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Abstract: This study explores pulsed Nd:YLF laser surface modification (LSM) effects on AISI
301LN stainless steel. Laser-treated surfaces underwent SEM characterization, revealing patterns
and irregularities. Higher heat input surfaces showed significant microstructural changes, while
lower heat input surfaces experienced less alteration. Increased laser spot overlap led to larger
exposed areas and higher heat input, influencing groove width, depth, and surface roughness.
Three-dimensional reconstructions illustrated the correlation between laser parameters and surface
characteristics. XRD (X-ray diffraction analysis) and EBSD (Electron backscatter diffraction) analyses
revealed a transformation from austenite to martensite, with an increase in the α’-martensite phase,
particularly in patterns with high laser power, attributed to rapid cooling during laser modification.
Grain size analysis indicated a 42% reduction post-treatment, enhancing the surface fraction of fine
grains. Hardness measurements demonstrated an overall increase in laser-treated samples, linked to
fine-grained microstructure formation, induced residual stresses, and the α’-martensitic phase.

Keywords: metastable austenitic stainless steel; laser modification; roughness; phase transformation

1. Introduction

Metastable austenitic stainless steels (MASSs) refer to those stainless steels that contain
moderated levels of austenite stabilizing elements, i.e., nickel, nitrogen, manganese, and
carbon; therefore, austenite can transform to martensite during cold working, giving rise to
the TRIP (transformation-induced plasticity) effect. Thanks to the TRIP effect, the work
hardening and ductility of MASS can be improved by cold deformation, reaching a remark-
able combination of high strength and ductility, together with corrosion resistance [1–6].
These steels find extensive use in various industries, including aerospace, automotive, and
medical sectors, where they serve as structural components [7–10].

The mechanical properties of MASS are primarily influenced by microstructural pa-
rameters, such as the phase fraction and texture of each phase. Accordingly, extensive
research has focused on understanding the fundamental mechanisms behind the transfor-
mation behavior of MASS and studying the effects of various microstructural parameters on
mechanical properties [11–13]. These parameters can be controlled by adjusting the process-
ing conditions during manufacturing, emphasizing the need to optimize manufacturing
processes in order to achieve the desired properties [14].

