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Abstract: Static indentation and dynamic indentation are reviewed, with a focus on extraction
of material properties of isotropic strain-hardening polycrystalline metals that may be rate- and
temperature-sensitive. Static indentation is reviewed first, followed by dynamic indentation, since
the former is regarded as a specialization of the latter with inertia, rate dependence, and adiabatic
heating excluded. Extending concepts from the literature review, a treatment of dynamic indentation
using dimensional analysis is forwarded, and a general framework for extraction of material property
information (i.e., constitutive model parameters) from instrumented dynamic spherical indentation
experiments is set forth. In an example application of the methodology, experimental data obtained
from instrumented spherical indentation in a miniature Kolsky bar apparatus are evaluated via
dimensional analysis. The substrate material is aluminum alloy Al 6061-T6. Several definitions
of indentation strain proposed for static indentation are assessed for dynamic indentation, as are
indentation strain rates. While the fidelity of the experimental method and inertial effects could inhibit
extraction of elastic properties, extraction of certain plastic constitutive properties may be feasible.
Current data are insufficient to enable determination of a complete and unique set of all physical
properties. Motivated by the present review and analysis, new experiments and simulations are
proposed that would identify influences of material properties, facilitating their extraction from data.

Keywords: indentation; metals; polycrystals; dynamic plasticity; strain hardening; Kolsky bar

1. Introduction

Indentation experiments, being relatively simple and inexpensive to perform, offer the
possibility of high-throughput mechanical testing, i.e., numerous experiments conducted
in rapid time. Other advantages include the following: only small samples of material are
needed, and response variations in different regions of heterogeneous bodies can be easily
probed [1]. Furthermore, numerical simulations of spherical indentation of elastic–plastic
solids are now routinely accomplished using conventional finite element (FE) methods
with widely available commercial software [2–4]. The disadvantage of the indentation
experiment, relative to traditional mechanical testing (e.g., uniaxial tension/compression),
is proper analysis of the resulting data [5]. Stress and strain fields are highly nonuniform
during indentation. Friction at the interface, pile-up, and sink-in effects complicate anal-
ysis [2,3,6]. In dynamic indentation, strain rate is also highly nonuniform, even if the
indenter’s velocity is constant. Inevitably, the indenter will decelerate prior to unloading,
drastically reducing the average strain rate over time.

The present research is focused on issues associated with the extraction of material
constitutive properties from dynamic spherical indentation tests. The discussion is geared
toward classical ductile elastic–plastic solids (e.g., engineering metals), though some issues
are shared among other material classes. Materials with viscoelastic response [7,8], or
those undergoing brittle fracture [9], are not addressed explicitly. Also excluded from
the present review and analysis of classical elastic–plastic solids are considerations of
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length scale and size effects [10–13] (e.g., specimen size, grain size, and strain gradient
effects, with increased complexity often arising at the nanometer scale) and corresponding
advanced constitutive theories [14–16] capable of addressing one or more such phenomena.
Constitutive models considered later in this work do not contain any intrinsic length
scale(s). Phase-field representations of spherical indentation [17] are thus excluded from
the formal review. Furthermore, atomic or hybrid atomic–continuum simulations [18],
which necessarily probe phenomena at the nanoscale (e.g., in single-crystal domains) due
to sizes resolved, are likewise excluded.

Governing relationships among global variables are cast in dimensionless form in an
application of dimensional analysis to dynamic spherical indentation. Relationships among
useful dependent and independent variables are analyzed in the context of Buckingham’s
Pi theorem [7,19,20]. This approach, which enables a systematic reduction in the number of
independent quantities entering a physical problem, has been used previously to analyze
static spherical indentation [21] and ballistic impact [22]. Here, the treatment of Lee and
Komvopoulos [23] is extended to account for thermal effects, and different mathematically
admissible (and thought more physically useful) choices are made for independent and
dependent variables of interest. Results provide guidance on which parameter(s) should
be varied systematically in a design of experiments, real or numerical, to enable a complete
understanding of the problem. Outcomes are then applied to experimental data on an
aluminum alloy, producing dimensionless indentation force, contact radius, and global
temperature rise. Different indentation strains and strain rates are calculated and examined
for potential suitability in the context of constitutive model/parameter determination.

This paper is organized as follows. The literature review elaborating fundamental
concepts is contained in Sections 2 and 3. Pertinent aspects of static indentation, notably
governing equations and constitutive model forms, are reviewed first in Section 2, since
many carry over to the dynamic regime. Dynamic indentation is addressed in Section 3,
including augmentation of basic elastic–plastic constitutive models to incorporate rate
and temperature, as well as several proposed definitions of effective indentation strain
rate. Sections 2 and 3 are suitably labeled as “Review” sections. Subsequent parts of this
paper apply or extend concepts from the literature review to demonstrate their utility in
an application to instrumented dynamic spherical indentation. Dimensional analysis of
dynamic spherical indentation is undertaken in Section 4, suitably labeled “Extension”,
since prior dimensional analysis from the literature is updated to include thermal effects
and different choices of dimensionless variables. Techniques are applied to instrumented
indentation data for aluminum alloy Al 6061-T6 in Section 5, suitably labeled “Application”.
Based on the literature review and current analysis, recommendations are given for future
experiments and possible numerical simulations that should facilitate constitutive model
parameterization using dynamic spherical indentation data. Lastly, conclusions follow
in Section 6. A list of symbols with definitions and dimensions is included in a Notation
section immediately preceding the References list.

2. Review: Static Indentation

The scientific literature on static indentation, even when focused purely on modeling
techniques for material property extraction, is immense. A complete review of the entire
subject space of indentation experiments, theoretical analyses, and numerical simulations
is thus outside the present scope, which instead reports details needed in the subsequent
dimensional analysis of the dynamic case. See the book by Johnson [24] for seminal
analytical methods applied to contact problems, as well as two review papers [5,25] for
contemporary overviews that include computer simulations.

2.1. Elastic Indentation

The linear isotropic elastic solutions of Hertz are conventionally used to analyze static
indentation data up to initial yield, as well as elastic unloading from a plastically deformed
state. The Hertz analysis [24] assumes frictionless contact of homogeneous elastic bodies
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whose surfaces are parabolic in shape. In the limit of small indentation depths and contact
areas pertinent to the elastic regime, the quadratic surface approximation adequately
represents the true spherical geometry of the indenter [26]. Provided that the yield strength
of the material is a small fraction of the elastic stiffness, effects of elastic nonlinearity
are typically deemed negligible, and thus omitted in nearly all reported analytical and
numerical studies of indentation of ductile metals. However, for large elastic indentation
depths, nonlinear compressibility has been shown to mildly increase indentation force [27].

Hertz’s equations for spherical indentation into an initially flat substrate are summa-
rized as follows [1,24]. Denote by P the indentation force, he the elastic (i.e., reversible)
indentation depth, Ē the effective system modulus, R̄ the effective system radius, a the
contact radius, and k̄ a system stiffness. Denote by Ei, Es, νi, νs, Ri, Rs the elastic moduli,
Poisson’s ratios, and radii of the indenter and sample, labeled with respective subscripts
(·)i and (·)s. Then, Hertz’s solution encompasses

P = k̄h3/2
e , k̄ = 4

3 ĒR̄1/2, a = (R̄he)
1/2; (1)

Ē = [(1− ν2
i )/Ei + (1− ν2

s )/Es)]
−1, R̄ = (1/Ri + 1/Rs)

−1. (2)

For a rigid indenter, Ē = Es/(1 − ν2
s ) and Ri = constant. Prior to deformation

Rs → ∞⇒ R̄ = Ri. Often, Rs → ∞ (i.e., small deformation theory) is used to approximate
the entire elastic loading process into a flat substrate, an assumption which produces a
very simple closed-form solution when Ri is effectively constant. This approximation is
also often used to analyze elastic unloading [28]; however, the unloading process from
a plastic impression has been analyzed elsewhere with a finite Rs [6]. If the indenter is
deformable, a typical approximation for its elastic displacement hi is given by Hertz’s
solution for indentation into a rigid flat surface [1]:

hi ≈ 3(1− ν2
i )P/(4Eia). (3)

The effective system modulus Ē encompasses all effects of material constitutive be-
havior on the load–displacement curves in the linear elastic regime. This modulus has
also been widely used to fully encompass elastic constitutive effects on load–displacement
response in the elastic–plastic regime, e.g., in dimensional analysis [29–31]. Justification
for this assumption in early stages of elastic–plastic indentation has been obtained from
analytical methods [24,32] and verified for νs ∈ [0.01, 0.49] in FE simulations [3]. For a very
stiff or rigid indenter, the effects of Poisson’s ratio of the sample on indentation force are
reportedly small relative to the effects of the elastic modulus of the sample over typical
ranges of constitutive behaviors of ductile metals [7,33,34]. In other words, sensitivity of the
static load–displacement response to Poisson’s ratio is reportedly low, though exceptions
exist for unusual material property combinations [35] and for large indentation depths [3].

2.2. Elastic–Plastic Indentation

In the elastic–plastic regime, the total indentation depth for the system, h, is decom-
posed into [1]

h = he + hr = hs + hi; he = (P/k̄)2/3. (4)

The elastic indentation depth of the system is he, and when the indenter deforms
only elastically, its indentation displacement hi can be approximated via (3). The residual
indentation depth is hr; after elastic unloading, h = hr and he = hi = 0.

During elastic unloading, the slope S of the load–indentation curve implied from
Hertz’s theory at small elastic deformation (i.e., k̄(h) independent of he but possibly depen-
dent on hr = h− he through finite Rs(h)) is the derivative

S(h) = ∂P(h(he, hr))/∂he =
2
3 k̄(h) · h1/2

e = 2Ē · a(h). (5)
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If S is measured at a given elastic–plastic contact depth h [6], then the contact radius a
at that depth can be inferred from (5) if Ē is known [36]. The radius of the residual indent
(i.e., crater) after unloading, denoted by ar, of a plastically deformed material has been used
in this capacity as a coarse approximation of a at peak load [28], though more sophisticated
treatments of unloading of elastic–plastic solids exist [6].

Constitutive behavior of an untextured ductile metallic specimen is typically de-
scribed in engineering practice via isotropic elasto-plasticity with possible power-law
hardening [31,37–40]. Although subtle differences exist among numerous functional forms
of hardening laws given in the literature, a reasonably standard model for von Mises
equivalent flow stress σ is

σ(εP) = σ0

[
1 + κ · (εP)n

]
, n = d ln(σ− σ0)/d ln εP. (6)

The cumulative scalar plastic strain is εP, the initial yield stress is σ0, the strain-
hardening exponent is n, and κ is a fitting parameter. For perfect plasticity, κ = 0, and for
linear hardening, n = 1 with κ > 0.

Standard, physically justified, and established methods (i.e., associative flow, normal-
ity, and consistency) can be used to implement (6) in the context of finite deformations with
incremental plasticity in a numerical setting [41]:

dεεε = dεεεE + dεεεP, dwP = σσσ : dεεεP = σdεP. (7)

The tensor-valued strain increment dεεε is additively decomposed into elastic (·)E

and plastic (·)P parts, the stress tensor is σσσ, and the scalar plastic strain increment dεP

is obtained from the increment of the plastic strain tensor such that its work conjugate
entering plastic work per unit volume wP is the von Mises stress σ. For uniaxial stress
conditions, with ε denoting the total axial strain, such treatment reduces to

σ =

{
Eε (ε ≤ σ0/E),
σ0
[
1 + κ · (εP)n] (ε ≥ σ0/E).

