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Abstract: For the welding process of thick-walled structural components in liquid rocket engines,
the activated-flux TIG method can effectively address issues such as the formation of intermetallic
phases in the weld seams, thereby enhancing mechanical performance. The present study investigates
the activated-flux TIG welding technique on 10mm thick 1Cr21Ni5Ti duplex stainless steel plates.
Various activated-flux, including -SiO2, TiO2, V2O5, NiO, MnO2, CaO, AlCl3, CaF2, B2O3 Cr2O3,
and Al2O3, were examined to understand their impact on the weld-bead geometry. The aim was to
determine the optimal activator ratio for the effective welding of 1Cr21Ni5Ti duplex stainless steel.
The weld-shift experiment confirmed that the deep penetration observed in flux-assisted welding is
attributed to Marangoni convection in the molten pool. Comprehensive evaluations and analyses
were performed on the microstructure and mechanical properties of the normal welded joint and the
A-TIG welded joint. Finally, the study delves into a discussion on the factors influencing changes in
the weld penetration, microstructure, and mechanical properties of the weld.

Keywords: 1Cr21Ni5Ti steel; A-TIG; Marangoni convection; weld formation

1. Introduction

Liquid rocket engines are the key power equipment in the field of modern space
exploration and national defense, and their performance and reliability directly affect
the performance of launch vehicles. As the cornerstone of aviation development, the
reliability of liquid rocket engines has become an indispensable research topic. Duplex
stainless steel is known for its oxidation resistance, acid corrosion resistance, high level of
toughness and excellent weld ability [1–5], and it is widely used in the manufacture of key
structural components of liquid rocket engine combustion chambers. The performance of
its welded joints has become a key factor affecting its reliability. Various welding techniques
are employed for 1Cr21Ni5Ti duplex stainless steel, including bounding welding (BW),
laser-beam welding (LBW), hot isostatic pressing (HIP), and friction-stir welding (FSW).
However, when using these methods to weld thick-walled components, challenges like
porosity, undercuts, compromised toughness, and the formation of intermetallic phases
can pose significant concerns [6–9].

Tungsten inert gas (TIG) welding, as a conventional welding method, is widely
adopted in various metal-processing fields. However, conventional TIG welding faces
some shortcomings, such as low production efficiency and the need for a groove to in-
crease weld penetration in the welding of thick plates [10,11]. As the heat input during
welding increases, it leads to abnormal grain growth within the weld. Additionally, a
substantial amount of ferrite is generated, diminishing the microstructure and properties of
the weld [4,12–15]. Hence, activated-flux TIG welding (A-TIG) has emerged as a primary
welding process for thick-walled structural parts made of 1Cr21Ni5Ti duplex stainless
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steel. A-TIG offers advantages such as cost-effectiveness, a notable increase in single-pass
melt depth, and minimal alterations in performance [16–18]. Activated-flux TIG welding
involves applying an activating agent to the workpiece’s surface before initiating TIG
welding, allowing the preservation of TIG characteristics while notably enhancing the weld
depth and mechanical properties. During welding, the inclusion of alloying elements and
adjustments in the heat input influence the ferrite and austenite phase content within the
weld. Achieving an appropriate ferrite-to-austenite phase ratio is a crucial determinant
of the welded joint’s mechanical properties [10,19–21]. In the context of stainless-steel
thick-walled structural components, A-TIG welding primarily counters the Marangoni
convection within the molten pool, significantly augmenting weld penetration and thereby
reducing the width of the heat-affected zone [22–24]. Simultaneously, mechanical properties
like tensile strength and hardness exhibit minimal alterations [25,26].

In this investigation, the reversal of Marangoni convection was observed in situ by a
high-speed camera. To investigate the primary cause of the increased penetration depth,
we devised an experimental design involving a weld shift. Furthermore, we analyzed the
factors contributing to the reduced mechanical properties of the weld by studying the pole
diagram, the phase diagram, and the composition of second-phase particle elements in
the weld microstructure. The activated-flux TIG welding of 1Cr21Ni5Ti duplex stainless
steel was studied. The impact of various activated-flux on the weld-bead geometry and
penetration was examined. Subsequently, the microstructure and mechanical properties
of the base material, the TIG-welded joint, and the A-TIG-welded joint were evaluated
and analyzed. The reasons behind the alterations in weld penetration, microstructure,
and mechanical properties resulting from the application of an activated-flux during TIG
welding were discussed.