Laser surface texturing (LST) is a process that involves the use of laser technology to
modify the surface properties of a material [15]. This technique has gained considerable
attention in recent years due to its potential for enhancing surface functionalities like wetta-
bility, adhesion, and friction [16–19]. LST involves the use of laser pulses to create micro-
or nano-sized features on the material’s surface, resulting in alterations of its physical
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and chemical properties [20,21]. A notable advantage of LST lies in its ability to generate
precise and controllable surface structures on a diverse range of materials, including metals,
polymers, and ceramics [22,23]. This capability positions LST as a promising technique for
numerous applications across industries such as biomedical, automotive, and aerospace
sectors [24,25]. Notably, LST has demonstrated its efficacy in improving the tribological
properties of various materials, including stainless steel [26–28]. In recent applications such
as microelectronic systems, prominence has been gained by ultrafast laser welding. Over-
coming the challenge of welding non-optical contact transparent materials, a multi-scan
picosecond laser welding method for non-optical soda lime glass is introduced in this study.
Optimal parameters for welding are revealed through systematic exploration of scanning
speed, laser power, and focus position, achieving a welding strength of 6.5 MPa. This
method is characterized by simplicity and provides a new technical solution for practical
ultrafast laser welding applications [29]. Another study focuses on patterned superhy-
drophobic surfaces created through femtosecond laser microfabrication and immersion
treatment. This method, exhibiting high-adhesion hydrophobic linear patterns, allows di-
rectional modulation of droplet motion. The width of the linear pattern controls the contact
angles and adhesion force, providing controllable wettability. The presented approach
has potential applications in microfluidic devices, parallel reactors, chemical micro-assays,
and drug delivery systems [30]. The effects of laser surface texturing (LST) on AISI 301LN
stainless steel are investigated comprehensively. Changes in microstructure, mechani-
cal properties, and grain characteristics are explored. The initiation of strain-induced
α’-martensite, grain refinement, and substantial hardness enhancements is observed with
LST. A dynamic relationship between Schmid factor evolution and plastic deformation in
the stainless-steel alloy is revealed. Significant increases in tensile and yield strength are
noted, albeit with reductions in elongation to fracture and area reduction [31]. The surface
hardening capability of a metastable austenitic transformation-induced plasticity (TRIP)
stainless steel, specifically AISI 301LN, is explored through laser patterning. Investigat-
ing key parameters such as laser power, scanning speed, and focal length position, the
study reveals that maximum surface hardening is achieved by increasing laser power and
decreasing scanning speed. A regression equation correlates processing parameters with
resulting surface integrity, emphasizing the influence of laser patterning on mechanical
properties [32]. Dywel et al. have shown that LST using a pulsed Nd:YAG laser can
significantly reduce the friction coefficient and wear rate in AISI 304 and 316 stainless
steel [33]. Under boundary lubrication conditions, LST has also been found to enhance
the tribological behavior of stainless steel, with scanning speed and laser power identified
as key parameters [34–36]. Other studies have explored the effects of laser texturing on
mechanical properties. In the case of fatigue performance, investigations focused on AISI
301LN stainless steel after LST revealed an enhancement in fatigue life [37,38]. Further-
more, it has been reported that the utilization of a pulsed laser has an influence on grain
refinement and the creation of microscale dimples on the surface of the steel, leading to
an increase in surface hardness [39–42]. Although the influence of laser surface texturing
(LST) on tribological and mechanical properties has been extensively investigated [43,44],
there is a scarcity of research specifically focusing on the phase transformations occurring
in MASS when subjected to laser pulses. In prior research, the significance of surface
roughness measurements has been emphasized, particularly in thin film fabrication and
material surface treatment evaluations, focusing on the evaluation of accurate roughness
measurement [45]. Another investigation addresses the compensation of differences in
results from entire fracture surface topographies. Utilizing focus variation microscopy
and confocal surface topography measurement techniques, roughness parameters are ex-
amined, highlighting the impact of measurement errors and presenting compensatory
procedures [46]. Additionally, noise in laser scanner data has been explored concerning
surface roughness quantification. Measures derived from laser scanner data are compared
with manual measurements, emphasizing the influence of range measurement noise on
fractal dimensions and roughness profiles. Experimental approaches involving wavelet
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decomposition and thresholding methods are introduced to mitigate noise effects, revealing
that wavelet de-noising methods lead to more realistic estimates of laser profile rough-
ness [47]. These diverse studies collectively contribute to the advancement of precise and
reliable surface roughness measurements in various domains, particularly by confocal mi-
croscopy. While some previous studies have shown promising results in selecting the laser
parameters to archive less surface roughness in some laboratory-scale applications [48,49],
more research is needed to demonstrate practical applications of nanosecond laser surface
texturing for real-world industrial applications of AISI 301LN.

In the quest for advancing the comprehension of materials science, the intricate effects
of laser surface treatments on the microstructural and mechanical intricacies inherent to
AISI 301LN stainless steel are sought to be unraveled by this research. Serving as the
foundational step in this exploration, laser tracks are orchestrated on the steel surface.
Subsequent to the laser treatment, a comprehensive characterization journey ensues, uti-
lizing cutting-edge methodologies such as X-ray diffraction (XRD), electron backscatter
diffraction (EBSD) analysis, and microhardness measurement. This systematic and metic-
ulous examination aims not only to scrutinize the microstructural alterations induced by
laser treatment but also to delve into the resulting mechanical transformations. Employing
advanced analytical tools, nuanced insights are endeavored to be contributed that bridge
existing knowledge gaps in the realm of laser surface treatment of metastable austenitic
stainless steel (MASS). The intricate interplay between laser-induced modifications and the
ensuing changes in microstructure and mechanical properties is held to be key in unlocking
novel possibilities for enhancing the material characteristics of AISI 301LN stainless steel.
Through this concerted effort, an elevation of understanding is sought, paving the way for
innovative applications and advancements in laser surface treatment technology for MASS.

