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Abstract: The increased recycling in aluminum production has raised the impurity content in the
industry, thus increasing its effect on mechanical characteristics and making it difficult for recycled
products to meet the properties’ goals as their effect is not yet sufficiently known. Therefore, the
two main impurities (Fe and Si) in standard aluminum rolling mill products of alloy 5754 were
investigated to determine their effects on the ultimate tensile strength (UTS). After analyzing the
composition, mechanical properties, and microstructure, the relationship of both impurities with the
UTS in fully annealed products was estimated by statistical analysis, obtaining a strong influence of
Si and Fe.
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1. Introduction

The market forecasts a continuous growth of aluminum alloy demand until at least
2050 [1,2]. This, based on the thesis of facing finite resources and environmental sustain-
ability issues, involves an important risk: the need to resort to recycling, as already pointed
out in the UN Sustainable Development Goals in Goal 12 “Responsible Consumption and
Production”, aiming at a circular economy with ideally 100% recycling [3].

This, combined with government policies and the economic advantage of recycling,
has led the aluminum industry to increase its recycling rate to 50–90%, depending on the
company, region, and product [4–10].

Aluminum production is classified by manufacturing methods into wrought and cast
products, which are divided into alloys, and these are grouped into series depending on
which is the main alloying element.

The wrought alloys are grouped into the following series: 1xxx: purity (<1% by mass
of other elements); 2xxx: copper; 3xxx: manganese; 4xxx: silicon; 5xxx: magnesium; 6xxx:
silicon and magnesium; 7xxx: zinc; and 8xxx: others. In the cast production, Si is the main
alloying element [11].

This series scenario is important to understand the actual impurities contribution
since, within the aluminum scrap with such typical alloys and considering that the industry
is currently far from segregating the scrap with perfect efficiency, a significant amount of
the impurities will be due to these five alloying elements (in addition to the contaminations
and initial impurities, mainly Fe) [9–12].

Hence, these impurities are irreversibly incorporated into the product once it is melted
because currently, there are no industrially and economically viable methods for purifying
low-purity aluminum [9,10,13–15].
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The impurity content of products will increase as recycling cycles continue, and
the impurity content of scrap will not consequently decrease. This, combined with the
increasing interest in recycling, will result in products being loaded with impurities up to
the maximum allowable limit. This occurs, for instance, in the 5xxx series alloys with Si,
which is a key impurity in this series.

The scrap used by the foundries for the production of the 5xxx series alloys, in addition
to the internal or process scrap at each plant (which will correspond to the same alloy),
shall come mainly from the 6xxx series alloys [16] with a Si content close to 0.6%w/w [11]
or higher in case of contamination with casting alloys, which are increasingly available in
the scrap market and for whose products there is less demand, thus reducing the amount of
scrap contaminated with high Si contents that can be diverted for their production. [1,9,16]
This means that the Si content in the alloys of this series is increasing.

A study was carried out with the company Aludium regarding Si content levels in the
5754 alloy, of which a significant amount is currently produced (more than 50,000 tons per
year) Figure 1.
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As seen in the graph, the Si content in 5754 products tripled from 0.1% to 0.3% from the
third quarter of 2018 to the third quarter of 2022, with a maximum limit of 0.40% according
to EN573-3 [17]. Specifically, most of the increase occurred between the fourth quarter
of 2018 and the second quarter of 2020, coinciding with an increase in the percentage of
external scrap in the melt mix to produce this alloy (from approximately 10% to 50%).

This increase is explained by the increased use of external scrap or the switch to
external scrap more contaminated in Si, so that with each production cycle the internal
scrap becomes more contaminated, increasing the Si content in the final product up to a
maximum level, which can be approximated by Equation (1) (the Si contribution of primary
aluminum is neglected).

%Si ≈ External Scrap %Si ∗ % External Scrap
1 − % Internal Scrap

(1)

Since the amount of internal scrap is not easily variable because it depends on produc-
tivity, and returns to low Si values it would be necessary to use cleaner external scrap, with
the consequent economic cost, or to reduce the use of scrap, with the consequent economic
and environmental cost.

Because of these costs, these high levels of Si will likely continue to be tolerated until a
purification system can be implemented.