2. Experimental Details
2.1. Materials

The chemical composition of the 1Cr21Ni5Ti duplex stainless steel is presented in
Table 1. For the A-TIG butt-welding experiment, we utilized a specimen of 1Cr21Ni5Ti
duplex stainless steel with size of 100 mm × 50 mm × 10 mm. Figure 1 shows the activated-
flux TIG welding process, and the corresponding welding process parameters are listed in
Table 2.

Table 1. Chemical composition of the 1Cr21Ni5Ti duplex stainless steel (Wt.%).

Elements Si Mn Cr Ni Ti C Al Fe

Content 0.49 0.58 20.42 5.26 0.55 0.12 0.09 Bal.

Table 2. Basic process parameters.

Welding
Current

I/A

Welding
Speed

V/(mm/s)

Shielding Gas
Flow Rate
Q (L/min)

Arc Length
L/mm Type of Active Agent

260 1.76 15 3
0.033NiO + 0.632SiO2 +

0.037TiO2 + 0.162Cr2O3 +
0.137Al2O3
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Figure 1. Activated-flux TIG welding: (a) Schematic diagram; (b) Profile display. 

2.2. Experimental Procedure 
Before commencing the welding process, the plate’s surface oxide layer was removed 

using an angle grinder and subsequently cleaned with acetone. The activator, previously 
prepared, was dehumidified using a drying oven and then dissolved in an appropriate 
amount of acetone solvent. After thorough mixing to form a paste, this paste was manu-
ally applied to the cleaned plate surface. TIG welding was carried out using the specified 
process parameters outlined in Table 2. High-speed cameras were employed to record the 
arc shape and flow behavior of the weld pool during the welding process. The surface of 
the weld should be smooth and smooth, without defects such as cracks, biting edges, and 
welding feet. Metallurgical and mechanical test samples were obtained by utilizing elec-
trical spark line-cutting technology on the acceptable welded plates. The sampling dia-
gram is illustrated in Figure 2. Metallurgical samples underwent grinding, polishing, and 
etching with aqua regia (KCL:HNO3 = 3:1). The geometric shape and microstructure of the 
weld were analyzed using an optical microscope (OM). 

 

Figure 1. Activated-flux TIG welding: (a) Schematic diagram; (b) Profile display.

2.2. Experimental Procedure

Before commencing the welding process, the plate’s surface oxide layer was removed
using an angle grinder and subsequently cleaned with acetone. The activator, previously
prepared, was dehumidified using a drying oven and then dissolved in an appropriate
amount of acetone solvent. After thorough mixing to form a paste, this paste was manually
applied to the cleaned plate surface. TIG welding was carried out using the specified
process parameters outlined in Table 2. High-speed cameras were employed to record the
arc shape and flow behavior of the weld pool during the welding process. The surface
of the weld should be smooth and smooth, without defects such as cracks, biting edges,
and welding feet. Metallurgical and mechanical test samples were obtained by utilizing
electrical spark line-cutting technology on the acceptable welded plates. The sampling
diagram is illustrated in Figure 2. Metallurgical samples underwent grinding, polishing,
and etching with aqua regia (KCL:HNO3 = 3:1). The geometric shape and microstructure
of the weld were analyzed using an optical microscope (OM).
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Microhardness measurements were conducted on the transverse cross-section of the
weld sample using a Wilson VH1102 Vickers hardness tester, with the detection locations
indicated in Figure 3. The hardness measurement was carried out at a 200 gf load (HV0.2)
and a dwell time of 15 s. Tensile tests were using an AGS-X3000 universal testing machine
and impact tests were utilizing a Charpy impact-testing machine, with three identical
samples prepared to mini-mize errors. The fracture morphology of the tensile and impact
samples was observed using an FEG-450 field emission scanning electron microscope
(SEM), and element content analysis at specific fracture positions was conducted using the
attached energy dispersive spectrometer (EDS).
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3. Results and Discussion
3.1. Effects of the Activated-Flux Type on the Weld Penetration

Figure 4 displays the cross-sections of welding joints for 1Cr21Ni5Ti duplex stainless
steel, showcasing the impact of different activated-flux. SiO2, B2O3, and Cr2O3 activated-
flux significantly enhanced weld penetration. Among them, Cr2O3 yielded the best results,
achieving a welding penetration of 5.55 mm and a D/W ratio of 0.60. The corresponding
test results are depicted in Figure 5, reinforcing the superior performance of Cr2O3 as an
activated-flux in enhancing weld penetration. Subsequent homogenization tests were con-
ducted on various active agents exhibiting positive effects, and the outcomes are presented
in Table 3 and Figure 6. These tests helped determine the optimal active-agent ratio for
achieving the desired welding penetration and D/W ratio. The final identified optimal
active-agent ratio is discussed below:

0.033 NiO + 0.632 SiO2 + 0.037 TiO2 + 0.162 Cr2O3 + 0.137 Al2O3
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This led to a welding penetration of 6.4 mm, a welding width of 7.5 mm, and
D/W = 0.85. The tensile-strength weld reached 97.5% of the duplex stainless-steel substrate.

