
Citation: Fideles, F.F.d.M.; Florez,

M.A.C.; Rodrigues, M.V.G.; Cardoso,

J.L.; Aranas, C., Jr.; Rodrigues, S.F.;

Lima, M.N.d.S.; Pascoal, C.V.P.; de

Moura, T.A.; Reis, G.S.; et al.

Influence of the Morphology of

Eutectoid Steels on Corrosion

Resistance in NaCl Aqueous Medium

with and without CO2. Metals 2023,

13, 1782. https://doi.org/10.3390/

met13101782

Academic Editors: Jianqiang Wang,

Facundo Almeraya-Calderón, José

Guadalupe Chacón-Nava and

Citlalli Gaona-Tiburcio

Received: 25 August 2023

Revised: 14 October 2023

Accepted: 19 October 2023

Published: 20 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Influence of the Morphology of Eutectoid Steels on Corrosion
Resistance in NaCl Aqueous Medium with and without CO2

Francisco Felipe de M. Fideles 1, Mauro Andres C. Florez 1, Maria Veronica G. Rodrigues 2 , Jorge Luiz Cardoso 1,
Clodualdo Aranas, Jr. 3,*, Samuel F. Rodrigues 1,2,* , Marcos Natan da S. Lima 1,2 , Caio Victor P. Pascoal 4 ,
Thiago Alves de Moura 5, Gedeon S. Reis 2 , Eden S. Silva 2 and Hamilton F. Gomes de Abreu 1

1 Materials Characterization Laboratory (LACAM), Department of Metallurgical and Materials Engineering,
Federal University of Ceará, Campus Do Pici, Bloco 729, Fortaleza 60020-181, Brazil;
felipefideles@alu.ufc.br (F.F.d.M.F.); mauro.cerra@metalmat.ufc.br (M.A.C.F.); jorge@metalmat.ufc.br (J.L.C.);
natan.lima@alu.ufc.br (M.N.d.S.L.); hamilton@ufc.br (H.F.G.d.A.)

2 Graduate Program in Materials Engineering, Federal Institute of Education, Science and Technology of
Maranhão, São Luís 65075-441, Brazil; veronica.goncalves@acad.ifma.edu.br (M.V.G.R.);
gedeonreis@ifma.edu.br (G.S.R.); eden.silva@ifma.edu.br (E.S.S.)

3 Mechanical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
4 Corrosion Research Laboratory (LPC), Department of Metallurgical and Materials Engineering, Federal

University of Ceará, Campus Do Pici, Bloco 729, Fortaleza 60020-181, Brazil; caiovictorppascoal@alu.ufc.br
5 Analytical Center, Physics Department, Federal University of Ceará, Campus Do Pici, Bloco 928,

Fortaleza 60020-181, Brazil; thiagomoura@fisica.ufc.br
* Correspondence: clod.aranas@unb.com (C.A.J.); samuel.filgueiras@ifma.edu.br (S.F.R.);

Tel.: +55-151-4862-7983 (C.A.J.); Tel.: +55-989-8517-9142 (S.F.R.)

Abstract: This study conducts a comparative electrochemical evaluation of three types of pearlitic
steels used in flexible pipelines for oil transport in marine environments. The steels have been
manufactured with chemical composition and geometry variations to optimize operation performance
under adverse conditions. Electrochemical tests were conducted using solutions simulating marine
environments with NaCl and CO2, and at high temperatures. The results indicated that spheroidized
(SC) steel demonstrated the best corrosion resistance under these specific conditions. Additionally,
the Raman spectroscopy characterization technique was used to analyze the layers of corrosion
products formed during the tests, identifying the presence of FeCO3 (siderite) and other corrosive
oxides. These discoveries are valuable for selecting and improving materials in flexible pipelines
used in oil production in marine waters. The study highlights the importance of the cementite
morphology present in pearlite as a relevant factor in the corrosive behavior of steels, contributing to
the development of more efficient and durable solutions for the offshore oil and gas industry.