(8)

Define the projected contact area by A and the mean contact pressure by p̄. An
effective value of the flow stress σ averaged over the indented region in the sample is σ̄,
and c is the constraint factor that depends on geometry, and to a lesser extent, constitutive
behavior [2,6,42,43]. Then, the mean pressure and mean flow stress are related by

p̄ =
P
A

=
P

πa2 = cσ̄. (9)

Yielding in the sample is initiated at c ≈ 1.1 [6,42], whereby hp first becomes nonzero.
For sufficiently deep indentation, h � he, such that the plastic response dominates. In
this regime, the historical analysis and data of Tabor [44] suggest c ≈ 2.8 for spherical
indentation in ductile metals, later corroborated by numerical methods by Hill et al. [45].
Another typical approximation is c ≈ 3 for this deep plastic regime [6]. In the intermediate
regime between elastic and deep plastic indentation, 1.1 . c . 3. At maximum load,
the mean pressure can be identified with Meyer’s hardness H in an indentation hardness
experiment (i.e., spherical or hard ball indentation into a flat substrate) when the maximum
force is substituted for P and the residual imprint radius ar is substituted for a.

For strain-hardening materials (n > 0), c likely depends on both n and the definition
used for “indentation strain” ε̄ substituted into (8) for εP to acquire a representative value
of σ̄ [2,6]. Tabor [44] proposed εP ≈ ε̄ = 0.2a/Ri, which corresponds to plastic strain at the
indentation edge [2]. In that work [44], a ≈ ar was approximated as the radius ar of the
residual indent after load removal, and thus is not consistent with the Hertz definition of
the true contact area at the instant load removal begins. Additionally, the approximation
R̄ ≈ Ri is often used in practice rather than the second of (2) (with more realistic finite Rs)
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to characterize unloading from a plastically deformed state, an approximation which tends
to poorly capture the effective stress–strain behavior and unloading modulus [5].

A potential difficulty with many definitions for indentation strain [6,44] is determina-
tion of the contact radius a, which may be challenging to obtain directly from experiments.
An estimate proposed by Field and Swain [6] for this purpose is

a = [2(h− he/2)Ri − (h− he/2)2]1/2. (10)

However, noted by Kalidindi and Pathak [26], the definition of a in (10)—based on
spherical geometry and assuming that the elastic displacement of a preformed spherical im-
pression is evenly divided above and below the circle of contact [6]—is not fully consistent
with Hertz’s definition in (1).

An alternative measure of indentation strain ε̂, with corresponding renamed stress
(i.e., mean pressure) σ̂, is thus proposed by Kalidindi and Pathak [5,26]:

ε̂ =
4

3π

hs

a
≈ hs

2.4a
, σ̂ = p̄ =

P
πa2 = cσ̄. (11)

The contact radius incorporated in these works [5,26] obeys the Hertz definition in
(1) and can be found from (5) during unloading, provided Ē is known from fitting to data
collected in the elastic regime. Note that (11) produces σ̂ = Ēε̂ for h = he, i.e., for elastic
loading/unloading commensurate with Hertz’s solution in (1) and (2). Application of (11)
to experimental [1] and numerical [37,38] results produces a constraint factor of c ≈ 2 for
metals with no strain hardening, or for strain-hardening metals at a uniaxial-equivalent
offset strain of ε ≈ 0.1–0.2%. Possible reasons for c < 2.8 in some investigations [1,37,38] are
shallower indentation depths than those used by Tabor and others [2,44,45] and different
definitions or measures of a among the different investigations.

Three indentation strain measures are collected below for reference and comparison:

• Tabor [44]: ε̄ = 0.2 · (a/Ri);
• Kalidindi and Pathak [26]: ε̂ = (4/{3π}) · (hs/a);
• Lee and Komvopoulos [46]: ε̌ = (Es/σ0) · (h/{2Rih− h2}1/2).

Notably, constitutive scaling factor Es/σ0 is present in ε̌, while the other two measures
are purely geometric. Only ε̂ requires knowledge of two transient variables (i.e., a and hs).

The notation for stress measures is clarified in the Notation section at the end of
this paper, immediately preceding the References. Specifically, σ is the local von Mises
stress, as specified by constitutive stress–strain models, with an initial value of σ0 prior to
strain hardening and in the absence of rate and temperature effects. The measured mean
indentation pressure is p̄. The mean indentation flow stress of Tabor [44] is σ̄; this differs
from p̄ by the constraint factor c. The indentation stress defined by Pathak and Kalidindi [5]
is equal to the mean pressure and differs from the mean indentation flow stress by a factor
of c. The same notation is used for σ̂ and p̄, since the latter is measured but the former is
assumed for generating indentation stress–strain curves (e.g., Equation (12)).

2.3. Constitutive Property Extraction

Numerous works have sought to extract uniaxial stress–strain constitutive behavior
from spherical indentation data in the quasi-static regime, claiming various degrees of
success. A relatively simple model for loading–unloading cycles [6] incorporating (10) is
widely mentioned, though it is not valid for the transition regime 1.1 . c . 3. Early FE
simulations [45,47,48] of quasi-static spherical indentation date to the 1980s. The existence,
uniqueness, and stability of the inverse solution have been investigated in the context
of dimensional analysis [31,35]. In related work [31], a representative strain has been
determined that renders the dimensionless indentation force independent of the strain-
hardening exponent. An optimal data acquisition location from which to extract field
variables from FE solutions for material property evaluation has been proposed [49]. An
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average representative strain and confidence domain for which property correlations are
accurate have been defined [50,51].

Inverse methods incorporating numerically generated databases of spherical indenta-
tion response data have been used for property extraction [40,52,53]. More sophisticated
data-driven approaches utilize neural networks [39,54,55] or Bayesian inference [38,56].
Simplified analytical fitting functions or surrogate numerical models (i.e., calibrated replace-
ments of full FE models) can be invoked in this context to greatly improve computational
efficiency [38,39].

Most often, correlation of the loading portion of a predicted force–displacement curve
with test data [2] is used to determine plasticity parameters (e.g., σ0, κ, n), while unloading is
used to determine elastic stiffness Ē with some estimate of the contact radius [6]. However,
periodic load–unload cycles can be used to determine the projected contact area A = πa2 if
Ē is measured from the initial elastic loading phase [26]. The strategy advocated by Pathak,
Kalidindi, and their coworkers [5,37,38] involves fitting or comparison of indentation stress–
strain curves rather than indentation force–displacement curves to ascertain elastic–plastic
properties. Elastic–plastic properties have also been identified by numerically matching
residual imprints [52,56], as opposed to force–displacement curves.

Protocols for generating uniaxial stress–strain curves from indentation stress–strain
curves, where the latter follow (11), are described by Patel and Kalidindi [37]. The equiva-
lent uniaxial stress–strain behavior of the specimen is of the standard form σ = Es · εE =
Es · (ε − εP). Then, the following correspondence relations apply among indentation
stress–strain curves (σ̂ vs. ε̂) and uniaxial curves (σ vs. ε):

σ̂ =

{
Ē · ε̂ (σ̂ ≤ cσ0),
Ē · (ε̂− ε̂P) (σ̂ ≥ cσ0);

ε̂ =
4

3π

hs

a
= ε̂E + ε̂P; (12)

εE =
1
c

Es

Ē
· ε̂E =

1
c

Es

Ē
· σ̂

Ē
=

1
c

Es

Ē2
P

πa2 , εP =
ε̂− ε̂E

β̂
. (13)

The constraint factor c is measured at the yield point (σ̄ = σ0) for continuity, and β̂ is a
fitting factor that depends on the material. Demonstrative FE simulations for representative
elastic–plastic solids [37] with perfect plasticity (κ = 0) or linear hardening (n = 0) with
different strain-hardening coefficients κ > 0 produced c ≈ 2.0− 2.2 and β̂ ≈ 1.3. The in-
dentation stress–strain fitting method can be advantageous to fitting of force–displacement
responses, since pertinent elastic–plastic properties may be strongly correlated to only
relatively small regions of the entire force–displacement curve. Thus, a certain precision
of fitting for entire force–displacement curves does not necessarily carry over to similar
precision in extracted stress–strain curves, elastic modulus, yield strength, and/or strain-
hardening parameters [39]. Another method of reducing fitting errors associated with
estimation of contact areas involves correlation of total and recoverable strain energies
(i.e., integrals of load–displacement relations) rather than indentation forces [7,21], since
integral values are less sensitive to experimental noise.

According to Cao and Lu [31], an inverse problem is ill-posed if one of the following
properties is not respected:

• Existence: there exists a solution to the problem.
• Uniqueness: there is, at most, one solution to the problem.
• Stability: the solution continuously depends on the data.

The condition number of an inverse problem measures sensitivity of the identified
parameter to small changes in the input data. A problem is ill-conditioned if the condition
number is large, and it is ill-posed if the condition number is infinity. A thorough numer-
ical analysis of spherical elasto-plastic indentation [31] found stability to degrade with
increasing n and with increasing σ0/Es. To the above three criteria, an obvious measure of
success of an inverse analysis procedure can be added:

• Accuracy: how closely the inverse solution matches the exact solution.
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The exact solution would be procured from independent property specifications or
different measurements (e.g., uniaxial stress–strain experiments) in the present application
to indentation analysis.

Some challenges mentioned in the literature for static property extraction are now
reiterated. In Zhao et al. [33], the error of reverse analysis was less than 10% in most cases,
where discrepancies were caused in part by the accuracy of fitting functions and in part
by the error of applying a power-law hardening model to real materials. In works by
Moussa et al. [50,51], it was found that extraction of stress–strain curves from indentation
gives precise results only over a range of strain, which was termed a “confidence domain”.
Patel and Kalidindi [37] noted the difficulty with pinpointing an initial yield stress σ0 when
yielding occurs at low indentation depths, given the typical resolution of experimental data
in this regime. Shallow indentation may not provide sufficient information for discriminat-
ing hardening parameters [38]. An opinion stated by Dean and Clyne [53] is that a single
indentation run with a spherical indenter should be sufficient for property determination,
at least for typical quasi-static isothermal behaviors of ductile metals described by (6).

For indenters with self-similar shapes (e.g., conical, Berkovich or Vickers pyramidal),
no inherent length scale is introduced by the geometry. It follows that hardness, representa-
tive strain, and curvature of the load–displacement relation are independent of indentation
depth, which can be proven using dimensional analysis [7,57,58]. This contributes to the
nonuniqueness of property extraction from a single indentation using such an indenter
shape. So-called “mystical materials” exist that have different elastic–plastic property
combinations but identical indentation curves obtained from self-similar indenters [59,60].
Nonuniqueness can be rectified by using combined data from indenters of different shapes,
e.g., different tip apex angles [30,53,61] to determine material properties from an inverse
analysis. In contrast, nonuniqueness is less problematic for spherical indentation since
the indenter radius introduces a geometric length scale independent of the indentation
depth [7,21,53].