2. Experimental Procedure
2.1. Material and Sample Preparation

In this research, the material of interest was an annealed AISI 301LN stainless steel,
which was provided by Outokumpu (Helsinki, Finland) as sheets of 1.5 mm in thickness
skin-passed up to 15% of reduction. The chemical composition of the studied material is
presented in Table 1.

Table 1. Chemical composition of the AISI 301LN.

Elements Cr Ni Mn Si N Mo C Fe

Wt% 17.6 6.50 1.13 0.42 0.17 0.04 0.02 Bal.

The specimens utilized in this study had dimensions of 15 mm × 15 mm, with a sheet
thickness of 1.5 mm. After laser surface treatment, the samples were cut transversally,
mounted on conductive Bakelite resin, and the cross-section surfaces were subjected to
grinding and polishing until a 3 µm surface finish was achieved. Subsequently, chemical
polishing was performed using OPS (40 nm silica oxide colloidal suspension) to obtain a
smooth and mirror-like surface on the samples.

2.2. Laser Processing and Parameters

LST was carried out using a Spectra-Physics Explorer One 349–120 nanosecond pulsed-
beam Nd:YLF laser (Milpitas, CA, USA). To create patterns with horizontally parallel
tracks, the WeldMARK software (V3) was employed. The study involved varying the
laser power (W) and the scanning speed (mm/s) while maintaining a constant distance of
40 µm between tracks and a laser repetition rate of 1000 Hz. Throughout the surface laser
treatment, the laser beam parameters remained fixed, including a laser power set at 100%, a
pulse width of 2 µs, and a circular focus diameter of 192 µm. The nozzle-to-sample surface
distance (stand-off distance) was set at 150 mm, with the focal plane situated 80 mm away
from the surface (Figure 1).
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The term “overlapping” in pulsed laser processing pertains to the extent to which con-
secutive laser pulses coincide on the specific area of the surface undergoing processing [50].
The value for this parameter can be determined using Equation (1) [51]:

Laser Spot Overlap =

(
1 − S

dc f × F

)
× 100% (1)

where S, dcf, and F represent scanning speed, circular focus diameter, and laser repetition
rate, respectively.
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Figure 1. Schematic illustration of the laser surface texturing using a linear scanning strategy leading
to a defined laser spot overlap. Adapted with permission from [52] (Elsevier, 2019).

The heat input, which quantifies the energy transferred to the material, is determined
by adjusting both the power of the laser beam and the scanning speed, according to the
following calculation (Equation (2)):

Heat input = η
P
S

(2)

where P is the power of the laser beam, S represents the scanning speed, and η stands for
the efficiency of the pulsed laser (usually taken as η = 0.85) [53,54].
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The laser power, scanning speed, pulse energy, and heat input were recorded for each
pattern and are summarized in Table 2.

Table 2. Laser patterns conditions.

Pattern Laser Power
(W)

Scanning Speed
(mm/s)

Pulse Energy
(µJ)

Heat Input
(J/mm2)

Laser Spot Overlap
(%)

a 63.3 1.2 126.6 44.8 93
b 63.3 6 126.6 8.9 68
c 53.6 1.2 107.2 37.9 93
d 53.6 6 107.2 7.5 68

2.3. Microstructural Characterization
2.3.1. Optical and Scanning Electron Microscopy (SEM)

The Olympus LEXT OLS3000 (Tokyo, Japan) confocal microscope was used to evaluate
the roughness of the surfaces subjected to LST. The post-laser analysis of the microstructure
and substrates was carried out using the Neon40 Carl Zeiss SEM (Oberkochen, Germany).
The identification of distinct phases, before and after laser texturing, was performed using
the Jeol JSM IT800 SEM (Tokyo, Japan) equipped with an electron backscatter diffraction
(EBSD) detector. The EBSD detector was situated at the 11 mm working distance from the
interest surface, and the mapping step size was set to 0.2 µm. The area of interest under
investigation measured 400 µm × 400 µm, and a beam current of 15 nA and a beam energy
of 20 Kev with 70 degrees as the angle were used.

