV and a magnification of
20~800 k. The electron micrographs at 100 k magnification were chosen for this experiment
to observe the effect of the loaded active substance on the morphology of the TiO2 particles
and the effect on the original pore structure from the morphology. The effect of the loaded
active substance on the morphology of the TiO2 particles and on the original pore structure
was observed morphologically.

2.6.3. Specific Surface Area and Pore Structure Analysis

The specific surface area, total pore volume and mean pore size of the catalysts were
tested using a McASAP 2460BET physical adsorption instrument. The test utilized the
adsorption properties of solid materials to measure the specific surface area and pore
structure of the material in terms of gas molecules. N2 was selected as the adsorption
gas and the samples were degassed at 200 ◦C for 7 h. Several catalysts were measured
to explore the effect of the addition of the active material on the original specific surface
area, pore volume and pore size of TiO2 and the relationship between the efficiency of the
catalyst and these surface parameters.

2.6.4. In Situ Diffuse Reflectance Fourier Spectroscopy (FTIR) Analysis

The catalyst was routinely pressed into a powder using a Thermo Fisher Nicolet iS20
FTIR spectrometer in the wave number range of 500 to 4000, as different chemical bonds
absorb infrared light at different frequencies, so each bond has its own corresponding
spectrum, namely a molecular absorption spectrum. The location and intensity of the peaks
in the spectrum can be used to determine the functional groups and active sites contained
in the catalyst.

2.6.5. X-ray Photoelectron Spectroscopy

The elemental, valence and relative contents of the catalysts were measured using
the Thermo Fisher EscaLab Xi+ X-ray Photoelectron Spectrometer. As the energy of the
photoelectrons escaping from different atoms or molecules differs when they are excited by
X-rays, the instrument measures the energy of the escaping electrons and draws an XPS
spectrum, from which a comparison can be performed to determine the element in the
catalyst and the valence state of that element, as well as the relative content of different
valence states of the same element.

3. Results and Discussion
3.1. Study on Catalyst Denitration Performance
3.1.1. Effect of Mn on the Denitration Performance of Mn-Based/Mn-Ce Catalysts

The relationship between the denitration efficiency of Mn-based catalysts and the
content of Mn is shown in Figure 3a. The denitration efficiency of the six Mn-based catalysts
in Table 1 was tested under experimental conditions ranging from 100 to 225 ◦C. It can be
observed from the diagram that the catalytic efficiency of the catalyst first increased and
then decreased with the increase in the Mn content. When the content of Mn was 10%,
the highest value of the catalyst efficiency was 86.53%. As the content of Mn continued to
increase, the efficiency of the catalyst began to decrease.

Figure 3b shows the denitration performance of catalysts 6~15 in Table 4. During the
process of increasing the Mn content from 3% to 10%, the catalyst efficiency increased with
the increase in the Mn content, and the Mn content continued to increase. The denitration
efficiency of the Mn-Ce catalysts began to decrease, and the most efficient catalyst was
still M10C3. With Figure 3a,b, it is not difficult to see that adding either Mn or Mn and Ce
together improves the catalytic efficiency of the catalyst. However, the improvement in the
catalytic efficiency is limited, and an excessive load reduces the denitration efficiency of
the catalyst.
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3.1.2. Effect of Ce on Denitration Performance of Mn-Ce Catalysts

The denitration performance changes in catalysts 1~5 and M10 in Table 4 were tested
in the temperature range of 100~225 ◦C. The effect of the Ce content on the denitration
performance of the catalysts is shown in Figure 4. The denitration performance of the
catalyst loaded with Mn and Ce was improved compared with that of the catalyst only
loaded with Mn. The catalytic efficiency of the catalyst increased first and then decreased
with the increase in the Ce content. When the Ce content was 3%, the maximum efficiency
of the catalyst could reach 93.86%. When the Ce content increased to 4% and 5%, the
denitration efficiency of the catalyst started to decrease gradually.
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3.2. Characterization of Catalyst Samples
3.2.1. XRD Analysis of Catalysts