Keywords: pearlitic steels; electrochemical evaluation; corrosion resistance; NaCl; CO2 ;
Raman spectroscopy

1. Introduction

The offshore oil industry includes, as a cost of its operations, the purchase and main-
tenance of crude oil exploration pipelines. The pipelines, called risers, connect a floating
offshore oil production structure to the subsea production system [1,2]. These risers have
several layers of metallic and polymeric materials, and their main characteristics are tensile
strength, collapse, internal pressure, attack by chemical products, ease of installation and
reuse, and flexibility, among others [3,4].

In the region called the annular space, the tension reinforcements that support the
axial loads of the pipeline and the pressure reinforcements that provide the pipeline with
the capacity to withstand its internal pressures are positioned in overlapping layers. In
this confined space between the layers, material failure can occur through the phenomena
known as sweet corrosion and other structural damage caused by corrosion [5,6].
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The evaluation of the tensile strength of wires subjected to severe corrosion condi-
tions with CO2 and NaCl is of interest to the oil industry, in addition to appealing to
companies manufacturing risers that develop materials with different compositions and
heat treatments. The application of other materials and in environmentally unfavorable
conditions are relevant factors for the industries that manufacture such components since,
for these reasons, the optimization and quality of the final product are essential [7,8]. CO2
gas has a very damaging effect on the surface of steel, especially due to forming H2CO3,
an acidic compound that can lead to the rupture of pipelines and other oil production
structures [9,10].

Although this type of structure is vital for the oil industry to guarantee productivity
and a safe environment, few studies have investigated them in conditions that can simulate
the application of the main components of these risers when in service. Therefore, this
work aims to correlate the corrosion resistance of pearlitic steels with different cementite
profiles under various atmospheric conditions. NaCl solution with the presence of CO2
and at different temperatures was evaluated. Raman spectroscopy was also used to verify
the presence of oxides and salts resulting from corrosion products on the material’s surface.

2. Materials and Methods
2.1. Materials

The materials used in this study were pearlitic steel (eutectoid) used as tensor armors,
received in the form of wires, initially called wires A, B and C, as shown in Figure 1.
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Figure 1. Wire format in its received condition: (A) flat (1.29 cm× 0.69 cm), (B) twisted (1.21 cm× 0.60 cm)
and (C) bent (1.23 cm× 0.72 cm).

The chemical composition (wt%) of the wires, as shown in Table 1, was determined by
using an optical emission spectrometer, model PDA 70000 (Shimadzu, Kyoto, Japan).

Table 1. Chemical composition (wt%) of the wires.

Wire C Mn Si S + P Cr + Ni +V Al Mo +Ti Fe
A 0.77 0.50 0.20 0.014 0.054 - 0.007 bal
B 0.76 0.56 0.18 0.014 0.041 - 0.005 bal
C 0.73 0.58 0.26 0.008 0.038 0.033 0.005 Bal

2.2. Microstructural Characterization of the Wires

For the acquisition of micrographs of the wires, a scanning electron microscope (SEM)
Quanta 450 FEG–FEI was used The wire samples were embedded in Bakelite, ground
from 100 to 1200 mesh and polished with diamond paste from 3 to 1 µ. The samples were
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sprayed with alcohol and blow dried. They were then etched with 2% Nital to reveal their
microstructure. The samples were evaluated close to the external faces of the wires.

2.3. Electrochemical Tests

For the electrochemical tests, samples with an area of approximately 42 mm2 (surfaces
of the wires) were used. ASTM G1-03, Standard Practice for Preparing, Cleaning, and
Evaluating Corrosion and Test Specimens, ASTM, International, West Conshohocken PA,
2011 were used. The samples were embedded in epoxy resin, ground from 100 to 600 mesh,
sprayed with alcohol and blow-dried. An enamel was used to prevent crevice corrosion
between the resin and the sample. For the corrosion tests, a conventional three-electrode
cell was used. The working electrode was the wire samples, the counter electrode was a
platinum plate and the reference electrode used was an Ag(s)/AgCl(s)/Cl-(aq)KCl electrode.
All tests were performed in triplicate to ensure repeatability. The equipment used was a
potentiostat model PGSTAT30 (Autolab, Methrom-Eco Chemie) connected to a computer
by the software NOVA 2.1. The polarization curves were scanned from−0.1 V to 2.0 V from
OCP at a rate of 1 mV/s. When the current density reached 1 mA, the tests ended. The
electrolyte was an aqueous solution of 3.5% NaCl and CO2 bubbling (99.99 purity) at a flow
rate of 1 × 10−4 m3/s. The solution was deaerated with N2 before the tests. The corrosion
tests were conducted at room temperature and 80 ◦C [11]. A different test condition was
used for each wire, as shown in Table 2. From here on, wires, A, B and C are named as
spheroidized (SC), lamellar (LC), and discontinuous (DC) structured, respectively. These
are classified according to the specific presented microstructure in the material that a local
oil company supplied.