2.3.2. X-ray Diffraction (XRD)

In this study, X-ray diffraction (XRD) tests were conducted on both the as-received and
laser-treated samples utilizing a Bruker D8 Advance diffractometer (Karlsruhe, Germany).
The XRD analysis was performed on the cross-section below the treated surface. The
measurements employed a step size of 0.02◦ (in 2θ) and a 2θ range spanning from 35◦ to
80◦. Highscore Expert Plus v5.2.0 software, employing the Rietveld method, was utilized
for the comprehensive analysis of all XRD patterns. To calculate the volume fraction of
different phases, the Reference Intensity Ratio (RIR) method [55,56] was employed.

2.3.3. Vickers Hardness

The DuraScan G5 universal hardness tester unit from EMCO-TEST Prüfmaschinen
GmbH, Kuchl, Austria, was employed for Vickers hardness assessments on the sample
cross-sections. The chosen test load was 200 g, with a dwell time of 15 s for each test. A
series of 10 indents was performed on the cross-section to ascertain the average Vickers
hardness. The imprints were positioned approximately 100 µm below and parallel to the
treated surface.

3. Results and Discussion
3.1. Surface Characterization

The surface morphology of the laser-treated surfaces obtained from four different
laser patterns—labeled as (a), (b), (c), and (d)—were evaluated by analyzing the SEM
images. This analysis aimed to assess the impact of laser parameters on surface morphology
(Figure 2). Pattern (a) exhibits a distorted and irregular pattern of ridges and grooves, while
pattern (b) demonstrates relatively smoother ridges and grooves and reduced laser spot
overlap. Pattern (c) displays an irregular surface with wide grooves similar to pattern (a).
Lastly, pattern (d) resembles pattern (b) in surface morphology, featuring narrower and
shallower ridges.
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Figure 2. Textured MASS 301LN surfaces with varied laser power and scanning speed in a matrix of
SEM images. The samples (a–d) as listed in Table 2 are designated with the corresponding SEM labels
(a–d), and additional information regarding the as-received sample is provided for the purpose of
comparison in Table 3.

Table 3. Surface roughness for the sample obtained via confocal microscopy.

Pattern Ra (µm) Width of Laser Track (µm) Depth of Laser Track (µm)

As-received 0.59 ± 0.17 - -
(a) 1.92 ± 0.07 66.21 ± 1.12 29.67 ± 1.37
(b) 0.99 ± 0.12 61.22 ± 1.34 24.85 ± 1.23
(c) 1.62 ± 0.04 57.26 ± 0.91 19.91 ± 0.88
(d) 0.74 ± 0.11 47.12 ± 1.09 17.11 ± 1.17

Samples (a) and (c) have high heat input, resulting in a higher supply of thermal energy
to the surface. Consequently, in these samples, significant alterations in the microstructure
and surface properties of the steel were induced by the laser. Conversely, samples (b) and
(d) correspond to low heat input, leading to less melting and material removal.

Increasing the laser spot overlap leads to a larger area being exposed to the laser
beam, resulting in a direct relationship between heat input and laser spot overlap. The
quantitative surface characteristics of each sample are presented in Table 3. By analyzing the
SEM images shown in Figure 2 and referring to the information provided in Tables 2 and 3,
it is evident that heat input has a notable impact on various parameters of the laser tracks,
including groove width and depth, irregularity of ridges, and laser spot overlap. These
parameters, in turn, significantly influence the roughness of the laser-textured surfaces.
Increased heat input tends to result in higher surface roughness due to the augmented
melting and resolidification of the material. Figure 3 depicts the 3D reconstruction of the
surface for the laser parameters in this study.
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Figure 3. MASS 301LN surfaces were subjected to laser texturing with varying laser power and
scanning speed, and these surfaces were imaged and reconstructed in 3D using confocal microscopy.
The samples (a–d) outlined in Table 2 are identified with corresponding labels (a–d) in the optical
images, while additional information about surface roughness concerning the as-received sample is
included for comparative purposes in Table 3. For more details, only one laser track (groove) was
applied on the surface.