The XRD spectra of catalysts M10 and M10C1~M10C5 are shown in Figure 5. Due
to the high content of TiO2, the main characteristic peak of the catalysts was anatase-type
TiO2, and the characteristic peak of TiO2 partially overlapped with that of MnOx and CeO2.
The diffraction peaks of MnO2 and Mn2O3 can be observed in the XRD pattern, which
occurred at 2θ = 37◦, 48.4◦, 74.7◦ and near 76.1◦ and at 2θ = 55.3◦, 62.3◦, 69◦ and 70.8◦.
Due to the low amount of doped Ce, the diffraction peak of CeO2 was observed only in
the diffraction pattern of the M10C5 catalyst at 2θ = 48◦ and around 70.5◦. The peak type
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of the added active material oxides was not as obvious as that of TiO2, which indicates
that the oxide formed by the added active material distributed uniformly without obvious
aggregation [22].
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3.2.2. SEM Analysis of Catalysts

The morphology of the TiO2, M10, M10C1, M10C3 and M10C5 catalysts is shown in
Figure 6. Figure 6A shows the TiO2 powder. TiO2 is a uniform, round, elliptical and smooth
particle with a particle size of 50–100 nm. After loading Mn, compared with the surface
of pure TiO2, some finer particles attached to the surface of the M10 catalyst, resulting
in unsmooth bumps. After loading Mn and Ce, it could be seen that the surface of the
TiO2 particles was rougher, and there were almost no smooth TiO2 particles. The active
substances were highly dispersed but also produced a small amount of agglomeration.
With the increase in Ce loading, the surface roughness of the catalyst also increased. The
active substances were uniformly attached to the surface of the TiO2 particles, providing
more pores. Figure 6E shows the M10C5 catalyst. Excessive Ce loading caused serious
agglomeration on the surface of the catalyst, and the distribution of mesopores was uneven.
Excessive Ce doping led to the sintering and agglomeration of some active substances and
pore plugging, which was not conducive to the adhesion of gas molecules [23]. According to
the analysis of the experimental results, a proper amount of active material agglomeration
is conducive to the catalytic reaction, whereas an excessive amount of active material
agglomeration affects the performance of the catalyst.

Figure 7 shows the morphology of M8C3, M10C3 and M12C3. With the increase in
the Mn content, it could be observed that the surface of the catalyst became rougher, and
the amount of Mn added continuously increased. In M12C3, due to the load exceeding the
limit of the surface energy of TiO2 particles, the M12C3 catalyst began to produce some
fine particles in the pores between TiO2 particles. With the increase in the Mn content, the
structure of the catalyst gradually became compact, and the gap between particles was
gradually filled, becoming smaller and smaller.
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3.2.3. BET Analysis of Catalysts

After loading Mn or Mn-Ce on the TiO2 powder, the specific surface area of the
catalysts was improved to varying degrees compared with that of TiO2. The pore volume
and pore size of the catalyst loaded with a single Mn element were lower than those of
TiO2, and the pore volume of the catalyst loaded with Mn and Ce was higher than that
of TiO2. The pore size of the Mn-Ce catalysts, except for M10C5, significantly increased
compared with that of TiO2. The surface parameters of TiO2 and various catalysts are
shown in Table 3. It can be seen from Table 5 that the specific surface area of the TiO2
powder was only 12.53 m2·g−1. After adding 10% Mn, the specific surface area slightly
increased to 13.10 m2·g−1. After adding Mn and Ce at the same time, the specific surface
area was significantly increased. The catalyst with 10% Mn and 3% Ce content had the
largest specific surface area, which was 55.9% higher than that of TiO2. As the Ce content
continued to increase, the specific surface area of the catalyst began to decrease.
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Table 5. Surface parameters of TiO2 and various catalysts.