In Figure 7a, the morphology of the tungsten electrode prior to A-TIG welding is
depicted, while Figure 7b showcases the morphology of the tungsten electrode after A-TIG
welding. During the A-TIG welding process, a certain amount of oxygen is generated,
causing the tungsten electrode tip to become passive due to the high temperature and
oxidation. However, it is important to note that there is no severe damage to the tungsten
electrode after welding, as illustrated in Figure 7. The appearance of the tungsten electrode
post-A-TIG welding closely resembles that of ordinary TIG welding rods under equivalent
welding conditions. This observation strongly suggests that the tungsten electrode is
effectively shielded and protected by the shielding gas during the A-TIG welding process.
The passivation of the tungsten electrode tip, resulting from oxidation, can influence the
performance of the arc plasma. Nevertheless, slight oxidation of the tungsten electrode tip
does not have a significant impact on the formation and overall quality of the weld.

Metals 2023, 13, x FOR PEER REVIEW 6 of 18 
 

 

oxidation. However, it is important to note that there is no severe damage to the tungsten 
electrode after welding, as illustrated in Figure 7. The appearance of the tungsten elec-
trode post-A-TIG welding closely resembles that of ordinary TIG welding rods under 
equivalent welding conditions. This observation strongly suggests that the tungsten elec-
trode is effectively shielded and protected by the shielding gas during the A-TIG welding 
process. The passivation of the tungsten electrode tip, resulting from oxidation, can influ-
ence the performance of the arc plasma. Nevertheless, slight oxidation of the tungsten 
electrode tip does not have a significant impact on the formation and overall quality of the 
weld. 

 
Figure 7. Tungsten electrode oxidation (a) before welding; (b) after welding. 

3.2. Comparison of the Welding Formation 
Figure 8a,b show the surface and cross-sectional morphology of welds produced un-

der identical conditions using conventional TIG welding and A-TIG welding, respectively. 
By comparing these, a clear contrast in the weld surface formations and cross-sectional 
contours between the two welding methods can be observed, as displayed in Figure 8. The 
weld produced by conventional TIG welding was observed to be broad and shallow. In 
contrast, A-TIG welding resulted in a narrower yet deeper weld. Remarkably, compared 
with conventional TIG welding, the weld penetration depth achieved by A-TIG welding 
increased by a factor of 1.67, as graphically represented in Figure 9. 

 
Figure 8. Comparison of the welding formation: (a) TIG; (b) A-TIG. 

Figure 7. Tungsten electrode oxidation (a) before welding; (b) after welding.

3.2. Comparison of the Welding Formation

Figure 8a,b show the surface and cross-sectional morphology of welds produced under
identical conditions using conventional TIG welding and A-TIG welding, respectively.
By comparing these, a clear contrast in the weld surface formations and cross-sectional
contours between the two welding methods can be observed, as displayed in Figure 8. The
weld produced by conventional TIG welding was observed to be broad and shallow. In
contrast, A-TIG welding resulted in a narrower yet deeper weld. Remarkably, compared
with conventional TIG welding, the weld penetration depth achieved by A-TIG welding
increased by a factor of 1.67, as graphically represented in Figure 9.

Metals 2023, 13, x FOR PEER REVIEW 6 of 18 
 

 

oxidation. However, it is important to note that there is no severe damage to the tungsten 
electrode after welding, as illustrated in Figure 7. The appearance of the tungsten elec-
trode post-A-TIG welding closely resembles that of ordinary TIG welding rods under 
equivalent welding conditions. This observation strongly suggests that the tungsten elec-
trode is effectively shielded and protected by the shielding gas during the A-TIG welding 
process. The passivation of the tungsten electrode tip, resulting from oxidation, can influ-
ence the performance of the arc plasma. Nevertheless, slight oxidation of the tungsten 
electrode tip does not have a significant impact on the formation and overall quality of the 
weld. 