Table 2. Conditions of the experiments.

Cementite Condition Condition in 3.5% NaCl
SC, LC and DC Saturated with CO2 at 80 ◦C
SC, LC and DC Saturated with CO2 at room temperature
SC, LC and DC Aerated and at room temperature

2.4. Raman Spectroscopy

Raman spectroscopy was performed using Witec Alpha 300 equipment, grating of
600 grooves/mm. Excitation was achieved with a 532 nm wavelength laser. The sample
utilized for this characterization technique was the one that presented the most severe
corrosion situation. The Raman spectral range reading was from 200 to 2000 cm−1 since
the main oxides found in the previously evaluated databases were in this range.

3. Results
3.1. Characterization of the Cementite of the Wires

Figure 2 shows three different types of microstructure at the cross-section of each
sample. In Figure 2a, the micrograph of wire A can be seen. It is possible to visualize the
presence of globular cementite and discontinuous pearlite (brittle). This wire was called
spheroidized cementite (SC). A lamellar pearlite microstructure can be seen in Figure 2b.
This wire was called lamellar cementite (LC). Figure 2c shows a discontinuous cementite
microstructure. This wire was called discontinuous cementite (DS).
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Figure 2. Microstructure of (a) spheroidized cementite, (b) lamellar cementite and (c) discontinuous
cementite.

3.2. Electrochemical Tests

The graphs with the respective open circuit polarization (OCP) and potentiodynamic
polarization curves obtained from the electrochemical tests are presented in Figures 3–8.
These experiments were carried out with the three samples (SC, LP, and DP). NaCl solutions
(3.5%) mixed with and without CO2 were used in both specimens. Tests were performed at
room temperature and at 80 ◦C. During the tests, the pH was recorded by means of a pH
meter, obtaining the following values for the respective solutions: saturated with CO2 at
80 ◦C (pH 3–4); saturated with CO2 at room temperature (pH 4–5); aerated and at room
temperature (pH 6–7).

3.2.1. Electrochemical Tests for the SC Wire

The graphs of potentiodynamic polarization and OCP can be seen in Figures 3 and 4.
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Figure 4. Potentiodynamic polarization curves for SC wire in the aqueous solution of 3.5% NaCl
saturated with CO2 at 80 ◦C, saturated CO2 at room temperature (23 ◦C), and aerated at room
temperature (23 ◦C).

Figure 3 shows that the time established for the OCP was 900 s (15 min), the same
as used for the other tests, due to the stabilization of the potential applied to the material.
There was great similarity between the OCP’s of the SC in the condition in which there
was saturated CO2. However, this same potential was not close in the absence of CO2
condition. This fact demonstrates the greater sensitivity of the SC sample to carbon dioxide.
On the other hand, using a different temperature from the ambient one did not show a
great difference when the sample was submitted to 80 ◦C.

Figure 4 shows the potentiodynamic polarization curves for SC microstructure wire.
In this graph, the samples in the CO2 medium showed a higher anode current density
(ACD), showing that the samples were more susceptible to corrosion. A difference was
noticed between the corrosion resistances for each sample since, on the y-axis, it is possible
to identify the current density of the specimens by the Tafel extrapolation method. These
ACDs were very similar between the samples with saturated CO2 at 80 ◦C and room
temperature, while the aerated sample at room temperature showed lower ACD. Regarding
the two saturated CO2 specimens, this effect of low corrosion resistance is due to the
acidifying power generated by CO2, forming H2CO3 when in contact with water in the
electrolyte [12]. This fact can be proven by the pH reduction measured in this solution,
reaching values between 3 and 4.