Another problem is that with the higher use of external scrap, the content of Si will
eventually exceed the allowed limit by the EN standard in the alloy. This could be solved by
changing the silicon limits in the standard to accommodate current recycling requirements,
although a higher percentage of Si may create other problems [18–20].
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This example is not far from the situation in many other high-capacity recycling
facilities and can be extended to other impurities and alloys [1,11,16,21], such as Fe in
the same aluminum alloy (Figure 2). Not only will impurity levels be a major limiting
factor in recycling until purification systems are implemented, but they will also pass from
negligible percentages to alloy-like concentrations.
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In the past, detailed studies [18,20] explaining the effects of chemical constituents on
the properties of an aluminum alloy were limited to the alloying elements themselves,
while the effect of impurities on many properties (especially mechanical properties) was
less evaluated due to their very low content [22]. However, as shown above, this is no
longer the case, so the study of their effects on the properties of the final product is of great
interest, as recent publications have shown [9].

Since the Si and Fe contents in alloy 5754 will remain high in the near future, their
effect on the ultimate tensile strength (UTS) was studied. The current literature teaches that
constituents (alloying elements or impurities) tend to strengthen the metal, either in solid
solution, by hindering the movement of atoms, or by forming precipitates that anchor the
grains and thus hinder the deformation [23].

It is known that Fe refines the grain by precipitating particles that stimulate nucleation
(particle-stimulated nucleation [24]), thereby increasing the UTS in what is known as the
grain refinement hardening effect or the Hall–Petch effect [25]. This mechanism is exploited
in the 8xxx series where Fe is alloyed, such as in alloys 8005, 8006, and 8011 [19,23,26].

Si, like all the constituents, strengthens the alloy and produces particles that increase
the UTS, as is the case in the 4xxx series. In the 6xxx series, the Si combined with the Mg
increases the UTS through a heat treatment that exploits the precipitation of magnesium
silicides (Mg2Si) [27,28].

Therefore, in alloy 5754, it was expected that both impurities (Fe and Si) would increase
the UTS. To verify this, this study was carried out, which also seeks to quantify the effect of
these impurities on the ultimate tensile strength [9,19].

2. Materials and Methods

The composition and mechanical property data of alloy 5754 products of Aludium
were studied to determine the effect of these impurities on the ultimate tensile strength
(UTS). The composition was determined with an optical emission spectrometer (Quantome-
ter) model ARL 3460 and 3560 (ThermoFisher SARL, Ecublens, Switzerland) from samples
taken from the liquid metal (molten aluminum) with a horizontal disk tester. The UTS
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was measured on an Instron 5985 universal testing machine (Instron GmbH, Darmstadt,
Germany) using an ISO 6892-1 test [29].

A rolled product not submitted to cold rolling was selected from the production of
5754 of Aludium for this study. Thus, it is a product in the total annealing condition, which
is the one with the lowest UTS due to the heat treatment, namely, the Product A sample [30].

Statistical samples were generated from Product A data in which the contents of Si,
Fe, and Mg (the major alloying element of 5754) varied while the contents of the other
elements were fixed or within a narrow range. Pearson’s correlation coefficient was used to
determine the relationship between the Si, Fe, and Mg contents and UTS. The structure,
matrix, and constituent contents of five samples of Product A with similar Mg contents but
different Si contents were analyzed by field emission scanning electron microscopy using a
Thermofisher FESEM model APREO 2 scanning electron microscope (Thermofisher SARL,
Ecublens, Switzerland).

To quantify the effect of impurity content on UTS, a multiple linear regression
(Equation (2)) was performed selecting the contents of Si, Fe, and Mg (single or combined)
as independent variables (matrix [X]) and the UTS values [Y] as dependent variables,
obtaining the factors that multiply the content of each element to estimate the UTS [F].
This regression assumes that the UTS does not depend entirely on the dependent variables
(0%w/w of Si, Fe, and Mg does not mean zero UTS).

[F] =
(
[X]t ∗ [X]

)−1
∗ [X]t ∗ [Y] (2)

To compare the influence of impurities on the UTS of cold-reduced products, a product
with the same alloy as Product A and under the same conditions but with a higher cold
reduction before total annealing, was analyzed and identified as Product B. Its data were
also statistically analyzed.

All the material analyzed comes from industrial production with an inherent variability
much greater than that of a laboratory, therefore a greater relevance will be given to the
correlations found than would be the case in a study confined to a laboratory.

3. Results and Discussion

In the Product A sample, the correlation (R) between Fe and the ultimate tensile
strength (UTS) is very low (R = 0.03), but there appears to be a certain negative relation-
ship between the Si content and UTS (R = −0.38). (The latter seems to contradict the
strengthening effect of Si expected from the literature.