Sample Specific Surface
Area (m2·g−1)

Pore Volume
(cm3·g−1)

Average Aperture
(nm)

TiO2 12.53 0.05445 19.84
M10 13.10 0.03592 11.98

M10C1 16.36 0.09549 24.50
M10C2 18.10 0.09630 23.44
M10C3 19.63 0.09969 20.47
M10C4 17.85 0.09606 22.01
M10C5 18.92 0.06894 14.68

After loading Mn on TiO2, the pore volume decreased. It may be that the oxide of
Mn blocked the mesopores between some TiO2 particles. The addition of Ce significantly
increased the pore volume of Mn-based catalysts, which was larger than the pore volume of
TiO2. It is believed that the simultaneous addition of Ce and Mn inhibits the aggregation of
Mn species, making them well dispersed on the carrier surface in an amorphous state [24],
thus improving the pore volume of the catalyst. The pore volume of the M10C3 catalyst
was the largest, increasing by about 83.1% compared with that of TiO2. As the Ce content
continued to increase, the pore volume of the catalyst began to decrease. When the Ce
content reached 5%, the pore volume of the catalyst decreased significantly.

Similar to the change in pore volume, the addition of Mn reduced the average aperture
of TiO2, which may have been due to the adhesion of Mn oxide on the surface of TiO2
particles, making the pore size between particles decrease or even disappear. After Ce was
added, the pore size increased significantly, and the average aperture of the M10C3 catalyst
with the best catalytic efficiency was 3.2% higher than that of TiO2. However, from the
data, there was no obvious relationship between the change in the average aperture and
the amount of Ce added.

Figure 8 shows the change trend of the surface parameters of TiO2 and various catalysts.
It can be seen from the figure that, when the Ce content increased from 1% to 3%, the
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average aperture of the catalyst decreased; when the Ce content increased from 3% to 4%,
the average aperture of the catalyst increased; and when the Ce content increased to 5%,
the average aperture of the catalyst decreased significantly. Combined with the change
analysis of the total pore volume, the simultaneous addition of Mn and a small amount of
Ce created more larger pores and improved the average aperture of the catalyst. With the
increase in the Ce content, the average aperture of the catalyst began to decrease gradually,
but the total pore volume still increased, indicating that the number of macropores in the
catalyst decreased, and the number of small pores increased. When the Ce content was 3%,
the denitration efficiency of the catalyst reached the highest value. At this time, the average
aperture was the smallest among the Mn-Ce catalysts. However, the total pore volume was
the largest. Therefore, the efficiency of the catalyst was not directly related to the size of the
average aperture. The large number of evenly distributed pores in the catalyst was more
conducive to the denitration reaction.
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The isothermal adsorption and desorption diagram and pore size distribution curve
of the sample are shown in Figures 9 and 10. The isotherms of the samples were all type IV
isotherms with obvious H3 mesoporous hysteresis loops, which proved that the mesopores
in the samples were mainly formed by the stacking of TiO2 particles [25], and the addition
of Mn blocked some large pores, thus leading to the reduction in pore volume. After Ce was
added, the area of the hysteresis loop increased significantly, indicating that the number
of mesopores in the sample increased, and that the joint addition of Mn and Ce increased
the number of mesopores in the catalyst, thus enhancing the gas adsorption capacity of
the sample. When the Ce content was greater than 3%, the area of the hysteresis loop
decreased slightly, and at this time, the denitration efficiency of the catalyst also began to
decrease, indicating that the addition of excessive Ce reduces the number of mesopores in
the catalyst. This would affect the denitration performance of the catalyst.