According to Liu et al. [60], fundamental plastic constitutive properties such as the
yield stress and work-hardening coefficient cannot always be uniquely determined from the
force–displacement curves of indentation analyses, including both plural sharp indentation
and deep spherical indentation. Mystical material pairs can still exist in such cases, with a
difference of their force–displacement curves below the resolution of existing indentation
techniques for large ranges of sharp indenter angles or spherical indentation depths. From
the indentation force–displacement curve alone, it is generally not possible to precisely
specify what plastic-hardening model should be used (e.g., (6) vs. some other constitutive
equation) for an arbitrary material, and the whole stress–strain curve of the material cannot
be measured due to geometric limitations on maximum depth that bound the indentation
strain [60]. A Monte Carlo sensitivity analysis [34] demonstrated, in the case of spherical
indentation, that the experimental errors must be very small to enable reliable extraction of
material properties.

In summary, the existence, uniqueness, stability, and accuracy of an inverse technique
for property extraction from static spherical indentation depend on multiple factors. These
factors may include the indentation depth and indenter radius, the assumed constitutive
model, and presumptive initial conditions (i.e., initial guesses) and bounds on material
parameters in a search algorithm. The aforementioned four aspects of performance appear
to generally improve as indentation depth increases to the plasticity-dominated regime,
wherein the plastic zone under the indenter has enlarged sufficiently to control the stiffness
of the substrate that is registered at the contact surface. Incorporation of more data in any
calibration procedure, including residual indentation geometry and a range of indentation
load–unload depths and geometries, is expected to improve results. Fitting of indentation
stress–strain data and consideration of energy–displacement data rather than explicit force–
displacement data have been observed to improve accuracy and stability, respectively.

Of course, when the assumed constitutive form is close to true material behavior, with
property ranges typical of those for which the constitutive model is intended, success is
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more likely. On the other hand, for exotic materials (i.e., those very different from typical
ductile metals), or for those with highly uncertain behaviors, success of constitutive model
parameterization is not ensured a priori and thus should be verified on a case-by-case
basis. For example, if the material exhibits simultaneous viscoelastic and irreversible
plastic deformation mechanisms, a unique constitutive model prescription from standard
indentation data may be impossible [62].

Anisotropy is inherent in the mechanics of single crystals. The present review focuses
on isotropic material behavior pertinent to polycrystals with randomly oriented grains.
Isotropic elasticity is assumed in the Hertz solutions of Section 2.1 and the constitutive the-
ory of Section 2.2. For polycrystalline material samples, individual grains are anisotropic,
but the overall spherical indentation response (e.g., force versus depth) becomes inde-
pendent of orientations of individual grains when the size of the indenter relative to the
grain size is large enough [1]. In this case, the deformed region of material underneath
the indenter encompasses enough single crystals, such that their homogenized behavior
controls the global response. If the sampled grains are randomly oriented, the overall
response will be isotropic and repeatable for multiple indentations on the same material.
If, however, the grains are not randomly oriented (i.e., a textured polycrystal), or if the
substrate is a single crystal, the homogenized elastic–plastic response will be anisotropic,
and a suitable anisotropic constitutive model [63,64] should be implemented instead. Simi-
larly, anisotropic properties become important if the indenter radius–depth combination
probes only the local response of a single crystal at the surface of a polycrystalline sample.
Finite element simulations of static spherical indentation have been used to understand
anisotropic elastic and plastic properties of crystalline materials [17,64–66]. Continuum FE
simulations of dynamic spherical indentation of anisotropic crystalline solids do not seem
present in the available literature.

Spherical indentation has also been used to study the creep properties of solid ma-
terials, usually at elevated initial temperatures. Experiments [67,68] and numerical anal-
yses [69–71] of creep in metals (or representative generic ductile solids) under spherical
indentation loading have been reported. Time enters the analysis due to the finite relaxation
period for manifestation of creep deformation, which is strain-rate-dependent. In creep
investigations, indentation rates are finite yet relatively slow, and long loading times are
required to ascertain constitutive properties for creep models [7]. Although time affects
results in both cases, experiments and modeling for creep behavior are distinguished in
the present review from those for dynamic elastic–plastic response reviewed in Section 3.
In the dynamic indentation of crystalline metals, strain rates are much higher (e.g., on the
order of hundreds or thousands per second for dynamics versus less than unity for creep),
and initial temperatures are generally much lower. Physical behaviors are addressed for
dynamic indentation with high-rate plasticity for underlying dislocation glide rather than
creep viscoelasticity or creep viscoplasticity for underlying diffusion and dislocation climb.
Dimensional analysis of indentation of creeping materials obeying a power-law constitutive
relation was undertaken by Cheng et al. [7]. Loading rate and temperature entered the
analysis but mass density and thermal properties important for dynamics did not.

The basic constitutive theory in Section 2.2, and its augmentation for dynamic regimes
in Section 3.1, does not explicitly address inelastic phenomena that are not readily incor-
porated into the plastic yield and flow functions, such as aforementioned creep plasticity,
anisotropic deformation twinning (e.g., modeled in [17,72–74]) or phase transitions [75,76].
Fractures, as more often arising in brittle materials [9,77–79], are also excluded from the
current review.

3. Review: Dynamic Indentation

Substantial research has been directed toward material constitutive characterization
using dynamic indentation methods, albeit far less than that for the static regime reviewed
in Section 2. Early work [80] analyzed the projectile impact of hard spheres into softer
metallic targets of much larger dimensions than the spheres. Dynamic stress–strain curves



Metals 2023, 13, 276 9 of 32

were extracted from analysis of the results. The flow stress was defined as p̄/c with a static
value of c ≈ 3 depending on material, and Tabor’s strain measure ε̄ = 0.2ar/Ri was used,
with ar the residual contact radius.

More recent experiments [81–83] likewise analyzed hardness data extracted from
spherical projectile impact. Wen et al. [84] used nanoindentation to characterize hardness in
the plastic imprint of a titanium alloy following spherical impact. The above studies are not
considered instrumented methods. Rather, such investigations tended to rely on knowledge
only of the impactor’s size and its initial velocity, in conjunction with postmortem analysis
of the impact crater, to infer material response information, since transient forces and
velocities were not recorded in situ during the impact event.

Dynamic indentation using the split Hopkinson pressure bar (SHPB) (i.e., Kolsky
bar) has been implemented for a variety of indenter geometries and target materials, as
pioneered by Subhash and co-workers [85,86]. This technique allows for the interroga-
tion of velocities and mechanical forces during the transient indentation process. More
recent approaches of dynamic indentation with the SHPB have used a full sphere sand-
wiched between two specimens [87] or a striker with variable impedance to achieve load
cycling [88]. The strain-rate sensitivity of metals was deduced from dynamic conical in-
dentation experiments by Lu et al. [89], where the indenter was propelled by a light gas
gun, and a combination of interferometry and load transducer was used to ascertain a time-
resolved material response including strain-rate sensitivity. Force and velocity histories
were recorded from spherical indentation at moderate impact velocities in an instrumented
drop-weight system [90], again to assess rate sensitivity of flow stress.

Dynamic impact experiments with laser-driven flyers [91] may offer an alternative or
supplementary means of high-throughput characterization of mechanical properties, at
potentially much higher local strain rates and different stress states (e.g., incurring spall)
than dynamic indentation with the SHPB. Description and analysis of such contemporary
techniques are outside the scope of this review.

3.1. Dynamic Elastic–Plastic Indentation

Analytical and numerical models, the latter primarily dynamic FE methods, have been
used to study dynamic indentation, and often more specifically, extract material property
information. In addition to mechanisms pertinent to quasi-static loading (i.e., elasticity,
yield, and strain hardening), wave propagation enters the dynamic problem, necessitating
involvement of mass density ρ0. For high loading rates, conditions are nearly adiabatic and
temperature rise could be substantial, so specific heat capacity (e.g., cV) may also affect the
response in such situations. Finally, dislocation kinetic processes depend on loading rate
to varying degrees depending on the specific metallic material. It is assumed that impact
conditions are not severe enough to warrant inclusion of nonlinear elasticity (e.g., pressure-
dependent compressibility) or thermoelastic coupling (i.e., thermal expansion), which
would be needed for accurate analysis of intense shock waves, for example [92].

Focusing attention again on isotropic ductile polycrystalline metals, the inelastic
constitutive model for dynamic loading is usually augmented to account for strain-rate and
temperature effects, in addition to initial yield and strain hardening. The flow stress of (6) is
often simply extended as a product of terms accounting for each mechanism, for example,

σ(εP, ε̇P, T) = σ0

[
1 + κ · (εP)n

]
· f (ε̇P) · g(T), (14)

where T is absolute temperature and ε̇P is a scalar effective plastic strain rate [41]. Functions
f and g account, respectively, for strain-rate and thermal sensitivity. A widely used form is
the Johnson–Cook model [93,94]:

f = 1 + C · ln[ε̇P/ε̇0], g = 1− [(T − TR)/(TM − TR)]
q. (15)
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In the first of (15), C = ∂σ/∂ ln ε̇P is a fitting parameter and ε̇0 is a normalization
constant. In the second of (15), TR and TM are a reference temperature and melt temperature,
with q a thermal softening exponent. More often in the literature, notations σ0 → A,
σ0 · κ → B, and q→ m are conventionally used for Johnson–Cook constants. Other models
include power-law forms [4,23,75,89]:

f = 1 + (ε̇P/ε̇0)
m, g = (T/TR)

r. (16)

In (16), definitions for material constants are m = d ln( f − 1)/d ln ε̇P for strain-rate
sensitivity and r = ∂ ln σ/∂ ln T for thermal sensitivity of flow stress [63,75]. Usually,
C > 0, m > 0, q > 0, and r < 0, such that strength increases with increasing strain
rate and decreasing temperature. In the context of these two models, the number of
inelastic constitutive parameters is increased by at least two from the static case, and from
three (σ0, κ, n) to five (σ0, κ, n; C or m; q or r) if TR and ε̇0 are interpreted as fixed universal
constants. More parameters are required to incorporate strain-rate-history effects, and
measurements or extraction procedures are presumably needed for mass density and
specific heat, where the latter two properties do not directly influence solutions to the static
indentation problem.

The local temperature rate can be obtained from the continuum balance of energy [63],
where ρ is deformed mass density and cV specific heat at constant volume per unit mass:

ρcV Ṫ ≈ ζ · ẇP ≈ ζ · σε̇P. (17)

Thermoelastic coupling is omitted, and adiabatic conditions pertinent to rapid loading
relative to time required for heat conduction are assumed. The Taylor–Quinney factor
is ζ ∈ [0, 1], typically much closer to unity than zero and assumed constant in practice,
though the ratio of stored to dissipated energy is more realistically expected to evolve
with deformation [95,96]. Later, the approximation ζ = 1 is used, presuming the missing
thermoelastic heating in (17) under compression is offset by a maximally high value of ζ.
A critical examination of the Taylor–Quinney effect, and a novel treatment of plasticity
induced heating based on dynamic microstructure adaptation, has been set forth [97].