To understand the hardening mechanism of Mg, is necessary to explain this negative
correlation between the Si content and the UTS. The main alloying element in a 5xxx series
alloy, Mg, is the most hardening element due to the distortion in the aluminum atomic
lattice produced when in solid solution [18,19,23,26,31,32]. A strong correlation (R = 0.77)
is obtained between the Mg content and the UTS of the selected sample. It is known that Si
in the presence of Mg precipitates as Mg2Si, which is in fact the hardening mechanism of
the 6xxx series [27,33]. The hypothesis would be that the softening effect found in Si comes
from its combination with Mg atoms, taking it out from solid solution to precipitate Mg2Si
constituents, which no longer exerts a hardening effect on the lattice. Therefore, Si inhibits
the hardening effect of Mg in 5754 (and all 5xxx series).

The reason for these Mg2Si precipitates not increasing the UTS, as in the 6xxx, is that
they have not been heat treated to achieve a fine and homogeneously dispersed precipitate,
but they have cooled slowly down in the Mg2Si precipitation zone, producing large particles
that do not have the hardening mechanisms that occurred in the 6xxx series [18,23,27].

Five test pieces of Product A with different Si contents but similar Mg levels were
selected to support this hypothesis, with the following results (Table 1). In addition, the
precipitates present were analyzed to verify where the Mg deficit was located in the solid
solution.
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Table 1. Si and Mg composition (%w/w) of the specimens.

Specimen Si (%wg) Mg (%wg)

1 0.13 2.89

2 0.22 2.89

3 0.26 2.84

4 0.32 2.90

5 0.33 2.86

First, it can be observed that a higher Si content leads to a higher precipitation of Mg2Si
(Figure 3), which is the constituent with the vast majority of Mg from the solid solution
(Table 2).
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Table 2. Composition of the analyzed precipitates (carbon and oxygen measurements have been
disregarded).

%w/w Si Fe Mn Mg Al

Mg2Si 37.62 - - 62.08 0.29

Al-Fe-Mn-Si 3.05 27.99 7.45 1.70 59.82
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The solid solution composition of each specimen was analyzed using SEM-EDX
equipment (Thermofisher SARL, Ecublens, Switzerland) to determine the Mg content,
Table 3.

Table 3. Mg in solid solution of each specimen (semi-quantitative data).

Specimen Average Mg in Solid Solution (%w/w)

1 2.79

2 2.58

3 2.59

4 2.51

5 2.36

From these semiquantitative data and the Si and Mg contents of each sample (Table 1),
the graph in Figure 4 shows how precipitated Mg (difference between %Total Mg and %Mg
in solid solution) increases with increasing Si content.
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present in solid solution.

The slope of the equation (Figure 4) approximating the points obtained (−1.7) is
close to the one that would determine the stoichiometric ratio of the Mg2Si precipitation
reaction (Equation (3)), using the atomic weights of both elements (Si = 28.09 g/mol,
Mg = 24.31 g/mol). [34]

2 Mg + 1 Si = 1 Mg2Si− 1 Si unit o f mass
28.09 g·mol−1 ·2·24.31 g·mol−1 = −1.73 Mg units o f mass (3)

Next, a subsample from the data of Product A in which only Si and Mg contents
vary, while the other elements are kept at fixed values (or narrow ranges) was selected. A
multiple linear regression was performed on this sample with the Si and Mg contents as
the independent variables and the UTS values as the dependent variable (Equation (2)),
obtaining Equation (4).

UTS (MPA) ≈ 127 − 34 ∗ (%SI) + 31 ∗ (%Mg) (4)
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The results obtained by estimating the UTS with Equation (4) and the real data are
relatively well correlated (R2 = 0.740), with an average estimation error of 1.6 MPa (Figure 5).
This error can be easily explained by other hardening factors, such as variations in the
process or deviations from the mean obtained in the mechanical properties tests.
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Other studies have already studied in detail the hardening effect of Mg, which indicates
a hardening effect close to 27 MPa per weight unit of Mg content in the total annealing
condition, a value close to 31 MPa of Equation (4) [31]. The softening effect of Si is equal
to the effect of Mg multiplied by −1.1, thus not coinciding with the stoichiometric ratio
of Mg2Si precipitation (−1.7), although this deviation may be due to various factors such
as collinearities with other elements that could not be avoided. Thus, the data used show
that Si has a negative effect on the UTS of this 5754 product, although it is not possible to
determine the magnitude of this effect without a more detailed study.