CO2 corrosion in steels can contribute to forming FeCO3 (iron carbonate or siderite),
significantly reducing corrosion rates. This occurs when the concentrations of Fe2+ and
CO3

2− ions exceed the solubility limit for the evaluated solution [13]. This characteristic
can affect the material, depending on its morphology. This mechanism can be explained
because, once CO2 is dissolved in water, carbonic acid is formed, and it is harmful to carbon
steel. Equations (1a)–(1e) detail these reactions [14]:

CO2 + H2O↔ H2CO3 (1a)

2H2CO3 + 2e− → H2 + 2HCO3
− (1b)

2HCO3 + 2e− → H2 + 2CO3
2− (1c)

2H+ + 2e− → H2 (1d)

Fe→ Fe2+ + 2e− (1e)
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Equation (1a) (oxy-reduction) and Equations (1b)–(1d) are cathodic reactions (reduc-
tion) and Equation (1e) is anodic (oxidized). The reaction in Equation (2) helps us to
understand the mechanism of iron carbonate formation, because when the Fe2+ and CO3

2−

ions exceed the solubility limit, FeCO3 is formed [15,16]:

Fe2+ + CO3
2− → FeCO3 (2)

Some authors affirm the existing correlation between temperature increase and sus-
ceptibility to siderite formation, depending on the morphology [17–19].

3.2.2. Electrochemical Tests for the LC Wire

Figures 5 and 6 represent the OCP and potentiodynamic polarization tests for the LC
wire in an aqueous medium of 3.5% NaCl saturated with CO2 at 80 ◦C, saturated with CO2
at room temperature, and aerated at room temperature.

Metals 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

Fe → Fe2+ + 2e− (1e)

Equation (1a) (oxy-reduction) and Equations (1b)–(1d) are cathodic reactions (reduc-
tion) and Equation (1e) is anodic (oxidized). The reaction in Equation (2) helps us to un-
derstand the mechanism of iron carbonate formation, because when the Fe2+ and CO32− 
ions exceed the solubility limit, FeCO3 is formed [15,16]: 

Fe2+ + CO32− → FeCO3 (2)

Some authors affirm the existing correlation between temperature increase and sus-
ceptibility to siderite formation, depending on the morphology [17–19]. 

3.2.2. Electrochemical Tests for the LC Wire 
Figures 5 and 6 represent the OCP and potentiodynamic polarization tests for the LC 

wire in an aqueous medium of 3.5% NaCl saturated with CO2 at 80 °C, saturated with CO2 
at room temperature, and aerated at room temperature. 

 
Figure 5. OCP curves for LC wire in aqueous solution of 3.5% NaCl with saturated CO2 at 80 °C, 
saturated CO2 at room temperature (23 °C) and aerated at room temperature (23 °C). 

 
Figure 6. Potentiodynamic polarization curves for LC wire in aqueous solution of 3.5% NaCl with 
saturated CO2 at 80 °C, saturated CO2 at room temperature (23 °C) and aerated at room temperature 
(23 °C). 

Figure 5. OCP curves for LC wire in aqueous solution of 3.5% NaCl with saturated CO2 at 80 ◦C,
saturated CO2 at room temperature (23 ◦C) and aerated at room temperature (23 ◦C).

Metals 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

Fe → Fe2+ + 2e− (1e)

Equation (1a) (oxy-reduction) and Equations (1b)–(1d) are cathodic reactions (reduc-
tion) and Equation (1e) is anodic (oxidized). The reaction in Equation (2) helps us to un-
derstand the mechanism of iron carbonate formation, because when the Fe2+ and CO32− 
ions exceed the solubility limit, FeCO3 is formed [15,16]: 

Fe2+ + CO32− → FeCO3 (2)

Some authors affirm the existing correlation between temperature increase and sus-
ceptibility to siderite formation, depending on the morphology [17–19]. 

3.2.2. Electrochemical Tests for the LC Wire 
Figures 5 and 6 represent the OCP and potentiodynamic polarization tests for the LC 

wire in an aqueous medium of 3.5% NaCl saturated with CO2 at 80 °C, saturated with CO2 
at room temperature, and aerated at room temperature. 

 
Figure 5. OCP curves for LC wire in aqueous solution of 3.5% NaCl with saturated CO2 at 80 °C, 
saturated CO2 at room temperature (23 °C) and aerated at room temperature (23 °C). 