The basic models in (14) and (15) are considered here as suitable examples that are
very widely used by the applied engineering community. More sophisticated constitutive
models with stronger fundamental bases in physics and materials science are abundant in
the literature, for example [16,92,98–101], though the relative extent of predictive physics
versus phenomenology varies among such theories. Notably, novel ideas set forth by
Zubelewicz [16,97,100], motivated by dislocation energetics and thermodynamics, include
a marked departure from traditional plasticity theory based on a von Mises yield and
flow function, most often implemented with a radial return algorithm [41]. Methods of
dimensional analysis developed later in Section 4 can presumably be applied to such other
models upon suitable consideration of all resulting independent variables (i.e., all requisite
material parameters entering the corresponding constitutive theory).

Frictional interactions at the indenter–specimen interface can affect certain aspects of
the response. The most common assumption in FE simulations of dynamic indentation
appear to be frictionless contact [23,46,90,102]. As shown in FE simulations of static
indentation [3], very strong friction (e.g., sticking) significantly affects the local strain field
in the vicinity of the indenter and has a non-negligible effect on the contact radius versus
indentation depth relation. Most calculations show that the load–displacement curve is not
significantly affected by friction for static spherical indentation [3,33,53], though exceptions
exist [31]. The assumption of frictionless contact is often made for convenience, but appears
in many cases to produce sound agreement between force–depth data extracted from
models and experiments [6,38]. In some numerical studies, nonzero (constant) friction
coefficients ranging from 0.1 to 0.25 are used [34,40,52], choices which also seem to enable
close agreement with experimental data. For dynamic indentation, contact interactions
should consider the roles static and dynamic friction separately, with potentially distinct
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coefficients. Static friction would dictate stick versus potential slip criteria, and dynamic
friction (i.e., kinetic friction) would apply when relative velocities of indenter and indented
surface are finite. More elaborate constitutive models for static and dynamic friction
exist, where coefficients are not constant but depend on local state, time, and/or slip
rate [103,104]. Effects of static versus dynamic friction for high-rate spherical indentation
remain to be more clearly elucidated in future numerical or experimental studies. The
validity of the frictionless assumption likely improves as the surface roughness of the
sample and indenter decrease.

3.2. Survey of Prior Analytical and Numerical Modeling

Important findings from previous modeling of dynamic indentation are summarized
next. The analytical model of Mok and Duffy [80] was used to extract dynamic stress–strain
curves from sphere impact experimental data, and a representative strain rate of ˙̄ε ≈ 1500/s
was deduced to match dynamic uniaxial compression stress–strain data. More recently,
analytical models have been used to assess dynamic hardness and dynamic rate sensitivity
(n) for conical [89] and spherical [105] impacts. An analytical model [81] was used to infer
that adiabatic plastic strain localization causes a reduction in hardness for sufficiently high
sphere impact velocities, at correspondingly high indentation strains and strain rates [82,83].
The model of Tirupataiah and Sundararjan [81] was used by Kumaraswamy and Rao [106]
to analyze dynamic sphere impact, wherein the plastic zones from dynamic and static
indentation were of similar depth when normalized by indenter diameter. Therein, it was
also determined that inertial effects on indentation response were unimportant due to the
short time, relative to the total duration of the impact event, required for stress waves to
traverse the contact area.

An analytical expanding cavity model was derived by Ito and Arai [94] for dynamic
spherical impact, showing reasonable correlation of local field variables with those from
FE solutions. This analytical model was later invoked [107] to determine the strain-rate
sensitivity parameter C of the Johnson–Cook model in (15) from knowledge of indenta-
tion craters from spherical impacts obtained from experiments at two or more distinct
impact velocities.

FE simulations provide more information than approximate analytical solutions, and
thus enable more reliable material response parameter extraction. In Lu et al. [89], FE
simulations with power-law strain-rate dependence as in (16) (but no thermal effects:
g = 1) were used to validate the strain-rate sensitivity extracted from dynamic conical
indentation experiments on copper. In Calle et al. [90], FE simulations were used in
conjunction with drop test data to determine strain-rate sensitivity in terms of increase
over static yield strength, without direct prescription of a strain-rate-hardening function
f as entering (14). Results were discovered to be comparable to conventional SHPB rate
sensitivity data, thereby validating their method for four particular metals of study: steel,
copper, brass, and a titanium alloy.

The residual indentation imprint from dynamic FE simulations of spherical indentation
has been used to identify elastic–plastic constitutive parameters [52] for materials without
rate or temperature dependence, i.e., a constitutive model of the form in (6). Similarly, static
yield and strain-hardening parameters have been identified from simulated SHPB-driven
dynamic indentation using two conical indenters of different apex angles [102]. Spherical
impact data for rate-insensitive, linear-hardening materials were generated in dynamic FE
simulations [108] for a range of depths and indenter sizes. Then, support vector machine
algorithms, Gaussian process regression, and nonlinear regressions as machine learning
techniques were employed to estimate the material’s plastic properties given only certain
indentation response data.

Thorough parametric studies of dynamic spherical indentation using FEM have been
reported [46] for rate-insensitive elastic–plastic solids [m = 0 in (16)] and were extended [23]
for potentially rate-sensitive elastic–plastic solids (e.g., m ≥ 0). In these studies, the indenter
was a rigid sphere moving at constant velocity υi, conditions that differ from experimental
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protocols wherein velocity usually decreases with depth, and wherein wave speeds of an
elastic indenter are finite. Temperature effects were also omitted (g = 0), and nonreflecting
boundary conditions were invoked such that wave interactions with sample boundaries
vanished in the simulations. For impact speeds that were large, mean contact pressure
σ̄ = P/(πa2) was found to significantly exceed 3σ0 at early simulation times when inertial
effects dominated.

In Lee and Komvopoulos [23], four possible stages of the dynamic deformation process
were identified for spherical indentation at constant rates:

• Elastic–plastic deformation characterized by an elastic core separating the plastic zone
from the contact interface;

• Initial surface plastic deformation encountered upon disappearance of the elastic core
and occurrence of maximum local plastic strain in the subsurface;

• Transient fully plastic deformation, where maximum local plastic strain shifts close to
the contact interface and c = σ̄/σ0 increases with indentation depth;

• Steady full plastic deformation, wherein c ≈ 3 represents static material hardness.
This state is achieved for rate-insensitive materials at sufficient depths, when inertial
effects become negligible.

Lee and Komvopoulos [23] also discovered a dimensionless parameter χ = (Es/σ0)
(υi/Cl) = [( 1

2 ρ0υ2
i )/(

1
2 Esε2

0)]
1/2 =

√
Uk/U0 that was reported to delineate elastic–plastic,

initial surface plastic, and transient fully plastic regimes achieved in the initial state, respec-
tively, with increasing χ. Here, Cl =

√
Es/ρ0 is the longitudinal wave speed for uniaxial

stress, Uk is a kinetic energy density, and U0 is elastic energy density at initial yield strain
ε0 = σ0/Es. For the case of rate-sensitive solids (m > 0), mean contact pressure decreases,
contact area increases, and plastic work increases with increasing m and increasing static
hardening coefficient n. The effects of plastic parameters were more easily delineated when
inertial effects decayed, as indentation depth and simulation time increased.

A number of other studies of dynamic spherical indentation of ductile metals are
pertinent to this review. An early experimental and analytical plasticity study of static
and dynamic loading of a lead block by a hard steel sphere was performed by Yew and
Goldsmith [109], around the same time as the aforementioned ball impact study of Mok
and Duffy [80]. Experiments and analysis of dynamic spherical indentation in the shock
loading regime were undertaken by Rudnitsky and Djakovitch [110]. Spherical impact
of an indenter into ductile steel via a pendulum apparatus equipped with piezoelectric
diagnostics was performed by Nobre et al. [111]; complementary analytical models with
several theoretical approaches were used to evaluate findings. Clough et al. [112] performed
dynamic hardness tests on steel using a dropped ball and explained data, including size
and rate effects, using a dislocation-based theory. Experiments and FE simulations of
steel plates loaded statically and dynamically with hemispherical indenters were more
recently described by Liu and Soares [113]. Residual stresses from shot peening (a kind
of dynamic spherical impact) were studied by Meguid et al. [114] using FE simulations.
The effects of strain-rate dependence on indentation hardness were modeled by Almasri
and Voyiadjis [115] using power-law and dislocation density-based constitutive theories.
A spherical cavity expansion model for dynamic indentation of porous elastic–plastic
materials was derived by dos Santos et al. [116] and validated for a large domain of strain
rates, albeit for a conical rather than spherical tip.

The investigation of Nguyen et al. [117] used a different plastic constitutive law and a
different set of dimensionless parameters than Lee and Komvopoulos [23] for extraction
of material properties from FE simulations of dual sharp and spherical indentation at
relatively low but finite rates, also under isothermal conditions. In contrast to the example
in Section 5 of the current work, instrumented dynamic indentation data from minia-
turized SHPB testing were not considered in prior dimensional analysis or in numerical
simulations [23,117].
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3.3. Indentation Strain Rate

When correlating dynamic indentation data with dynamic experimental data that have
been recorded at a lower fluctuating rate (e.g., recorded from traditional SHPB experiments),
a measure of global or effective strain rate for the indentation experiment is often sought.
Just as there is no unique definition of global strain for static indentation, no unique
definition of indentation strain rate exists. Plastic strain is locally heterogeneous during
indentation, and local plastic strain rates are even more so, due to inherent changes in
velocity of the indenter (e.g., deceleration after impact), as well as stress wave transients.

Several pragmatic definitions have been proposed elsewhere in order to assign an
effective strain rate to a dynamic hardness H or strength σ̄ measurement. In Lu et al. [89],
with tr the loading duration, the following function was proposed for dynamic conical
indentation by an indenter of mass mi, cone angle θ, and initial velocity υi:

ε̇r =
εR
tr

; εR = 0.07, tr = 1.4
[

9mi
4υi

tan2 θ

πσ0

1
1 + ln{[Es/(3σ0)] tan θ}

]
, (18)

where εR is the representative strain from Atkins and Tabor [118], and tr is obtained from
derivations by Johnson [32]. The strain rate in (18) is an average measure, i.e., a constant
for a given experiment.

Perhaps most often used for interpretation of spherical indentation is the time deriva-
tive of Tabor’s indentation strain, allowing for a transient contact radius a(t):

˙̄ε(t) =
d
dt

[
0.2

a(t)
Ri

]
. (19)

A definition for the average strain rate (·)A over the duration of the experiment,
similar to that of Lu et al. [89] but now applicable to spherical indentation, was proposed
by Kren et al. [105]; its value was obtained by dividing Tabor’s indentation strain by the
measured loading time tm for which strain increases:

( ˙̄ε)A =
1
tm

∫ tm

0

d
dt

[
0.2

a(t)
Ri

]
dt = 0.2

am

Ritm
. (20)

The contact radius at maximum depth is am; this could be substituted with the residual
contact radius after unloading, ar, for consistency with Tabor’s techniques.