The formula obtained is applied to a new subsample in which the Fe content value is
not fixed, resulting in a lower fit (Figure 6) and a slightly higher mean error: 1.6 MPa.
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Having established that the effect of Si and Mg follows Equation (4), where one of the
dependent variables is the result of the application of this equation and the other is the Fe
content, another regression was performed, obtaining a new approach (Equation (5)) with
the adjustment shown in Figure 7 and an average error of 1.5 MPa.

Rm(MPA) = 126 − 34 ∗ (%Si) + 31 ∗ (%Mg) + 9 ∗ (%Fe) (5)
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Although the R2 coefficient in Figure 7 is higher, the improvement is negligible. This
can be due to the small amount of Fe (Equation (6)) and therefore does not significantly
correct the estimation, which would also explain the low correlation found between Fe
content and UTS in Product A.

This small effect of Fe, which can be quantified as 9 MPa per 1% Fe, does not seem to
agree with the 40 MPa per weight unit of Fe in the total annealed condition found in other
studies [9,35]. However, when other products that have a higher cold reduction (Product
A has no cold reduction) are analyzed, a greater relevance of the effect of Fe on the UTS
is observed. Therefore, a product with the same alloy as Product A and under the same
conditions but with a higher cold reduction before total annealing was studied, previously
indicated as Product B.

In the composition and UTS data of Product B, a correlation of the latter with Si (−0.36)
and Mg (0.71) as in Product A was found, but with the Fe being much higher (0.21). By
multiple linear regression an estimation of the UTS (Equation (6)) with slightly higher
values of the effects of Mg and Si concerning those of Product A, but with a much greater
effect of Fe (9 << 32) was obtained.

UTS(MPA) = 103 − 48 ∗ (%Si) + 42 ∗ (%Mg) + 32 ∗ (%Fe) (6)

This increase could be due, in the case of Mg, to a greater distortion of the lattice by the
Mg atoms in solid solution during cold rolling, which is not recovered by the final annealing,
a phenomenon known as the relationship between the work hardening coefficient and
the Mg content [9,36]. This explains why, to the extent that Si inhibits the effect of the
former, the ratio between the two effects in Product B concerning that of Product A is
maintained (−1.1).
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The increase in Fe hardening is consistent with the theory that particles stimulate nucle-
ation during recrystallization to produce finer grains (particle-stimulated nucleation). This
nucleation is facilitated by dislocations present in the lattice prior to recrystallization [24].
This, as mentioned above, increases the UTS due to the grain refinement hardening effect
or Hall–Petch effect [25]. Since there is a greater cold reduction prior to recrystallization
in Product B, there will be a greater number of dislocations in the lattice and the Fe con-
stituents will be able to stimulate a higher degree of nucleation, therefore achieving a
larger particle refinement and higher UTS in Product B. This explanation coincides with
the negative effect of Fe on the UTS found in castings where no lamination occurs and
therefore particle-stimulated nucleation cannot occur. Analysis with transmission electron
microscopy could help to confirm this mechanism in future research [18,20,21].

4. Conclusions

In this study, the growth of Si and Fe contents in alloy 5754 was observed, and their
limiting character in the design of casting recipes with the available raw materials. In
addition, statistical analysis of the production of the company Aludium revealed the
negative effect of Si on the ultimate tensile strength (UTS) in the total annealed products by
causing a deficit of Mg in solid solution by precipitation of Mg2Si, an effect that increases in
products with greater cold reduction prior to the final annealing. This increase is greatest
in the hardening effect of Fe, which has been found to be highly dependent on the level of
cold reduction performed prior to total annealing.

This discovery has allowed the development of three equations that estimate the UTS
of total annealed rolled products of alloy 5754 with less than 2% mean error. This will help
to optimize the compositional design of new recycle-based products and to improve what
has been recently named the science of dirty alloys [9].

Future research will illustrate the effect of all constituents on the ultimate tensile
strength, yield strength, and elongation by including other alloys and extending to other
tempers so that the interaction between the different stages of the manufacturing process
and the effect of each constituent of the alloy on its mechanical properties can be observed.
In this way, it will be possible to identify the drawbacks and advantages of this new
composition scenario to design measures able to mitigate the former and enhance the latter.
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