3.2. Microstructural Changes under the Surface

The application of laser on the steel surface induces changes in the microstructure,
particularly in the case of 301LN steel where austenite tends to transform into martensite.
The transformation from austenite to martensite is a crucial phenomenon in the LST of
MASS 301LN, as it enhances the material’s hardness and then its wear resistance [57].

Considering the explanation above, the XRD patterns of the studied samples are
presented in Figure 4. The XRD plot exhibits a shift in peak positions compared to the
original steel, indicating the formation of new martensitic phases. Specifically, the peak
corresponding to the austenite phase shifts to a lower angle, indicating an increase in lattice
spacing. Additionally, the α’phase peak is observed at a higher 2θ angle than the peaks
corresponding to the austenite (γ) phase.

The XRD analysis reveals that the peaks corresponding to the austenite phase are
attributed to the crystallographic planes (111), (200), and (220). On the other hand, only one
peak corresponding to the martensite phase is observed at 44.52◦, belonging to the crystal-
lographic plane (110). Additionally, changes in the XRD spectra, such as the broadening of
the austenitic peaks, can be attributed to residual stresses and microstrains resulting from
the laser surface texturing process [58].

The decrease in the intensity of the austenite phase peak following laser pattern ap-
plication, in contrast to the as-received sample, underscores a significant alteration in the
material’s composition. This transformation is further elucidated by the Reference Intensity
Ratio (RIR) method, which provides a quantitative assessment of the laser-induced conver-
sion of austenite to the martensite phase. Table 4 illustrates the outcomes of this analysis,
portraying the distinct influence of laser surface modification on the phase composition.
The RIR method, through its systematic evaluation, serves as a valuable tool in delineating
the extent of the phase transformation induced by laser treatment. The observed decrease
in austenite intensity, coupled with the RIR results, collectively affirms the efficacy of laser
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surface modification in instigating the transformation of the predominant austenitic phase
into the desired martensitic phase. This nuanced understanding of phase changes con-
tributes to the comprehensive characterization of the material’s response to laser-induced
alterations, thereby enhancing the overall comprehension of the underlying structural
modifications. The values in Table 4 indicate that laser surface modification can increase the
mass content of martensite in MASS 301LN up to 18.44%. Increasing the laser power has a
more significant effect on the amount of martensite formation due to the intense melting of
the surface. However, the peak intensity of austenite may decrease with decreasing laser
scanning speed due to the longer dwell time of the laser on each spot, resulting in a more
complete transformation of austenite into martensite [59]. Hence, the optimal conditions
for maximizing the martensite phase involve a reduction in laser speed coupled with an
increase in laser power. This strategic adjustment facilitates the attainment of the highest
proportion of martensitic transformation within the material, emphasizing the intricate
interplay between laser parameters and the resultant phase evolution.
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Table 4. Mass quantification of the austenite and martensite phases of the samples.

Sample Austenite γ (%) α’-Martensite (%)

As-received 88.48 ± 0.12 11.52 ± 0.23
(a) 81.56 ± 0.13 18.44 ± 0.19
(b) 82.39 ± 0.13 17.41 ± 0.10
(c) 85.43 ± 0.16 14.57 ± 0.14
(d) 86.44 ± 0.11 13.56 ± 0.21

Despite the robust analyses conducted through X-ray diffraction (XRD), additional
measures were undertaken to further enhance the completeness and validation of the
results, particularly concerning the presence of the martensitic phase on the laser-treated
surface. To address any lingering ambiguities, supplementary electron backscatter diffrac-
tion (EBSD) tests were performed. The incorporation of EBSD analyses serves as a com-
plementary and reinforcing aspect to the XRD findings, providing a more comprehensive
understanding of the subsurface microstructural changes induced by the laser treatment.
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Figure 5 illustrates the results of the EBSD analysis performed on the studied samples,
providing supplementary evidence that supports and validates the previously obtained
findings from XRD analysis. In the as-received sample, the α’-martensite phase was pri-
marily observed near the grain boundaries and in specific regions within the grains, mainly
twins. However, in pattern (b), corresponding to one of the laser-modified samples, a higher
proportion of the α’-martensite phase was observed throughout the entire microstructure,
with a more uniform distribution within the grains, and even some of them appear almost
totally transformed into martensite.
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(b) pattern b (laser power 63.3 W and scanning speed 6 mm/s).