The following expressions are derived for a rigid indenter (hs = h) of potentially
transient velocity υi(t) = ḣ(t), using Tabor’s strain measure and geometry of the indented
surface [90]:

ε̄(t) = 0.2
a(t)
Ri
≈ 0.4

[
h(t)
2Ri

(
1− h(t)

2Ri

)]1/2

⇒

˙̄ε(t) ≈ 0.1ḣ(t)
Ri

[
1− h(t)

Ri

][
h(t)
2Ri

(
1− h(t)

2Ri

)]−1/2

.

(21)

In the context of (10), as derived by Field and Swain [6], it is assumed in the calculation
of the contact radius a in (21) that h ≈ hr � he/2. For another alternative strain-rate
definition, the time differentiation of (11) produces an effective indentation strain rate of

˙̂ε(t) =
4

3πa(t)

[
ḣs(t)−

ȧ(t)
a(t)

hs(t)
]

. (22)

Uniaxial-equivalent elastic and plastic strain rates could likewise be obtained from
differentiation of (13).
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Finally, a general order-of-magnitude relation applicable to any indenter type was
defined by Subhash [86]:

ε̇h = υi/h, [ε̇h = ḣ/h for rigid indenter]. (23)

Here, υi is a representative velocity of the indenter, and depth h could be substituted
with another measure of the size of the impression (e.g., the residual imprint’s diagonal
or the imprint’s radius, depending on indenter shape). The rigid-indenter version of (23)
was used in the context of creep and viscoelasticity in Cheng and Cheng [7]. In another
example application, Kren et al. [105] used (23), with υi the initial impact velocity and h
replaced by the residual (plastic) contact diameter 2ar.

3.4. Summary: Dynamic versus Static Indentation

Fundamental differences between high-rate indentation (dynamic regime) and quasi-
static indentation (static regime) for elastic–plastic solids are emphasized as follows:

• A time scale enters the problem for dynamics but not statics;
• The indentation strain rate is finite for dynamics, so the rate sensitivity of the plastic

response affects dynamics but not statics;
• Inertial effects (i.e., stress waves) appear for dynamics but not statics;
• Due to inertia, mass density is pertinent for dynamics but not statics;
• Adiabatic heating may arise for dynamics but not for statics under conventional

thermal boundary conditions;
• Due to adiabatic heating, specific heat and thermal softening properties may be

important for dynamics but not statics;
• Both static and dynamic friction could be important for dynamics but only the former

for statics in the limit of zero relative interface velocities;
• Under severe impact, nonlinear elasticity and thermal expansion affecting shock waves

would arise for dynamics, but shock waves are irrelevant for static loading.

4. Extension: Dynamic Dimensional Analysis

In the analysis that follows, two major assumptions are invoked regarding the indenter
and contact interface. These assumptions reduce the number of independent parameters,
simplifying analysis.

Firstly, the indenter is assumed rigid. This is a typical assumption in static and
dynamic FE simulations (e.g., [23,38,46]), most valid when Ei � Es. In addition to reducing
Ē → Es/(1 − ν2

s ), R → Ri = constant, h → hs in the Hertz theory of Section 2.1, this
assumption eliminates effects of wave transmission in the indenter that could affect contact
under dynamic indentation. In the present dimensional analysis, it is not necessary to
assume Rs → ∞; this assumption is used later in Section 5, but only when comparing
certain experimental results to the then closed-form elastic solution of Hertz.

Secondly, frictionless contact is assumed, as in prior numerical studies of dynamic
indentation [23,46,90,102]. Implicit in this assumption is that surfaces are sufficiently
smooth to avoid sticking behavior (statics) and dissipative sliding resistance (dynamics).
If, on the other hand, friction is substantial (e.g., relatively rough surfaces), then the list of
independent variables in the dimensional analysis can be extended to minimally include
a static (i.e., sticking) coefficient and, if different, a dynamic (i.e., kinetic) coefficient, both
dimensionless. The absence of friction coefficients in the dimensional analysis does not
affect any results calculated by example in Section 5. However, frictional effects would
complicate a more general treatment of multiple materials of variable surface finish.

Several assumptions are also made regarding the testing apparatus. It is assumed
that the radius of the indenter R = Ri is variable from experiment to experiment but that
other aspects of the system geometry remain fixed among experiments. Boundaries may
be of infinite extent in simulations, or of finite extent in experiments, where the latter
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(i.e., specimen size) is fixed such that the absolute domain size need not be treated as an
independent variable.

It is also assumed that a system velocity, denoted by υ, is a defined, controllable
constant for each simulation or experiment analyzed and is not a dependent variable. For
example, the system velocity υ can be simply assigned as the indenter velocity ḣ if pre-
scribed as a constant in a simulation [23,46,102] or can be assigned as the initial (measured)
projectile impact velocity for a spherical impact experiment [80–83]. In a dynamic hardness
or dynamic indentation experiment using the SHPB, the indenter’s tip velocity is generally
not constant, even during the loading phase [86,88,119]: a transient period may exist over
which the indenter accelerates, and then the indenter always decelerates. In that case,
the velocity of the striker bar could be used for υ as a measure of the input loading rate;
otherwise, the average indenter velocity, if controlled, over some finite time interval of the
loading phase could be used [86].

4.1. Variable Identification

The current analysis considers only global, scalar quantities that are either (1) imposed
or extracted from indentation experiments or (2) homogeneous and stationary material
properties. Local field variables (e.g., transient stress and strain distributions with local
values depending on position in the sample) are not addressed.

Application of concepts of dimensional analysis and Buckingham’s Pi theorem begins
with the identification of all dependent and independent variables in dimensional form.
Dependent variables are defined as follows:

• Indentation force P;
• Indentation contact radius a;
• Plastic work of indentation WP:

WP =
∫ hr

0
P(h)dh. (24)

Note that the quantification of WP requires loading to a maximum depth hm, followed
by unloading to a residual depth hr, the latter at which P = 0. From these three dependent
variables, other quantities of interest can be defined, for example:

• Mean pressure p̄ = P/(πa2) and the constraint factor measured relative to the initial
static isothermal yield strength, hereafter redefined as c = p̄/σ0;

• Average temperature rise in a volume V̄ of material assuming adiabatic conditions:
∆T̄ = WP/(ρ0cVV̄), where the plastic zone volume can be estimated as the cylindrical
region V̄ ≈ 3

4 π2a3, as in other works [5,26].

The inelastic constitutive model of (14) is assumed a priori, with ζ = 1 in (17) for the
adiabatic regime. As discussed in Section 3, linear isotropic elasticity is assumed without
thermoelastic coupling, and as discussed in Section 4, frictionless contact is assumed. The
material is also presumably homogeneous, meaning local grain-to-grain fluctuations in
properties are assumed to negligibly affect the global indentation response. In dimensional
form, independent variables are then the following:

• Indentation depth h and maximum depth hm;
• Effective indentation (system) velocity υ;
• Indenter radius R;
• Initial temperature T0;
• Substrate elastic properties (dropping (·)s subscripts) E, ν;
• Substrate plastic properties σ0, κ, m, n, r, ε̇0, TR;
• Substrate initial mass density ρ0 and specific heat per unit mass cV .

Of these independent variables, only h varies with time during an indentation simula-
tion or experiment, given the definition of υ as a constant explained already. The maximum
depth is needed for determination of WP, since h is multivalued during a load–unload
cycle [7,21]. However, hm can be excluded from the list if only P and a are sought from a
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monotonic loading process. Sixteen independent variables are listed, of which eleven are
material property constants. Time is not an explicit independent variable, since given the
system velocity, indenter radius, initial temperature, and material properties, the time at
which a particular depth value h is achieved is determined implicitly [7].

Next, the Buckingham Pi theorem is invoked to reduce the number of independent
variables when expressed in dimensionless form [7,19,20,22]. The number of independent
dimensions entering the problem is four: mass, length, time, and temperature. Since the
stress dimension is recovered from mass, length, and time, the four independent dimensions
are more conveniently reassigned into stress, length, time, and temperature.

The following independent variable combinations are then used for normalization:

• Stress: modulus E;
• Length: indenter radius R;
• Time: viscoplastic time scale t0 = 1/ε̇0 ;
• Temperature: plastic thermal susceptibility T̃ = σ0/(ρ0cV).

The elastic modulus is a standard prescription for stress normalization [7]. Unlike
analysis in prior works [7,21,23,46], h and υ are herein excluded as normalization factors,
since it is more convenient to work with constant quantities R and t0, which later serve
to define dimensionless strain and strain rate. Note that, as t0 decreases, plastic stress
relaxation is faster and a rate-independent response is approached: f → 1 as t0 → 0, so
long as m ≥ 0 in (16). Note also that, as T̃ decreases, the tendency for adiabatic temperature
rise decreases.

Applying the Pi theorem, the number of independent variables is reduced from sixteen
to twelve, now defined in dimensionless form as follows:

• Indentation depth h/R and maximum depth hm/R;
• Indentation rate (υ/R) · t0;
• Yield strength σ0/E;
• Elastic wave speed via R/(Clt0), where Cl =

√
E/ρ0;

• Reference temperature T̃/TR and initial temperature T̃/T0;
• Dimensionless elastic and plastic properties ν, κ, m, n, r.

The following physically appealing results are apparent. Normalized depth h/R is
an approximate global strain measure. Normalized rate υt0/R is an approximate global
measure of strain rate times plastic relaxation time, where the larger the value of this
dimensionless quantity, the greater the anticipated viscoplastic rate effect. As υt0/R→ 0,
the rate-independent case is recovered. Use of the ratio σ0/E characterizes plastic to elastic
stiffness, a standard choice [7,23,46]. The ratio R/(Clt0) is interpreted as the elastic wave
relaxation time R/Cl divided by the viscoplastic relaxation time t0. As R/(Clt0) → 0,
inertial effects should become less important, since stress wave equilibrium should be
achieved more rapidly relative to viscoplastic rate effects. Typically, in practice, TR is simply
fixed at room temperature (≈293–300 K), but T̃/TR → 0 as the material becomes resistive
to temperature change. Ambient temperature T0 will differ from TR for indentation at other
imposed thermal boundary and initial conditions (e.g., testing of preheated samples).

4.2. Functional Forms

Given the independent dimensionless variables, the sought dependent variables can
be expressed as dimensionless functions ΠP, Πa, ΠW :

P
ER2 = ΠP

(
h
R

,
υ t0

R
,

T̃
T0

;
σ0

E
,

R/t0√
E/ρ0

,
T̃
TR

, ν, κ, m, n, r

)
, (25)

a
R

= Πa

(
h
R

,
υ t0

R
,

T̃
T0

;
σ0

E
,

R/t0√
E/ρ0

,
T̃
TR

, ν, κ, m, n, r

)
, (26)
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WP

ER3 = ΠW

(
h
R

,
hm

R
,

υ t0

R
,

T̃
T0

;
σ0

E
,

R/t0√
E/ρ0

,
T̃
TR

, ν, κ, m, n, r

)
. (27)

Arguments preceding the the semicolons on the right sides of (25)–(27) are loading
conditions, and arguments following the semicolons are material properties. As noted
in Section 4.1, hm/R is not required for determination of force and contact radius during
monotonic loading, so it is excluded from ΠP and Πa. Parametric experiments and/or
FE simulations are needed to fully determine the functions on the right sides of (25)–(27).
Results from such studies will enable assessment of the relative importance of loading rate,
temperature, and material properties on the global mechanical and thermal response.