 
Figure 6. Potentiodynamic polarization curves for LC wire in aqueous solution of 3.5% NaCl with 
saturated CO2 at 80 °C, saturated CO2 at room temperature (23 °C) and aerated at room temperature 
(23 °C). 

Figure 6. Potentiodynamic polarization curves for LC wire in aqueous solution of 3.5% NaCl with
saturated CO2 at 80 ◦C, saturated CO2 at room temperature (23 ◦C) and aerated at room temperature
(23 ◦C).

Figure 5 indicates that the LC wire OCP showed very similar results between the
specimens submitted to CO2, demonstrating once again that the influence of temperature is
not very important for the established corrosion conditions when it comes to the corrosion
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potential of the material. However, the OCP values were less negative when carbon dioxide
was removed.

In Figure 6, which establishes the result for the polarization curves, the established
difference between the current densities is denoted. Among the specimens with the pres-
ence of carbon dioxide, the sample showed greater susceptibility to corrosion. The sample
tested in the presence of a temperature different from room temperature proved to be the
most prone to corrosion, since its current density was higher. In turn, the aerated sample at
room temperature was the one that showed the lowest susceptibility to corrosion.

3.2.3. Electrochemical Tests for the DC Wire

Figures 7 and 8 show the OCP and the potentiodynamic polarization curves for the
DC wire.
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Unlike previous samples, in which there was considerable similarity between the OCP
results for those saturated with CO2, the DC wire (Figure 7), there was not a big difference.
For this specimen, it is believed, based on the results presented, that the temperature added
greater corrosion capacity, since its OCP was more negative. In a corrosion process without
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the formation of a protective film on the surface, the increase in temperature increases the
corrosion rate [12], which directly applies to the described case.

The current densities are indicated in Figure 8. Notably, the potential distance and
current densities of the sample in saturated CO2 at room temperature are quite similar to
those of the other solutions.

3.3. Characterization of the Corrosion Product by Raman Spectroscopy

The analysis of the surfaces of specimens submitted to a corrosive environment is
intended to evaluate possible oxides that form on the surface of the samples. Characteri-
zation techniques such as SEM (scanning electron microscopy), EDS (energy dispersion
X-ray spectroscopy) and Raman spectroscopy are the main methodologies used to obtain
information on layers deposited on materials, once subjected to adverse conditions.

The technique used in this study was Raman spectroscopy. It was intended to in-
vestigate the formation of oxides on the surface of the material that can help reduce the
corrosive process, simulating a passive layer. The main films that can form on the studied
samples, in this study and in conditions similar to the corrosion evaluated here, are FeCO3,
Fe3O4, and Fe2O3 [20,21].

SC Sample in Aqueous NaCl Medium

The evaluation started with the SC sample being subjected to the most severe corrosion
conditions when using the NaCl solution. Figure 9b shows black regions where the material
has suffered corrosion. The red circle represents the point where the Raman technique
measured the corrosion. In this region, lepidocrocite, maghemite, magnetite, siderite,
hematite, and ferrihydrite were found. Among these oxides, the acid salt FeCO3 (siderite)
stands out, obtained by the reaction of carbon dioxide with Fe+2 ions [22] (Figure 9a)
dissolved in the aqueous solution. Normally, those detected oxides appeared as dark spots
on the sample’s surface, and resulted from the reaction between Fe ions and oxygen in the
water.
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Figure 10a refers to capturing the Raman shift in a lighter sample region. This was
called the area without apparent corrosion. In this region, goethite and ferroxyite appeared,
oxides that were not detected in Figure 9. The presence of siderite peaks was not detected,
which leads to the assumption that this oxide does not necessarily appear as a protective
layer from non-corroded regions, as identified by some authors [12].
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Figure 10. SC sample (immersed in 3.5% NaCl aqueous solution with saturated CO2 at 80 ◦C): (a) char-
acteristic peaks of Raman spectroscopy for the area without apparent corrosion and (b) micrograph
of the sample with emphasis on the analyzed region.