 
Figure 7. Tungsten electrode oxidation (a) before welding; (b) after welding. 

3.2. Comparison of the Welding Formation 
Figure 8a,b show the surface and cross-sectional morphology of welds produced un-

der identical conditions using conventional TIG welding and A-TIG welding, respectively. 
By comparing these, a clear contrast in the weld surface formations and cross-sectional 
contours between the two welding methods can be observed, as displayed in Figure 8. The 
weld produced by conventional TIG welding was observed to be broad and shallow. In 
contrast, A-TIG welding resulted in a narrower yet deeper weld. Remarkably, compared 
with conventional TIG welding, the weld penetration depth achieved by A-TIG welding 
increased by a factor of 1.67, as graphically represented in Figure 9. 

 
Figure 8. Comparison of the welding formation: (a) TIG; (b) A-TIG. Figure 8. Comparison of the welding formation: (a) TIG; (b) A-TIG.



Metals 2023, 13, 2017 7 of 18
Metals 2023, 13, x FOR PEER REVIEW 7 of 18 
 

 

TIG A-TIG
0

1

2

3

4

5

6

7

8

9

W
el

d 
pe

ne
tra

tio
n 

D
/m

m

7.4

5

 
Figure 9. Comparison of the weld penetration. 

3.3. Weld-Shift Experiment 
To determine the primary cause of the increased penetration depth, an experimental 

design involving a weld shift was conceived and executed. This design is illustrated in the 
schematic diagram presented in Figure 10. The weld-pool flow behavior during A-TIG 
welding observed by high-speed camera was shown in Figure 11. The figure clearly shows 
green spots moving from the weld-pool edge to the center. This indirectly proves that with 
the addition of an active agent, the molten metal moves from the periphery to the center. 

 
Figure 10. Weld-shape experiment diagram. 

 
Figure 11. Weld-pool flow behavior. 

In Figure 12, convection movements within the TIG/A-TIG weld bead are illustrated. 
During the welding process, an active element is applied to the workpiece’s surface being 
welded. Under the thermal influence of the arc, oxygen atoms continuously accumulate 
on the molten pool’s surface and permeate it. When the diffusion and clustering of oxygen 
atoms reach an equilibrium, the oxygen element’s mass fraction in the molten pool affects 
the surface-tension gradient coefficient (∂γ⁄∂T). Due to the presence of oxygen elements, 
the temperature field range at the molten pool’s surface is negative toward the weld cen-
ter. Except for a small area at the center of the molten pool where the surface-tension tem-
perature gradient coefficient is negative, the edges of the weld pool exhibit a positive gra-
dient. The surface tension near the solid–liquid interface is significantly lower than the 
surface tension at the weld center, prompting the liquid metal in the molten pool to flow 
from the periphery to the center, creating two inward vortices—this phenomenon is 
known as reversed Marangoni convection, as shown in Figure 12. After the reversal of the 
Marangoni convection, the two vortices converge at the center of the molten pool, forming 

Figure 9. Comparison of the weld penetration.

3.3. Weld-Shift Experiment

To determine the primary cause of the increased penetration depth, an experimental
design involving a weld shift was conceived and executed. This design is illustrated in
the schematic diagram presented in Figure 10. The weld-pool flow behavior during A-TIG
welding observed by high-speed camera was shown in Figure 11. The figure clearly shows
green spots moving from the weld-pool edge to the center. This indirectly proves that with
the addition of an active agent, the molten metal moves from the periphery to the center.
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In Figure 12, convection movements within the TIG/A-TIG weld bead are illustrated.
During the welding process, an active element is applied to the workpiece’s surface being
welded. Under the thermal influence of the arc, oxygen atoms continuously accumulate on
the molten pool’s surface and permeate it. When the diffusion and clustering of oxygen
atoms reach an equilibrium, the oxygen element’s mass fraction in the molten pool affects
the surface-tension gradient coefficient (∂γ⁄∂T). Due to the presence of oxygen elements,
the temperature field range at the molten pool’s surface is negative toward the weld
center. Except for a small area at the center of the molten pool where the surface-tension
temperature gradient coefficient is negative, the edges of the weld pool exhibit a positive
gradient. The surface tension near the solid–liquid interface is significantly lower than
the surface tension at the weld center, prompting the liquid metal in the molten pool to
flow from the periphery to the center, creating two inward vortices—this phenomenon
is known as reversed Marangoni convection, as shown in Figure 12. After the reversal
of the Marangoni convection, the two vortices converge at the center of the molten pool,
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forming an inward vortex that impacts the bottom of the molten pool, effectively bringing
more heat to melt the substrate. In a small region at the center of the weld pool, the liquid
metal forms a vortex flowing from the center to the periphery of the weld pool due to the
negative surface-tension gradient coefficient, propelling the inward vortex forward. The
addition of oxygen causes the reversal of the Marangoni convection, elevating the overall
temperature of the weld pool, increasing the flow rate of the liquid metal, and resulting in
a shift in the depth of the weld penetration.
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Figure 12. Convection movements of the TIG/A-TIG weld bead.