From Figure 10, it can be seen that the addition of Mn increased the number of
mesopores in the range of 2~4 nm and decreased the number of large pores above 50 nm,
thus decreasing the average pore size of TiO2. After the addition of Ce, the number of
mesopores from 2 to 4 nm started to decrease, and the number of mesopores from 10 to
50 nm increased. Therefore, the average pore size of the catalyst increased. At a Ce content
of 3%, the number of mesopores from 10 to 50 nm increased, the number of pores around
20 nm was the highest, and the average pore size of the catalyst at this time was 20.47 nm,
which indicated that the distribution of pores was more uniform in the M10C3 catalyst. As
the Ce content continued to increase, the number of pores in the 10–50 nm range began to
decrease gradually, and the denitration effect of the catalyst began to deteriorate gradually
at this time.
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Combining the above surface parameter changes with the pore size distribution
analysis, it can be seen that the addition of Mn created a large number of small pores and
also consumed some of the larger pores, thus reducing the average pore size and pore
volume compared to those of TiO2. As the Ce content increased, the combination of Mn and
Ce tended to be more uniform, and the M10C3 catalyst had a large number of mesopores
around 20 nm. Although the average pore size was reduced, the distribution of the pores
was more uniform, the pore capacity of the catalyst surface had a greater influence on the
catalyst, and the uniformly distributed mesopores of around 20 nm were more conducive
to the reaction. In addition, the addition of excess Ce would block the pores and reduce the
number of these mesopores, resulting in the poor denitration performance of the catalyst.
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3.2.4. FTIR Analysis of Catalysts

The Fourier infrared spectra of the M10, M10C3 and M10C5 catalysts are shown in
Figure 11. It can be seen from the figure that the characteristic peak of the M10 catalyst at
about 3460.63 cm−1 disappeared after Ce was added. With the addition of and increase in
Ce, the two characteristic peaks at about 593 cm−1 and 684 cm−1, respectively, represented
a reduction in the area of the Mn-O stretching vibration peak in Mn2O3 and MnO2. The
results show that the doping of Ce affected the O-H bond on the surface of the catalyst,
the interaction between Ce and Mn, and the vibration intensity of Mn-O, and the relative
content of MnOx decreased.
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3.2.5. XPS Analysis of Catalysts

Figure 12 shows the O1s XPS spectra of some catalysts. The O1s spectra of the catalysts
were fitted as two characteristic peaks representing the Oα and Oβ of chemisorbed oxygen
on the surface of the catalysts [2], which were located at 529.9 eV and 531.4 eV, respectively.
It can be seen from the diagram that the peak area of Oα increased significantly with
the increase in the Ce content. When the Ce content reached 2%, the peak area of Oα

began to decrease. Table 6 shows the relative content of O on the surface of the catalyst.
The ratio of Oα/Oα+ Oβ increased first and then decreased with the increase in the Ce
content. The literature review shows that Oα is more active than Oβ and more conducive
to the reaction [26]. The changes reflected by the XPS spectra are in agreement with the
experimental results.

Table 6. Relative content of O on catalyst surface (%).

Sample SCR M10 M10C1 M10C2 M10C3 M10C4 M10C5

Oα/Oα +
Oβ

73.61 46.84 60.80 72.55 70.78 66.05 49.31

Oβ/Oα +
Oβ

26.39 53.16 39.20 27.45 29.22 33.95 50.69

Figure 13 shows the XPS spectrum of the Mn2p orbital of the M10~M10C5 catalysts.
The Mn2p orbital of the catalysts has two characteristic peaks, Mn2p1/2 and Mn2p3/2 [27],
which are located at 638.6 eV and 649.9 eV, respectively. Mn exists as Mn3+, Mn4+ and
Mn-sat [28]. It is known from the literature that Mn4+ is more active in the catalytic
reaction [29].
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Table 7 shows the relative content of Mn on the surface of the catalysts. The relative
content of Mn4+ was the highest before the addition of the Ce element. After the addition
of 1% Ce, the relative content of Mn4+ rapidly decreased. By continuing to add Ce, the
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relative content of Mn4+ began to rise, and the Ce content reached 3%. The further addition
of Ce would reduce the Mn4+ content on the surface of the catalysts.

Table 7. Relative Mn content on catalyst surface (%).