The spectrum in Figure 11 was captured in a region called localized corrosion. Their
characteristic spectra identified oxides and salt (siderite), as in other regions of the same
sample. However, the Raman shift for phosphate (PO4

−3) is highlighted, which has
not previously been identified, and is probably the result of phosphate in the chemical
composition of the material. This ion was possibly formed by the presence of phosphorus
in the composition of the evaluated steels. However, no published studies were found
that properly discussed the ratio of Raman peaks of phosphates in steels, having only its
characteristic peak [23].
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4. Discussion

Table 3 computes information about the electrochemical tests, calculating each sam-
ple’s mean, standard deviation, and condition according to the studied solutions. The
standard deviation indicates how uniform the test results were, consisting of measuring
the level of dispersion in the measurements. The value of Rp (resistance to polarization) is
essentially calculated by the ratio of OCP to current density (I). The latter is obtained by
the Tafel extrapolation method [24]. They are presented in the table and Figure 12.
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Table 3. Statistical data from the electrochemical tests in NaCl for the three samples in the three tested
solutions (MD = mean and SD = standard deviation).

SA
M

PL
E

ST
A

T
IS

T
IC

Solution (3.5% of NaCl)
(1)

CO2 Saturated/80 ◦C
(2)

CO2 Saturated/R.T.
(3)

Aerated/R.T.

Electrochemical Parameters

OCP
(V vs

Ag/AgCl)
I

(A/cm2)
Rp

(Ω.cm2)

OCP
(V vs

Ag/AgCl)
I

(A/cm2)
Rp

(Ω.cm2)

OCP
(V vs

Ag/AgCl)
I

(A/cm2)
Rp

(Ω. cm2)

SC MD −0.68 4.24E−4 1603.77 −0.64 4.07E−5 15,724.81 −0.44 1.91E−5 23,036.64

SD 0.01 3.24E−4 0.01 8.55E−6 0.02 8.15E−6

LC MD −0.68 3.15E−4 2158.73 −0.66 4.01E−5 16,458.85 −0.47 3.24E−6 145,061.72

SD 0.01 2.10E−4 0.01 1.01E−5 0.02 7.00E−8

DC MD −0.66 5.41E−4 1219.96 −0.56 3.38E−5 16,568.04 −0.51 4.17E−6 122,302.15

SD 0.01 4.31E−4 0.02 6.25E−6 0.01 6.01E−8
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Figure 12. Comparative values of Rp (resistance to polarization) that were calculated from the ratio
of OCP and the current density of each sample in different environments.

From Table 3, a comparison can be made between the samples and their different
electrolyte solutions. Comparing the results of Table 3 vertically(the different samples
of steels in the same solution) shows the one that had the highest potential and current
density performance.

In the solution with 3.5% NaCl with saturated CO2 and at a temperature of 80 ◦C,
the three samples obtained very similar potentials, with the values varying only in the
second decimal place. For the same electrolyte, a difference was observed between SC
and DC wires, with the LC sample being more resistant to corrosion, since its current
density obtained a lower result (greater difference than the comparison between SC and
DC). Another observation to be made concerns the Rp’s between these two wires (see
Figure 12).

Analyzing the 3.5% NaCl solution with saturated CO2 and at room temperature
(23 ◦C), the most notable difference was shown between the LC and DC wires, dealing
with the OCP of these materials under the previously mentioned conditions, obtaining
a difference of almost one decimal place between the first and the second. Likewise, the
current density values for these same samples proved to be more distant when comparing
the LC sample with the SC one.

The medium with 3.5% NaCl aerated and at room temperature (23 ◦C) was generally
a less aggressive medium of those evaluated. Fewer negative potentials were obtained for
this medium, indicating greater resistance to corrosion by the material, emphasizing the
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LC wire. However, the SC sample reached higher current densities than the other samples.
The LC and DC samples reached very similar results.

Analyzing the results based on the Rp (polarization resistance), it is observed that the
LC sample showed more resistance to corrosion, being less degraded, while the DC sample
showed less resistance in solution 1. For solution 2, the DC obtained a high result for Rp, if
compared to the SC sample, the latter being the sample that obtained the lowest resistance
to corrosion. The least aggressive solution for the samples was solution 3.

Table 4 presents the results divided into levels of resistance to polarization for each
sample according to its solution.

Table 4. Comparison of the Rp’s result of the samples in relation to the solutions of 3.5% of NaCl.