The deepest penetration of the weld in Figure 12 is situated on the left side of the weld
joint, tilting toward the TIG welding of the weld joint. Comparatively, the pool surface
of TIG welding is higher than that of the 1Cr21Ni5Ti surface and the A-TIG welding pool
surface. The approximate measurement locations for the maximum penetration depth
(D1 ≈ 6.84 mm) and the center-line shift (S1 ≈ 3.21 mm) position are indicated in Figure 12.
By comparing the current findings with the results of previous GTA welding operations [27],
it is evident that Marangoni convection flows from the edge of the molten pool toward the
center of the weld. Additionally, the increase in oxygen content reduces the surface tension
of the steel, ultimately causing the reversal of the Marangoni convection.

In Figure 13, the surface formation of the weld seam from the weld-seam displacement
experiment is depicted. Once welding commences, a noticeable undercut-like feature
appears on one side of the TIG weld along the weld seam. This feature is characterized
by the molten liquid metal receding and solidifying in place, creating a recessed area in
the weld. A similar phenomenon is observed at the end of the weld seam. Remarkably,
this experimental result aligns with findings documented in the literature, as referenced
in [18,28]. The presence of such undercutting is a consistent and anticipated aspect of the
welding process, based on the existing body of research.
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3.4. Microstructure and Mechanical Properties

Figure 14a,b show the metallographic structure at the center of a conventional TIG
welding joint. Figure 14c,d show the metallographic structure at the center of the A-TIG
welding joints. It is obvious that the microstructure of the weld is mainly composed of
skeletal ferrite and austenite columnar crystals that grow toward the center of the weld
pool along the heat dissipation direction. Under conventional TIG welding, the higher
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heat input results in a slower cooling rate, resulting in larger weld grains, as shown in
Figure 14a,b. Compared with conventional TIG welding, the grain size at the center of the
A-TIG welding seam is relatively smaller. Under A-TIG welding, the addition of oxygen
causes a change in surface tension, which results in a reversal of the Marangoni convection,
so the thermal cycle, temperature gradient, and cooling rate at different positions of the
weld are completely different. Generally speaking, the weld microstructure was not
obvious changed.
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Figure 14e,f show the microstructure of the heat-affected zone (HAZ) of weld joints.
Compared with the weld center, the temperature gradient in the weld heat-affected zone is
large, so the metallographic structure is mainly columnar crystals growing perpendicular
to the fusion line. The length of the heat-affected zone from TIG welding is 820 µm, and
the length of the heat-affected zone upon A-TIG welding is 500 µm. The heat generated by
the A-TIG welding arc mainly affects the center of the weld. Due to the heat-affected zone
of the weld cooling faster, the heat-affected zone from A-TIG welding is smaller than that
from conventional TIG welding.

The solidification mode of 1Cr21Ni5Ti duplex stainless steel’s weld pool was deter-
mined by considering the ratio of [Cr]eq/[Ni]eq by utilizing the Schaeffler formula [29],
where [Cr]eq and [Ni]eq represent respectively chromium and nickel equivalents, as illus-
trated in Equations (1) and (2).

After the welding process, the microstructure of the weld closely resembles that
of the 1Cr21Ni5Ti duplex stainless-steel substrate, suggesting a strong alignment. It is
hypothesized that the chemical composition of the weld metal mirrors that of the substrate.
For precise calculations, we referred to Table 1, which provides the chemical composition
of the 1Cr21Ni5Ti duplex stainless steel, enabling us to compute the chromium and nickel
equivalents in the weld metal.