The isothermal, quasi-static Hertz solution should be recovered as σ0/E→ ∞, υ→ 0,
and Cl → ∞, where for small indentation depths Rs → ∞:

ΠP

(
h
R

, 0, ·; ∞, 0, ·, ν, ·, ·, ·, ·
)
=

4
3(1− ν2)

(
h
R

)3/2
[R̄→ R], (28)

Πa

(
h
R

, 0, ·; ∞, 0, ·, ν, ·, ·, ·, ·
)
=

(
h
R

)1/2
[R̄→ R], (29)

ΠW

(
h
R

,
hm

R
, 0, ·; ∞, 0, ·, ν, ·, ·, ·, ·

)
= 0. (30)

Analytical functional forms, if they can be determined, should be consistent with the
limiting cases in (28)–(30). Given (25)–(27), the mean contact pressure, constraint factor
relative to σ0, and mean transient temperature rise can be reconstructed:

p̄ =
E
π

(
R
a

)2
·ΠP ≈ cσ0, ∆T̄ =

4E
3π2

(
R
a

)3
·ΠW =

4E
3π2 ·

ΠW
(Πa)3 . (31)

Similarly, indentation strains [26,44] can be found as

ε̄ = 0.2
a
R

= 0.2 ·Πa, ε̂ =
4

3π

h
a
=

4
3π

h/R
Πa

. (32)

If the constitutive model of (15) is used instead of (16), then the subset of two indepen-
dent dimensionless variables (m, r) is replaced with the set of three dimensionless variables
(C, q, TM/T̃) in (25)–(27). Analogous constructions would apply for other constitutive
models, for example, as cited in Section 3.1.

5. Application: Analysis of Instrumented Dynamic Indentation Data
5.1. Experimental Protocols

Data from three dynamic spherical indentation experiments are analyzed using the
equations and techniques of Sections 2–4. Experimental methods have been discussed by
Casem [88,119] and are summarized in what follows.

A miniature Kolsky bar (i.e., SHPB) [120] is adapted for instrumented indentation,
whereby transient force, displacement, and velocity data are acquired in each experiment.
The loading history (e.g., indenter’s velocity) depends on the velocity of the striker bar
and geometric properties of the system (including pulse shaping), as well as indentation
resistance afforded by the substrate. Initial clearance between indenter and substrate also
affects the velocity history. The loading history is thus not strictly controlled; however,
different final indentation depths are generally achieved by increasing the striker velocity,
commensurate with an increase in the average loading rate. Experimental data include
both the loading and unloading histories for each test.

Relevant properties and parameters are listed in Table 1 with supporting references. Of
these values, those comprising the set of six strain-hardening, strain-rate, and temperature-
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sensitivity parameters {κ, n; C or m; q or r; TR, TM} are not used explicitly in the forthcoming
analysis but are included for context to aid in interpretation of results. All current exper-
iments are performed at standard room temperature: T0 = TR. Prominent results are
summarized in Table 2 for reference and are defined and discussed in detail later. Pertain-
ing to loading conditions, hm in the leftmost column is the maximum indentation depth
prior to unloading, and ḣA in the rightmost column is the average indenter tip velocity
over the loading phase of each experiment.

The substrate material is presumed to be isotropic, both elastically and plastically.
Characterization and static indentation experiments on the same as-received Al 6061-T6 [1]
suggest that, given the presently sized indenter, the volume of material sampled under-
neath the indenter at initial yield should contain 40 to 50 crystals of random orientation.
Results by Weaver et al. [1] confirm that this is a sufficient number to ensure a repeatable,
globally isotropic response. It is assumed here that isotropy carries over to the dynamic
regime; similar indentation stress-strain curves presented later among multiple dynamic
indentation experiments support this assumption, at least post yielding.

Table 1. Material and geometric parameters.

Parameter (Units) Value Definition Source

E (GPa) 71.0 modulus of Al 6061-T6 Wu et al. [121]
ν (-) 0.33 Poisson’s ratio of Al 6061-T6 Wu et al. [121]
ρ0 (g/cm3) 2.77 mass density of Al 6061-T6 Wu et al. [121]
cV (J/kg·K) 896 specific heat of Al 6061-T6 Zhu et al. [122]
σ0 (GPa) 0.25 initial yield strength of Al 6061-T6 Lesuer et al. [123], Zhu et al. [122]
κ (-) 0.35–1.8 hardening coefficient range of Al 6061-T6 Lesuer et al. [123], Zhu et al. [122]
n (-) 0.38–0.43 hardening exponent range of Al 6061-T6 Lesuer et al. [123], Zhu et al. [122]
C (-) [' m] 0.002–0.083 rate sensitivity range of Al 6061-T6 Lesuer et al. [123], Zhu et al. [122], Casem et al. [120]
q (-) [' −r] 1.34 thermal softening of Al 6061-T6 Lesuer et al. [123]
ε̇0 (1/s) 1.0 reference strain rate (universal) Zhu et al. [122]
TM (K) 925 melt temperature of Al 6061-T6 Zhu et al. [122]
TR (K) 294 reference temperature (ambient) Zhu et al. [122]
Ē (GPa) 71.2 system modulus with WC indenter Weaver et al. [1]
R (mm) 3.175 indenter radius this work

Table 2. Loading conditions and results at max depth (·)m or averaged over the loading phase (·)A.

Experiment ῡ (m/s) hm (µm) am (µm) WP
m (mJ) ∆T̄m (K) ε̄m ε̂m ˙̄εA (1/s) ˙̂εA (1/s) ḣA (m/s)

1 0.61 17.2 421 1.57 1.15 0.0265 0.0174 1386 908 0.90
2 1.06 25.0 508 3.82 1.59 0.0320 0.0209 2217 1452 1.74
3 1.36 35.7 606 8.43 2.06 0.0382 0.0250 2750 1801 2.57

The miniature SHPB system equipped for indentation testing is sketched in Figure 1.
This image only shows the upper half of the system, which is axially symmetric. The
indenter is tungsten carbide (WC) with a radius R = Ri of 3.175 mm. The spherical tip
of the indenter is machined directly into the input bar, on its right side in Figure 1. The
substrate is the aluminum alloy Al 6061-T6 of cylindrical geometry, with Ls/Ds =

3
4 and

Ds =
3
2 Ri =

3
2 R.

The velocity history υ(t) at the right side of the input bar in Figure 1 is acquired
from analysis of transient data from a strain gauge. The average of this input velocity
over the duration of each test is denoted by ῡ. As shown in Table 2, ῡ increases with
test number, as do all other observed or extracted quantities such as maximum depth,
maximum indentation strains, and average indentation strain rates. In many subsequent
figures, ῡ is thus used to further distinguish experiments 1, 2, and 3. A normal displacement
interferometer (NDI) focused at each of the indented faces of the sample at its radial edge
(left end) and the left end of the output bar records displacement history for each location.
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Force and displacement histories for the tip of the indenter are computed from a linear
elastic wave analysis with the strain gauge data and the NDI data.
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Figure 1. Experimental setup of miniature SHPB with spherical indenter. Spherical tip is machined
directly into right end of WC output bar, and input velocity history is recorded at right end of
truncated steel input bar. Specimen material is Al 6061-T6.

Static spherical indentation experiments on this material have been reported else-
where [38], albeit with an indenter of larger radius 2R. Numerical simulations of the
static problem [38] loaded to comparable indentation strain levels suggest that the current
dimensions of the substrate are sufficiently large to mitigate boundary edge effects. How-
ever, the effects of stress wave interactions with finite boundaries cannot be ruled out in
dynamic experiments.

The elastic stiffness of WC (Ei = 640 GPa) is an order of magnitude larger than that
of aluminum, and Ē in Table 1 accounts for the true elastic modulus of both the indenter
and substrate, assumed to be known a priori. If a rigid indenter is assumed instead, then Ē
increases by ≈10%. However, since the indenter material is held fixed among experiments,
elastic properties of the indenter can be excluded from the list of independent variables in
the forthcoming dimensional analysis, as assumed in the general framework of Section 4.

Indentation depth and tip velocity (i.e., depth rate) are inferred with respect to the
far-field displacement of the surface of the sample and correctly account for rigid body
motion. The reported indentation depth and depth rate are the respective true indentation
depth hs and depth rate ḣs in the substrate, relative to those measured for the far-field
surface away from any pile-up or sink-in effects. In the remainder of Section 5, notation is
simplified such that hs → h and ḣs → ḣ. Cursory calculations with the approximation in (3)
confirm that the contribution of deformation of the spherical end of the indenter, hi, to h
should be negligible for loads and contact radii reported in what follows. Summarizing,
the indenter can be considered rigid for purposes of setting h = hs and Ri =constant, but it
should have a finite modulus Ei for accurately quantifying Ē.

5.2. Data Analysis: Global Response

Experimental force–depth, depth–time, and depth rate–time histories are shown in
Figure 2, labeled “exp” (for experiment) 1, 2, and 3. The time t at a given depth h is
confirmed by the integral t =

∫
(h/ḣ)dh, where ḣ is known as a function of h and initially

t = 0. Shown for reference in Figure 2a is the Hertz elastic solution of (1) obtained assuming
R̄ = R in (2).

For h & 10µm, the data are more compliant than the elastic solution, as expected
for an elastic–plastic material post yielding. For h . 10µm, experiments are similar to
the elastic solution. Notably, some data appear slightly stiffer than the elastic solution
over small intervals of h. These unusual features could be due to inertial effects and/or
imprecision of experimental measurements at very low indentation depths. Depth–time
histories shown in Figure 2b indicate total load–unload durations ranging from around
20 to 30 µs. Maximum depth and depth rate increase with experiment number. Velocity
histories are drastically different among experiments. For example, velocity ramps up
quickly with time for experiment 2, while it is initially near maximal for experiment 3. In the
latter case, the indenter clearly accelerates prior to contact with the substrate. Note ḣ < 0
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during the unloading phase of each experiment. Peak loading and unloading velocities are
notably smaller for experiment 1 than experiments 2 and 3.
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exp 1, ῡ = 0.61 m/s
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Figure 2. Experimental data: (a) force vs. depth (with Hertz analytical solution) (b) depth vs. time
(c) depth rate vs. time.

Force–depth data are delineated for each experiment in Figure 3, wherein the slope
S upon initial unloading is extracted from the tangent for each case. The maximum
indentation depth is denoted by hm. The unloading slope S at h = hm is then used to obtain
the Hertz contact radius at maximum depth am = a(h = hm), assuming quasi-static elastic
unloading, via (5) [37,38]. Elastic modulus Ē is assumed, a priori, to have the value listed
in Table 1. No attempt is made to extract elastic properties from the present indentation
data, as has been performed in some investigations elsewhere [6].
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exp 2, ῡ = 1.06 m/s

tangent S = 77 N/µm

(b)

0 10 20 30 40

h (µm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
(k

N
)
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Figure 3. Data and unloading tangent: (a) experiment 1, (b) experiment 2, and (c) experiment 3.