Corrosion
Resistance

Solutions (3.5% de NaCl)
1

CO2 Saturated/80 ◦C
2

CO2 Saturated/T.A.
3

Aerated/T.A.

highest LC DC LC
intermediate SC LC DC

lowest DC SC SC

The corrosion resistance of steels used in the oil industry was evaluated, depending on
their morphologies [8]. It was possible to identify that those with globular (spheroidized)
cementite obtained better results for corrosion when subjected to high temperatures (>60 ◦C)
and with the use of CO2 in a NaCl solution. This fact was also identified by another
author [25], who highlighted in his work the formation of carbides and other compounds
that helped to form a protective film against corrosion. The main compound formed was
siderite FeCO3, which reduces the corrosion rate in steels [26–29].

Concerning Raman spectra of corrosion products, carbon dioxide, when in contact
with water, forms carbonic acid; once dissociated, one of its ions is CO3

2− which, when
reacting with Fe2+, results in carbonate of iron [30]. Such a compound could be detected by
Raman spectroscopy at some wavelengths, namely, 290, 520, 734, and 1080 cm−1, due to a
passivating film on the surface of metals [31].

The surface of carbon steel metals was evaluated using Raman spectroscopy. The
medium used for the electrochemical tests was NaCl 3.5% and saturated CO2. The result
obtained in the characterization was the formation of a magnetite (Fe3O4) and hematite
(Fe2O3) film [32]. Such compounds can be explained by the decomposition of FeCO3 [33],
namely, by the (3a)–(3d) reactions:

FeCO3 → FeO + CO2 (3a)

The transformation of FeO takes place by reaction (3b) [34]:

3FeO + CO2 → Fe3O4 + CO (3b)

3FeO + H2O→ Fe3O4 + H2 (3c)

In the presence of oxygen, the transformation to Fe2O3 occurs.

4FeO+ O2 → 2Fe2O3 (3d)

Such characteristics help to understand the formation of oxides on the surface of
metals and the possibility of finding them in characterization techniques, such as Raman.

Next, the spectra of the tested samples are cited with their respective acquisition
regions. Three samples were used, according to the submitted test. It is noteworthy that
the methodology used to obtain the spectra focused on submitting to the Raman spectrum
those samples that obtained intermediate resistance to corrosion in a 3.5% NaCl solution
saturated with CO2 at 80 ◦C. This approach was based on the assumption that, in this way, it
would be more likely to find oxides or salts that increased or decreased corrosion resistance.
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Thus, these are the spectra and their respective acquisition references, according to the
literature: generalized corrosion region (378 [35]; 700 [36]; 1300 [37,38]; 1580 [38]); region
without apparent corrosion (252 [39]; 387 [40–44]; 667 [45]; 1332 [40]); region of localized
corrosion (407 [37–39]; 710 [36]; 930 [23]; 1380 [38]; 1590 [38]).

The spectra were evaluated according to the color variation of the images obtained
by the microscope of the equipment. Thus, the laser focus regions of the equipment were
defined and named to obtain the spectra according to the type of corrosion found, namely,
generalized corrosion region, no apparent corrosion, and localized corrosion.

5. Conclusions

Based on the results discussed in this research for the three wires, the following
conclusions can be reached.

Under conditions of temperatures different from ambient, the pearlitic microstructure
with lamellar cementite presents less susceptibility to corrosion, if compared to the other
forms of cementite.

When the SC wire was subjected to an aerated environment and at room temperature, it
showed lower corrosion resistance compared to other wires in the same condition (lamellar
and brittle). This raises a question about CO2 gas serving as a protective element for the
spheroidized microstructure, since the performance of this sample in relation to corrosion
was better than the other samples when in the presence of carbon dioxide.

The results of Raman spectroscopy identified the formation of siderite in the most
severe corrosion condition (NaCl + CO2/80 ◦C), which leads to the belief that the siderite
salt reduces the advance of generalized corrosion on the surface of the SC sample.

Siderite peaks were also observed in the region with localized corrosion (pitting) and
not in the region with no apparent degradation, showing that this salt does not contribute
to increasing the corrosion resistance of the material.

Several oxides were also found on the surface of the analyzed SC sample, especially
lepidocrocite and ferrihydrite.
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