[Cr]eq = WCr + WMO + 1.5WSi + WNb + 2WTi (1)
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[Ni]eq = WNi + 0.5WMn + 30WC (2)

The results are [Cr]eq = 0.22, [Ni]eq = 0.09, [Cr]eq/[Ni]eq = 2.44, the weld solidified in
dual ferritic-austenitic (FA) phase mode [30,31].Duplex stainless steel at high temperature
is composed entirely of δ-ferrite, and for the solid-state transformation into γ-austenite,
alloying elements need to be added to this process to promote and stabilize the formation
of the γ-austenite phase. During the cooling process of the weld, the liquid phase forms
δ-ferrite and gradually grows, and then the peritectic transformation occurs in the δ-ferrite
structure, and the γ-austenite grains are gradually precipitated to form γ-austenite. Finally,
a biphasic structure of δ-ferrite and γ-austenite is formed. The δ-ferrite is in a skeleton
shape and the γ-austenite is lamellar.

The size and orientation of the grain are key to improving the mechanical properties
of A-TIG-welded joints [32–34]. Further investigation into the microstructure of A-TIG-
welded duplex stainless steel was conducted by using EBSD technology, as depicted in
Figure 15.
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Figure 15a shows the IPF of the fusion-line positions with conventional TIG welding.
The IPF of conventional TIG welding indicates that there is an obvious preferred orientation
along the maximum temperature gradient, along the <101> direction. This experimental
result is consistent with the literature mentioned in [35], in which the vertical direction of
the fusion line is the maximum temperature gradient direction. In addition, the average
grain size of conventional TIG welding is about 63.6 µm, and the maximum value is
approximately 509.4 µm.

Figure 15b displays the inverse pole figures and grain distribution at the fusion-line
positions in A-TIG welding. The inverse pole figure (IPF) for A-TIG welding indicates the
presence of numerous fine grains oriented along the direction of the maximum temperature
gradient. The distribution of the grain orientation is relatively uniform, with a slightly
noticeable preferred orientation. This observation aligns with the optical microscopy (OM)
images depicted in Figure 14e,f. In the A-TIG welding process, an activated-fluxwas utilized
to facilitate welding. This not only enhanced the welding penetration and grain orientation
but also led to grain-size refinement. The primary reason for this improvement lies in the
hindrance of dislocation motion [36]. The average grain size in A-TIG welds measures
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approximately 24.7 µm, with the maximum value exceeding 352.4 µm. When compared
with conventional TIG welding joints, A-TIG welding results in welds with complete
penetration and a more disordered grain orientation. In summary, the introduction of
oxygen, facilitated by theactivated-flux, plays a crucial role in restraining weld grain
growth and impeding dislocation motion within the weld. Consequently, this process leads
to grain-size reduction.

Figure 16 shows the phase diagrams of the conventional TIG-welded joint and the
A-TIG-welded joint. Figure 16a displays the FCC structure and BCC structure in the
TIG-welded joint; the austenite (FCC) is represented by yellow, and the ferrite (BCC) is
represented by red. This result directly demonstrates that the cooling process of a duplex
stainless-steel weld leads to the formation of austenite and ferrite in the microstructure of
the weld. The volume fraction of ferrite is relatively small, only 0.006, and it is primarily
distributed at the boundaries of the austenite. Figure 16b displays the FCC structure and
BCC structure in the A-TIG-welded joint. Compared with conventional TIG welding, the
volume fraction of ferrite in the microstructure of the A-TIG weld is over 0.069, significantly
higher than that in conventional TIG welding. The most critical observation is that the
ferrite content in A-TIG welding increased by 91.3% compared with conventional TIG
welding. This could be due to factors such as the cooling rate, metallurgical environment,
and heat input in the A-TIG-welded joint cooling process.
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Figure 17. Microhardness distribution between conventional TIG welding and A-TIG welding. 

Figure 16. Phase figure in the fusion line of samples: (a) TIG; (b) A-TIG.