Sample M10 M10C1 M10C2 M10C3 M10C4 M10C5

Mn4+/Mn3+ + Mn4+ 64.18 34.00 50.41 53.95 51.19 34.44
Mn4+/Mn 59.29 30.65 45.80 51.61 46.70 29.59

The results show that the M10 catalyst without Ce had a higher content of Mn4+ but
a lower denitration efficiency than the Mn-Ce catalyst. Although the content of Mn4+

decreased after adding Ce, the catalytic effect was improved to a certain extent, indicating
that the relative content of Mn4+ was not the only factor affecting the catalytic effect. From
the data trend, as the content of Mn4+ or Ce added to the Mn-Ce catalyst becomes higher,
the catalytic effect becomes better. This indicates that the different valence states of Ce on
the surface of the catalyst also had an important influence on the catalytic effect.

Figure 14 shows the XPS spectrum of the Ce3d orbital of the M10C1~M10C5 catalyst.
The peaks at u1 and v1 represent the peaks of Ce3+3d3/2 and Ce3+3d5/2, respectively.
The peaks at u0, u2 and u3 and v0, v2 and v3 are Ce4+3d3/2 and Ce4+3d5/2, respectively.
The coexistence of Ce3+ and Ce4+ facilitates the storage and release of oxygen [30]. The
presence of Ce3+ is more conducive to the generation of oxygen voids and can improve the
denitration effect of the catalyst and the mercury oxidation rate [1]. The relative content of
Ce3+ in the sample increased first and then decreased with the increase in the Ce content,
which was the highest in M10C3 (25.31%).
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Figure 14. Ce3dXPS spectra of partial Mn-Ce/TiO2 catalysts.

The relative content of Ce on the surface of the catalysts is shown in Table 8. The
change trend of Ce3+ in the Mn-Ce catalyst was similar to that of Mn4+ in that it increased
first and then decreased. The highest Ce content was 3%. Based on the analysis of the
experimental results, although the Oα content in the M10C2 catalyst was high, the catalytic
effect of the M10C3 catalyst was the best. Therefore, the relative content of Oα in the Mn-Ce
catalyst had a greater influence on the catalytic effect than that of Mn4+ and Ce3+.



Metals 2023, 13, 426 15 of 16

Table 8. Relative content of Ce on the catalyst surface (%).

Sample M10C1 M10C2 M10C3 M10C4 M10C5

Ce3+/Ce3++Ce4+ 21.87 24.44 25.31 20.85 18.50

4. Conclusions

The maximum catalyst efficiency of a single loaded Mn element was 86.53%, and the
maximum denitration efficiency of the Mn-Ce catalyst was 93.86%.

When the content of Mn in the Mn-Ce catalyst was less than 10% and the content of Ce
was less than 3%, the efficiency of the catalyst increased with the increase in the content of
the added Mn or Ce. This is consistent with the findings reported in the literature [31]. After
exceeding this range, the efficiency of the catalyst would decrease with the increase in active
substances. It can also be noted that the highest denitration performance of the catalyst
sample was achieved at 175 ◦C, and the denitrification efficiency started to decrease as the
temperature increased further. The possible reason for the results of the analysis is that, at
higher reaction temperatures, the non-selective oxidation side reactions of NH3 intensified,
producing N2O and some NO, where the increase in Mn and Ce species exacerbated this
side reaction at high temperatures. Moreover, these side reactions proceeded to reduce
the concentration of the reducing agent NH3, resulting in the inhibition of the selective
catalytic reaction. The BET and SEM characterization results of the catalyst showed that
the specific surface area and pore volume of the M10C3 catalyst increased by 55.9% and
83.1% compared with those of TiO2, and the average aperture did not change significantly.
The load beyond this range would block some pores of the catalyst, which would not be
conducive to the catalytic reaction.

The O1s orbital XPS spectra of the catalysts showed that the addition of 3% Ce in-
creased Oα by 51.1%, and the relative content of Oα began to decrease when the Ce content
exceeded 3%. The interaction between Ce and Mn affected the intensity of the Mn-O
vibration peak and reduced the relative content of Mn4+. However, the introduction of Ce3+

also promoted the catalytic reaction. When the Ce content was 3%, the contents of Mn4+

and Ce3+ were the highest, at 53.95% and 25.31%, respectively.
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