The notable elevation in the percentage of the α’-martensite phase within pattern (b)
can be explicitly ascribed to the accelerated cooling rate and substantial thermal gradient en-
countered during the laser surface modification process. This phenomenon is indicative of
the intricate interplay between laser parameters and resulting microstructural changes. As
the laser beam swiftly heats and melts the material, the subsequent rapid cooling engenders
conditions conducive to the preferential formation and propagation of the α’-martensite
phase. The heightened cooling rate in pattern (b), a consequence of specific laser parame-
ters, contributes to the observed increase in the proportion of the martensitic phase. This
intricate relationship underscores the significance of fine-tuning laser parameters to achieve
desired microstructural outcomes, offering valuable insights into the tailored control of
phase transformations during laser surface modification. The identification of such key
factors governing microstructural evolution is pivotal in advancing our understanding of
laser–material interactions and optimizing the outcomes for diverse applications. [60,61].
The laser beam rapidly heats and melts the material, followed by an exceptionally rapid
cooling rate. This rapid cooling process facilitates the formation of the α’-martensite phase,
which is retained due to the absence of subsequent annealing processes. These findings
highlight the effectiveness of laser surface modification in inducing the formation and
uniform distribution of the α’-martensite phase within the MASS microstructure. The
outcomes reveal the discernible presence of the martensitic phase, as indicated by the
distinctive red coloration, in the EBSD images. Furthermore, a notable augmentation in the
abundance of this phase is observed in the laser-treated cross-sectional image. Specifically,
in the sample subjected to a laser power of 63.3 W and a scanning speed of 6 mm/s, there
is an approximate 6% increment in the proportion of the martensitic phase.
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Figure 5 visually presents important aspects of the microstructural analysis, high-
lighting the presence of the martensitic phase, the grain size distribution, and the surface
fraction occupied by different grain size ranges in the investigated samples.

Figure 6A presents a histogram depicting the measured grain size distribution for
pattern (b) using a fixed bin size of 1 µm. The histogram includes measurements for both
phases within the same range of values and is based on data obtained from approximately
3000 grains. Analysis of the histogram data reveals that the grain size distribution can be
categorized into two distinct ranges: fine grains—represented by the orange color, with
sizes less than 6 µm—and coarse grains—represented by the light blue color, with sizes
greater than 8 µm. It is important to note that similar measurements have been conducted
for all the samples studied, although the specific results for each sample are not presented
in this figure. Through the calculation of the average grain size subsequent to laser surface
texturing in sample (b), in comparison to the as-received sample, a conspicuous reduction
in grain size is evident, quantified at 41.6%.
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Figure 6B provides a graphical representation of the surface fraction occupied by
different grain size ranges across all the analyzed samples. It is well established that laser
parameters such as power and scanning speed can be adjusted to control the grain size
during laser surface treatment [62,63]. The results indicate that LST applied to MASS
results in an increase in the surface fraction occupied by fine grains in the majority of the
samples and therefore demonstrates the capability of laser treatments to promote grain
refinement in the examined materials. The rapid solidification and subsequent cooling
after laser pass facilitate the development of a refined grain structure because elevated
cooling rates effectively hinder the growth of grains, leading to a reduction in grain size
relative to the original microstructure [64,65]. As a result, LST enables the attainment of
smaller grain sizes, which can have significant implications for material properties and
performance [66,67].

The experimental findings provide compelling evidence that LST exerts a substan-
tial influence on the phase content and grain size distribution within the samples under
investigation.

3.3. Hardness

In Figure 7, the Vickers hardness values of the studied materials are compared to
the hardness of the as-received sample. The measurements were performed by making
10 indents on the cross-sectional surface after laser treatment. The results indicate that the



Metals 2023, 13, 2021 11 of 16

laser texturing process has a noticeable influence on the hardness of 301LN, with the laser-
patterned samples exhibiting increased hardness compared to the as-received specimen.
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There are several factors that contribute to the observed increase in surface micro-
hardness. As mentioned in the previous section, the focused laser beam rapidly melts and
solidifies the surface material, leading to the formation of a fine-grained microstructure.
This microstructure contains a high density of dislocations and defects, which serves as
obstacles to the movement of dislocations, thus enhancing the hardness. Additionally,
laser texturing can induce residual stresses in the surface layer of the material. The pres-
ence of residual stresses can create additional obstacles to dislocation movement, thereby
increasing the material’s hardness [64,67–69].