Figure 17 shows the microhardness distribution of welded joints. The distribution is
almost symmetrical, with A-TIG welding having an overall higher microhardness than
conventional TIG welding. The addition of oxygen also resulted in the formation of oxide
particles in the weld, thereby increasing the overall hardness of the weld.
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In Figure 18, the fracture morphology of 1Cr21Ni5Ti, conventional TIG welding, and
A-TIG-welded joints during tensile testing is presented, with fractures observed in the heat-
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affected zone. Figure 19 illustrates the tensile-test results. In all three tensile specimens, the
fractures occur in the base metal (BM), and they exhibit plastic deformation characteristics.
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The 1Cr21Ni5Ti duplex stainless steel possesses superplastic properties. Under ten-
sile forces, the metal crystal lattice undergoes elastic distortion, resulting in elastic defor-
mation, and the stress–strain relationship demonstrates stable growth. Beyond the plastic 
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The 1Cr21Ni5Ti duplex stainless steel possesses superplastic properties. Under tensile
forces, the metal crystal lattice undergoes elastic distortion, resulting in elastic deformation,
and the stress–strain relationship demonstrates stable growth. Beyond the plastic limit,
some crystals start to slide along specific crystal faces and directions, leading to plastic
deformation. At this point, the weld enters the strengthening stage, with stress steadily
increasing until it reaches a yield point, and the deformation of the material rapidly
increases. Plastic deformation then occurs at the weakest point of the test, reducing the
force-bearing area, subsequently causing a gradual decrease in tensile stress, initiating
necking until fracture. The tensile properties of the A-TIG welded joint exhibit good
performance, with a tensile strength slightly lower than that of the substrate. Conversely,
the conventional TIG-welded joint displays poor tensile properties.

Figure 20a,b show the tensile-fracture morphology of the tensile test. Figure 20c,d
show the tensile-fracture morphology of 1Cr21Ni5Ti. Figure 20e,f show the tensile-fracture
morphology of conventional TIG-welded joints. Figure 20g,h show the tensile-fracture
morphology of A-TIG-welded joints. After necking, the metal suddenly breaks, and
the tensile fracture is flush, which results in a brittle fracture. Fracture surfaces were
observed by SEM. Shear-lip areas exhibit oval-shaped dimples and other areas display
circular dimples of varying sizes, which correspond to the characteristics of a plastic
fracture and indicate well toughness of the well, as shown in Figure 20. Compared with
the microstructure of conventional TIG welding joints, the A-TIG welding joint has a
more delicate and even distribution of dimples. Large dimples are surrounded by smaller
dimples and tearing ridges. The main reason for this is that the weld contains a significant
amount of equiaxed grains, as shown in Figure 14c. The equiaxed structure in the weld
is isotropic, whereas the columnar structure is anisotropic. The presence of the equiaxed
structure in the weld enhances the isotropy of the weld. The tensile strength of A-TIG
welding is higher than that of conventional TIG welding because there is a certain amount
of equiaxed grains in the weld.
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Upon further analysis of the A-TIG-welded joint tensile-fracture morphology, some
weld particles appeared in the dimples. SEM for element content analysis reveals that
these weld particles are oxides formed by the addition of oxygen to the weld, as shown
in Figure 21 and Table 4. These weld particles create slag inclusions, which cause the
tensile strength to decrease, impede the movement of the dislocation in the weld, increase
the plasticity of the weld, and reduce the toughness of weld, ultimately resulting in an
A-TIG-welded joint tensile strength lower than that of a 1Cr21Ni5Ti duplex stainless-steel
substrate. Generally speaking, the oxygen content in A-TIG welding is moderate and has
little impact on the mechanical properties of the weld.
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Table 4. EDS test results of the P1 and P2 elements as shown in Figure 21b (wt.%).

Elements O Fe Cr Ni Ti Si

P1 40.3 41.4 14.7 2.7 0.6 0.3
P2 35.2 49.9 11.8 2.1 0.6 0.4

Figure 22 shows the macroscopic appearance of the fracture surface from an impact
test, and Figure 23 lists the impact energy (AK) for conventional TIG and A-TIG welds. The
impact energy (AK) of the A-TIG weld does not differ much from that of the 1Cr21Ni5Ti
duplex stainless-steel substrate, which indicates that when the amount of oxygen is mixed,
A-TIG can improve the mechanical properties of the weld.
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Figure 23. Impact-test result.

Figure 24a,b depict the impact-fracture morphology, while Figure 24c,d show the
impact-fracture morphology of 1Cr21Ni5Ti. Figure 24e,f present the impact-fracture mor-
phology of conventional TIG-welded joints, and Figure 24g,h showcase the impact-fracture
morphology of A-TIG-welded joints. The impact-fracture surface of the weld predomi-
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nantly consists of dimples, with larger dimples containing smaller ones. During deforma-
tion, second-phase points within the material gradually disengage from the matrix, forming
numerous micropores. Under stress, these micropores evolve into microcracks, ultimately
leading to a fracture. The final fracture surface exhibits irregular dimples, as depicted
in Figure 24. In terms of impact-fracture morphology, A-TIG welding displays finer and
more uniform pits compared with conventional TIG welding. Larger dimples are scattered
among the smaller ones. The weld exhibits a significant amount of equiaxed grains, as
shown in Figure 14c. This equiaxed structure in the weld is isotropic, contrasting with the
anisotropic columnar structure. Consequently, A-TIG welding demonstrates greater impact
strength compared with conventional TIG welding.