Dimensionless dependent variables (Π-terms) introduced in the analysis of Section 4
are reported in Figure 4. General functional forms are (25)–(27). In each figure, the inde-
pendent variable resolved on the abscissa is dimensionless depth h/R (or hm/R), which
is well-defined and fully known from the test data. Among different experiments, the
normalized indentation velocity υt0/R also varies, as does the maximum normalized depth
hm/R. Since the substrate material and initial temperature (room temperature) are identical
among experiments, the other independent variables on the right sides of (25)–(27) are fixed
among the present results. Hence, potential influences of the latter (fixed) properties cannot
be fully discerned or quantified among the presently available data. However, qualitative
deductions on yielding, strain hardening, and rate sensitivity are still possible, as will be
discussed later in the context of indentation stress–strain curves. A candidate definition
for effective velocity is the average loading rate υ = ḣA = hm/tm, where tm is the time
instant at which h = hm. As shown in the rightmost column of Table 2, υA increases from
approximately 0.9 to 1.7 to 2.6 m/s over respective experiment numbers 1 to 2 to 3.
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Figure 4. Dimensionless variables: (a) normalized force, (b) contact radius (loading phase only), and
(c) plastic work (final).

Normalized force ΠP versus normalized depth h/R in Figure 4a provides the same
information as in Figure 2a, since E and R are identical among experiments. Assuming
υ = ḣA, the results in Figure 4a show that the dependence of dimensionless indentation
force ΠP on dimensionless loading rate υt0/R is low for Al 6061-T6 over the current domain
of loading rates.

Since the present data do not contain intermittent unload–reload cycles or continuous
stiffness measurements (CSM) to obtain unloading slope S(h) for h 6= hm, approximations
are used to compute contact radius a(h) for h 6= hm. First, for the loading phase, t ≤ tm,
it is assumed that a(t) for each experiment depends only on h/R and not υ. As shown in
Figure 4b, the normalized radius Πa is then estimated by the following function, where
α ≥ 0 and β� 1 are dimensionless fitting constants:

Πa = a/R = (1 + α{1− exp(−βh/R)})
√

h/R [t ≤ tm]. (33)

The Hertz solution is recovered in the limit of infinitesimal depth, whereby a→
√

hR.
Available data do not enable fitting of a(t) for t > tm, i.e., throughout the entire

unloading process. Thus, during unloading, it is assumed that the indentation stress–strain
data (specifically, σ̂ = p̄ versus ε̂) demonstrate a fixed slope of Ē, consistent with quasi-
static unloading [5,26]. To this end, the following quadratic equation is solved at each time
increment for a(h(t)) during the unloading phase:

4Ē
3π

(
h
a
− hr

a f

)
=

P
πa2 [t ≥ tm]. (34)

Here, hr is the final (residual) indentation depth upon complete unloading, and a f is
the projected (not measured) final contact radius. The latter, which generally can differ
from the observed residual imprint radius ar, can be computed by solving (34) at h = hm,
with corresponding peak load P = Pm measured and radius a = am obtained from (33).

Finally, normalized plastic work ΠW is shown in Figure 4c. Its computation requires
the entire load–unload force–displacement cycle for a given hm; hence, only three data
points are available (one for each experiment). Though not shown in Figure 4c, ΠW
logically could depend on hr/R as well, since hr varies among experiments, increasing
from 9.8 to 14.4 to 23.6 µm over experiments 1, 2, and 3. Such dependency is permissible
via inclusion of h/R in addition to hm/R in the listed arguments of (27). However, the
identity ΠP(h = hr) = 0 provides an additional constraint equation that can be used to
eliminate explicit dependence of ΠW on hr/R. Normalized plastic work clearly increases
with increasing maximum penetration depth.
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5.3. Data Analysis: Indentation Stress–Strain and Other Extracted Information

Typically, the global force–depth response is of primary interest from indentation
testing, along with possible information on the contact radius. In the dynamic case, com-
plete data should include time histories of these quantities. From such data, supplemental
quantities such as indentation stress, indentation strain, indentation strain rate, and mean
temperature rise can be computed, as demonstrated next. The reader interested only in
the primary response (e.g., indentation force versus depth) emphasized in Section 5.2 can
bypass the remainder of Section 5.3.

Given a (or equivalently, Πa), along with force data P(h), mean pressure p̄ = P/(πa2)
(e.g., Meyer’s hardness H when P is maximum and a is the residual imprint radius) is
computed. Results are shown in Figure 5a. Constraint factor c is shown in Figure 5b,
recalling that the initial yield stress σ0 from Table 1 is used for normalization in Section 5.
Note that this value of σ0 is considered to be known a priori, rather than extracted from
the present indentation data. Mean pressure closely tracks the Hertz solution at a very
small h/R for experiments 1 and 2, whereas p̄ for experiment 3 suggests anomalously
low compliance in the limit h/R → 0. As displayed here in Figures 5 and 6, the Hertz
solution invokes the usual assumption Rs → ∞ in (2). Mean pressures are similar among
the loading phases of all three experiments for h/R & 0.0025, in the regime where plastic
compliance is expected to overtake elastic compliance. Such similarities suggest strain rate
and strain rate–history effects on p̄ are small for these experiments on Al 6061-T6, given the
very different velocity histories among tests in Figure 2c.
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Figure 5. Stress vs. depth: (a) mean indentation pressure and (b) constraint factor.
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Figure 6. Indentation stress vs. (a) Tabor’s strain [44] and (b) Kalidindi and Pathak’s strain [26].

Taking υ = ḣA, the results in Figure 5a imply that dependence of mean stress on
dimensionless loading rate υt0/R is low. In fact, the mean stress and constraint factor
appear to decrease slightly with increasing loading rate, though such decrease may be due
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to imprecision of the experimental measurements and uncertainty inherent in (33) that
neglects possible rate dependence of the transient contact radius.

Recall from the review in Section 2.2 that initial yielding corresponds to c ≈ 1.1 in
the quasi-static Hertz theory [6]. After yielding, the calculated constraint factor increases
from c ≈ 1.5 to c ≈ 2.5 over the full domain of indentation depths in the experiments.
Strain hardening likely influences c to increase with increasing h/R in the fully plastic
regime. The computed range of c is within bounds observed elsewhere in quasi-static
spherical indentation experiments and simulations [1,2,6,37,42–45]. Similar ranges have
been observed in dynamic spherical indentation simulations of elastic–perfectly plas-
tic, rate-independent solids for constant rigid indenter velocities that are not too large
(e.g., ḣ . 75 m/s), albeit for representative metallic substrates with different properties
than those of aluminum [46]. Transient increases in c due to inertial effects manifest at veloc-
ities on the order of 100 m/s [46]; at such high velocities, the effects of strain rate sensitivity
on c also become stronger [23]. During elastic unloading, c is easily computed given P and
the current method of estimation of a, but its value does not have any physical significance.

Indentation stress (i.e., mean pressure p̄) is reported versus the two different indenta-
tion strain measures of (32) in Figure 6. Elastic deformation followed by plastic yielding
and mild-to-moderate strain hardening is apparent in each representation. The hardening
behavior is qualitatively consistent with the traditional dynamic uniaxial stress–strain be-
havior of this material [120,122]. The anomalously high initial compliance of experiment 3
is also apparent in Figure 6. Elastic unloading is perfectly represented in Figure 6b, as a
result of the implementation of (34). On the other hand, the unloading portions of p̄ versus
ε̄ curves in Figure 6a show slopes inconsistent with Ē. Similar inconsistencies have been
noted when ε̄ is used as the indentation strain measure for static indentation [5,26]. In
Figure 6b, yielding is apparent at ε̂ ≈ 0.6% for experiments 1 and 2. From (13), with c ≈ 2.5,
the uniaxial-equivalent yield strain is then estimated as σ0/E ≈ 0.25%.

Strain rates in (19) and (22) are consistently obtained from numerical differentiation
of (32). Results are shown in Figure 7. According to each strain definition, strain rates are
initially large over domains wherein both the indentation depth and contact radius increase
rapidly with time. Initial values of ˙̄ε and ˙̂ε range from 7000/s to 28,000/s, with the highest
strain rates observed in experiment 3. Strain rates decrease subsequently with increasing
time, as the indenter necessarily decelerates. Negative rates persist during unloading.
However, oscillations also arise during unloading to accommodate the assumed form of
contact radius in the elastic response function of (34).
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exp 2, ῡ = 1.06 m/s
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Figure 7. Indentation strain rates from (a) Tabor’s strain [44] and (b) Kalidindi and Pathak’s strain [26].

Due to uncertainty in assumed relations (33) and (34), the strain-rate histories shown
in Figure 7 should be considered highly approximate. However, average strain rates during
the loading phase of each test should be much more accurate, since these do not rely on (33)
or (34). Rather, such averages depend only on the unloading slope S in (5) used to obtain
am = 1

2 S/Ē at known time tm at the measured depth h = hm:



Metals 2023, 13, 276 24 of 32

˙̄εA = 0.2
am

Rtm
, ˙̂εA =

4
3π

hm

amtm
. (35)

Values of these average strain rates are listed in Table 2. Notably, average rates
follow the same trends over all three experiments, with ˙̄εA ≈ 1.5 ˙̂εA in each case. These
average strain rates are within ranges that can be obtained in conventional uniaxial SHPB
experiments on this material [122,123].

The same trends apply for maximum strains: ε̄m ≈ 1.5ε̂m in all three experiments. Val-
ues of ε̂m range from 1.8% to 2.5%. Taking β̂ ≈ 1.3 in (13), as in earlier simulations of other
elastic–plastic materials [37], maximum uniaxial-equivalent strains are then approximated
as ranging from 1.4% to 1.9%.

Applying a representative rate sensitivity parameter of C = 0.01 from Table 1, the ratio
of dynamic flow stress at a strain rate of 2000/s is predicted by the Johnson–Cook model to
be only 7.6% higher than that at a rate of 1000/s. Accordingly, any effects of different strain
rates witnessed in experiments 1, 2, and 3 may be too small to be discerned in the load–
displacement or indentation stress–strain curves. Viewed differently, the relatively low
strain-rate sensitivity of the Al 6061-T6 material is corroborated by the similar indentation
stress–strain curves among experiments at different transient and average loading rates.
However, mild rate sensitivity effects, if they exist, might also be obscured by limited
fidelity and the limited strain-rate range of the data.

Other discrete data of interest are included in Table 2. Maximum depth hm and
corresponding contact radius am were discussed already in the context of Figure 4a,b.
Average velocities ḣA are used to represent υ entering dimensionless rates in the legends of
Figures 4a and 5a. Likewise, plastic work WP

m is used in the construction of Figure 4c. Note
that WP

m is the residual plastic work after complete unloading from depth hm.
The average adiabatic temperature rise at maximum depth, ∆T̄m, is computed from

the second of (31), with WP = WP
m and a = am. This is the temperature change that would

be experienced by a cylindrical column of plastically deformed material of radius am and
height 3

4 πam [5,26]. Given the temperature sensitivity q ≈ 1 of Al 6061-T6 in Table 1, the
predicted heating-induced change in flow stress (i.e., thermal softening) for this volume
of material should be negligible. However, localized temperature increases in regions of
concentrated plastic strain (e.g., near the edges of the contact surface) could be substantially
larger, whereas heat conduction could counteract such increases given sufficient time.
Thus, thermal effects cannot be completely ruled out without verification from simulations,
for example.