Furthermore, as mentioned in the previous section, the LST of austenitic stainless
steels like AISI 301LN can result in the formation of the alpha prime (α’) martensitic phase.
This phase has a higher hardness compared to the austenite, which ultimately leads to an
overall increase in surface hardness [70–73].

Samples (a) and (b) of the laser-treated samples showed slightly higher hardness
compared to samples (c) and (d), which can be attributed to a higher level of martensite
formation in their microstructure due to the use of higher laser power. However, at
the current scale of analysis, no significant difference was detected among all the laser-
treated samples. To gain more accurate and detailed information about their mechanical
properties, further investigation employing techniques such as nanoindentation mapping
is necessary [74]. Upon the assessment of the average hardness within the subsurface
cross-sectional area beneath the laser-treated surface of sample (b), juxtaposed with the
as-received sample, a discernible enhancement in average hardness becomes manifest,
registering a notable increment of 21.1%.

4. Conclusions

In this study, the effects of laser surface texturing on the microstructure and mechanical
properties of an AISI 301LN steel, corresponding to the MASS type, were investigated
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using a nanosecond pulsed-beam Nd:YLF laser with varying laser power and scanning
speed. The following key conclusions were drawn from the experimental findings:

1. The heat input from the laser significantly influences the parameters of the laser tracks
and subsequently affects the roughness of the laser-textured surfaces. Higher heat
input leads to increased surface roughness due to a greater amount of melted material
and its subsequent resolidification.

2. The implementation of laser patterns on the surface dwells for a very short time. Ac-
cordingly, the melting and solidification take place rapidly, resulting in the formation
of a fine-grained microstructure as compared with as-received samples.

3. The increase in hardness observed after laser surface texturing of 301LN steel can be
attributed to the formation of a fine-grained microstructure with a high density of
dislocations and defects and the formation of the α’-martensitic phase, which has a
higher hardness than the austenitic phase.

5. Outlook

The outcomes of the investigation into the impact of laser surface texturing on AISI
301LN steel reveal several potential avenues for future research. While the study primarily
focused on profile roughness parameters, such as Ra, a more in-depth exploration into
areal parameters (e.g., Sa) is deemed warranted for a comprehensive understanding of
tribo-functional characteristics in diverse tribological applications. Furthermore, a broader
tribological analysis, encompassing wear resistance, frictional behavior, and lubrication
properties, is seen as essential for a holistic assessment of the material’s performance.
Future research endeavors are suggested to concentrate on the optimization of laser pa-
rameters, such as power, scanning speeds, and overlapping strategies, to achieve tailored
material responses. The incorporation of a multi-technique analysis approach, integrating
nanoindentation mapping, advanced microscopy, and spectroscopy methods, is recom-
mended for a more detailed evaluation of mechanical and chemical properties. Addressing
the limitations of the current study, refining methodologies, expanding sample sizes, and
exploring alternative laser surface modification techniques are seen as key steps to enhance
the comprehensiveness of future investigations. This outlook is intended to guide forth-
coming research, building upon the foundational study and contributing to the ongoing
advancement of knowledge in laser surface texturing and its applications in metastable
austenitic stainless steels.
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Abbreviations
MASS Metastable austenitic stainless steels
TRIP Transformation-induced plasticity
LST Laser surface texturing
SEM Scanning electron microscopy
EBSD Electron backscatter diffraction
XRD X-ray diffraction
RIR Reference Intensity Ratio
AISI American Iron and Steel Institute
µm Micrometer
W Watt
Hz Hertz
µs Microsecond
◦C Degrees Celsius
OPS Silica oxide colloidal suspension
Nd:YLF Neodymium-doped Yttrium Lithium Fluoride
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