Metals 2023, 13, x FOR PEER REVIEW 15 of 18 
 

 

forming numerous micropores. Under stress, these micropores evolve into microcracks, 
ultimately leading to a fracture. The final fracture surface exhibits irregular dimples, as 
depicted in Figure 24. In terms of impact-fracture morphology, A-TIG welding displays 
finer and more uniform pits compared with conventional TIG welding. Larger dimples 
are scattered among the smaller ones. The weld exhibits a significant amount of equiaxed 
grains, as shown in Figure 14c. This equiaxed structure in the weld is isotropic, contrasting 
with the anisotropic columnar structure. Consequently, A-TIG welding demonstrates 
greater impact strength compared with conventional TIG welding. 

 
Figure 24. Fracture of a welded-joint impact test: (a,b,c,d) 1Cr21Ni5Ti;(e,f) TIG;(g,h) A-TIG. 

Upon conducting a thorough analysis of the impact-fracture surface of the A-TIG-
welded joint, numerous weld particles were observed within the dimples. These particles 
were larger in volume and possessed a wedge-like shape. They contributed to weld 
strengthening by impeding dislocation movement within the weld, consequently increas-
ing hardness while reducing toughness. Elemental analysis confirmed these particles to 

Figure 24. Fracture of a welded-joint impact test: (a–d) 1Cr21Ni5Ti; (e,f) TIG; (g,h) A-TIG.

Upon conducting a thorough analysis of the impact-fracture surface of the A-TIG-
welded joint, numerous weld particles were observed within the dimples. These particles
were larger in volume and possessed a wedge-like shape. They contributed to weld
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strengthening by impeding dislocation movement within the weld, consequently increasing
hardness while reducing toughness. Elemental analysis confirmed these particles to be
oxides, as depicted in Figure 25 and summarized in Table 5. During the welding process,
oxygen from the activator was introduced into the weld. Some of this oxygen formed
oxide inclusions within the weld, while the rest existed in the form of oxygen atoms within
the weld structure. The presence of these weld particles and oxides affected the crystal
structure, ultimately leading to lower impact energy in the A-TIG-welded joint compared
with the 1Cr21Ni5Ti duplex stainless-steel substrate. In summary, the oxygen content in
A-TIG welding is moderate and has a minor impact on the mechanical properties. However,
it is important to note that these oxides and weld particles contribute to weld strengthening
and increased hardness at the cost of reduced toughness.
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Table 5. EDS test results of the P1 and P2 elements as shown in Figure 25b (wt.%).

Elements O Fe Cr Ni Ti Si

P1 42.8 39.2 14.3 2.7 0.6 0.4
P2 49.5 33.4 14.6 1.5 0.8 0.2

4. Conclusions

Based on the above results and discussion, the influence of different activated-flux
and welding process parameters on weld surface formation, microstructure, and mechani-
cal properties was studied, and the mechanism of A-TIG weld-shape improvement and
penetration increase in stainless steel was analyzed. Finally, the main results are as follow:

1. In the A-TIG welding process of 1Cr21Ni5Ti stainless steel, the primary factor con-
tributing to the increased penetration depth was the reversal of Marangoni convection.
When employing the optimal activator ratio (0.033NiO + 0.632SiO2 + 0.037TiO2 +
0.162Cr2O3 + 0.137Al2O3) and optimal welding parameters (current I = 245A, speed
V = 80 mm/min), A-TIG welding achieved a 1.67-fold increase in weld penetration
depth compared with conventional TIG welding.

2. In terms of microstructure, A-TIG welding led to a significant improvement. It
reduced the overall grain size within the weld by 61.2%, with the maximum grain-size
shrinking by 30.8%, leading to a more disordered grain orientation. Furthermore, the
ferrite content showed a remarkable increase of 91.3%.

3. In contrast to conventional TIG welding, A-TIG-welded joints demonstrate notable
improvements in several aspects. These include a higher overall hardness, an in-
creased tensile strength of 10.3%, a substantial elongation increase of 69.2%, and a
noticeable enhancement in impact energy of 16.3%.
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