5.4. Summary and Recommendations

The following key points are ascertained from analysis of the dynamic indenta-
tion data:

• Maximum uniaxial-equivalent strains are estimated from maximum indentation
strains to be on the order of 1% to 2%;

• Average uniaxial-equivalent strain rates are estimated from indentation strain rates to
be on the order of 700 to 1500/s;

• Subtle variations in indentation force–depth curves can lead to drastic changes in
indentation stress–strain curves, particularly at small indentation depths;

• Dynamic indentation stress–strain curves are qualitatively similar to those given
elsewhere [37,38] for static spherical indentation, with constraint factors within ranges
observed for static experiments on ductile metals;

• Mean pressure (i.e., indentation stress) shows evidence of yielding and mild-to-
moderate strain-hardening characteristic in uniaxial stress–strain data for the alu-
minum alloy 6061-T6;

• Strain rate and inertial effects are not detected among the experimental datasets,
whereby an increase in average indentation strain rate by a factor of 2 produces no
apparent increase in indentation stress;
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• A negligible effect of average strain rate correlates with the low strain-rate sensitivity
of flow stress for the aluminum alloy, as measured in traditional SHPB experiments;

• Plastic work results in a trivially small adiabatic temperature rise (. 2K) averaged over
the entire plastically deformed zone, though magnitudes of localized temperature
increases at plastic strain concentrations are unknown.

Consider the inverse problem of determination of material parameters (elastic, thermo-
mechanical, and plastic entering (14) and (16)) from recorded indentation force versus
depth, i.e., P = ER2 · ΠP versus h, data for different loading velocities (e.g., average
indentation depth rates) υ and ambient temperatures T0. In this context, R is known a
priori, T0 and υ are imposed, P and h are measured, and E is presumably unknown and
thus to be determined.

It may not be possible to determine E given only dimensionless ΠP versus h/R
data. For example, for purely elastic Hertz-type indentation, the dimensionless force–
displacement response of (28) is independent of E. Therefore, at least some experimental
data should be recorded in dimensional, rather than dimensionless, form to allow for
determination of all of the normalization constants of the dimensional analysis: R, E, t0, T̃.
In other words, measurement of P rather than ΠP reintroduces a stress scale into the
inverse problem, in principle enabling implicit extraction of E. Similarly, measurement or
knowledge of R reintroduces an independent length scale into the problem. Measurement
or imposition of υ rather than υ t0

R reintroduces an independent time scale (i.e., R
υ given

R), and measurement or imposition of T0 rather than T̃
T0

reintroduces an independent
temperature scale.

The inverse problem can be stated as follows:

• Given P
R2 = E · ΠP

(
h
R , υ t0

R , T̃
T0

; σ0
E , R/t0√

E/ρ0
, T̃

TR
, ν, κ, m, n, r

)
versus h

R for different ef-

fective loading strain rates υ/R and initial temperatures T0, determine the eleven
material properties E, ν, ρ0, cV , σ0, κ, ε̇0 = t−1

0 , m, n, r, TR. (The list of sought properties
is reduced to nine if ε̇0 and TR are regarded as fixed universal constants.)

In the present dynamic indentation experiments, the dimensionless response function
Πa for contact radius cannot be precisely measured at present over the entire deformation
history, and response function ER3 ·ΠW ultimately offers no additional information over
ER2 · ΠP, since the former can be constructed from the history of the latter. Based on
dimensional analysis of available results, the following deductions and recommendations
are then proposed to facilitate the solution of the inverse problem:

• The relatively small magnitudes of impact velocities and the similarities of static and
dynamic indentation curves suggest that inertial effects associated with ρ0 cannot be
discerned in the data. Thus, a standard (e.g., Archimedes) method should be used to
measure ρ0.

• The relatively low changes in average temperature suggest that effects of specific heat
capacity cV cannot be easily discerned in the force response data. Thus, a standard
(e.g., calorimetry) method should be used to measure cV .

• Precision of current experimental methods in the very small-depth regime is likely in-
sufficient to directly ascertain elastic compliance via comparison with Hertz’s solution.
Elastic (shallow) force–depth data also seem unable to delineate E and ν distinctly,
since P depends only on E/(1− ν2) and not E and ν independently in the Hertz
solution. Thus, a standard (e.g., longitudinal and shear wave speed) method should
be used to measure E and ν. Any experimental facility equipped for dynamic instru-
mented indentation should include the capability for such sound speed measurements,
presuming material samples are available.

• The precision of current experimental methods is likely inadequate for determination
of an “exact” initial yield stress σ0. However, an offset yield stress should be measur-
able, which can provide an approximate value of σ0 as in static experiments [37].
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• For low loading rates or rate-insensitive materials, extraction of static hardening
parameters κ and n should be possible from measured increases of ΠP with increasing
h/R, though unique determination of both parameters may or may not be difficult.

• Effects of loading rate υt0/R on ΠP for highly rate-sensitive materials remains un-
known. Experiments on other solids with much greater strain-rate sensitivity of flow
stress are needed to determine if such rate sensitivity manifests in dynamic indenta-
tion force–displacement (and corresponding indentation stress–strain) curves over
comparable domains of average indentation strain rates. If differences in ΠP at vastly
different υt0/R do not manifest for such materials, the present experimental method
might be unsuitable to extract rate sensitivity parameters (e.g., m, or C if (15) is used).

• Following typical protocols [93,122], the two parameters ε̇0 and TR can be set univer-
sally at 1/s and 294 or 300 K, which reduces the complexity of the inverse problem, as
noted already.

• Presumably, systematic matching of experimental ER2 ·ΠP data with results of para-
metric FE simulations on the same geometry (sample size and R), loading rate history,
and initial temperature, and covering a sufficient domain of possible material property
sets, will produce the sought material property relationships. Similar efforts have
been undertaken for static indentation, as reviewed in Section 2.3, though most not
invoking dimensional analysis techniques.

• The existence, uniqueness, stability, and accuracy of the inverse method should be ver-
ified for multiple materials, with constitutive properties validated by comparison with
values obtained from independent, alternative experimental techniques (e.g., standard
SHPB compression tests rather than dynamic indentation).

Several other recommendations are in order. Firstly, experimental methods to directly
measure the contact radius during dynamic indentation could supply data that would
render the assumed rate-independent forms in (33) and (34) unnecessary. Efforts are
presently underway to measure residual impressions with confocal microscopy. Techniques
involving periodic dynamic unloading in the SHPB apparatus to measure contact stiffness
are also under development [88], though their accuracy remains unclear.

While knowledge of a = ΠA · R is not needed to solve the stated inverse problem,
the contact radius is needed to calculate indentation stress (mean pressure) p̄, as well as
indentation strains ε̄ and ε̂. Constitutive property extraction might be more efficient and
accurate by matching experimental and simulated indentation stress–strain curves rather
than matching P = ER2 ·ΠP vs. h or h/R.

Comparison of static and dynamic isothermal FE simulations on the same geometry
(i.e., same sample size and R), for a hypothetical rate-independent material, would enable
verification of the tentative conclusion that inertial effects are negligible for the present
range of loading rates. Lastly, adiabatic FE simulations could be used to provide an upper
bound on localized temperature rise in highly strained regions under the indenter, and thus
verify the tentative conclusion that effects of temperature rise (but not necessarily initial
temperature) on indentation force are negligible over the present range of loading rates.

6. Conclusions

Static and dynamic indentation methods for ductile metals were reviewed. This
review focused on spherical indentation, including experiments, analytical fundamentals,
and numerical models; the motivation being extraction of information on the constitutive
response of the indented material. Analytical foundations for the interpretation of data
from instrumented dynamic spherical indentation experiments were established.

To demonstrate and extend concepts covered in the literature review, a framework
to guide future experiments and numerical simulations was set forth based on principles
of dimensional analysis. The ultimate intent is acquiring constitutive properties, here
focused on plastic properties of ductile metals, from dynamic indentation force–depth data
at different loading rates and different initial temperatures. In a representative application,
the potential utility and limitations of this framework were assessed using data collected



Metals 2023, 13, 276 27 of 32

on Al 6061-T6, obtained from SHPB experiments equipped for instrumented spherical
indentation. The analysis revealed that average strain rates achieved in experiments are
on the order of 103/s, with maximum equivalent strains on the order of 2%. Indentation
stress–strain results verify that the strain-rate sensitivity of the alloy is low.
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Notation

The following symbols (dimensions; force = mass·length/time2) are used:

a projected contact radius [length]
ar radius of residual imprint [length]
A projected contact area [length2]
c spherical constraint factor [-]
cV specific heat capacity [force·length/mass·temperature]
C strain-rate sensitivity of ref. [93] [-]
Cl elastic wave speed [length/time]
E elastic modulus [force/length2]
h total indentation depth [length]
he elastic indentation depth [length]
hi indenter indentation depth [length]
hm maximum indentation depth [length]
hr residual indentation depth [length]
hs substrate indentation depth [length]
H spherical indentation (Meyer’s) hardness [force/length2]
k̄ indentation stiffness [force/length3/2]
m strain-rate sensitivity exponent [-]
n strain-hardening exponent [-]
p̄ mean indentation pressure [force/length2]
P total indentation force [force]
q thermal softening exponent of ref. [93] [-]
r thermal softening exponent of ref. [4] [-]
R radius of rigid indenter [length]
Ri radius of indenter [length]
Rs radius of substrate [length]
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R̄ indentation system radius [length]
S unloading slope [force/length]
t time [time]
t0 reference time (inverse strain rate) [time]
T absolute temperature [temperature]
T0 initial temperature [temperature]
TM melt temperature [temperature]
TR reference temperature [temperature]
T̃ normalization temperature [temperature]
∆T̄ mean temperature rise [temperature]
wP local plastic work density [force/length2]
WP plastic work of indentation [force·length]
ε total strain [-]
εE elastic strain [-]
εP plastic strain [-]
ε̄ indentation strain of ref. [44] [-]
ε̂ indentation strain of ref. [5] [-]
ε̌ indentation strain of ref. [46] [-]
ε̇ total strain rate [1/time]
ε̇E elastic strain rate [1/time]
ε̇P plastic strain rate [1/time]
ε̇0 reference strain rate [1/time]
κ strain hardening coefficient [-]
ν Poisson’s ratio [-]
Πa dimensionless contact radius [-]
ΠP dimensionless indentation force [-]
ΠW dimensionless plastic work [-]
ρ current mass density [mass/length3]
ρ0 initial mass density [mass/length3]
σ local von Mises stress [force/length2]
σ̄ mean indentation flow stress of ref. [44] [force/length2]
σ̂ mean indentation flow stress of ref. [5] [force/length2]
σ0 initial athermal static yield strength [force/length2]
υ indentation system velocity [length/time]
ῡ average velocity of input bar [length/time]
ζ Taylor–Quinney ratio [-]
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