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Abstract: A new co-rotating electrochemical machining method is presented to machine the complex
structure inside annular parts such as flame tubes and aero-engine casings. Due to the unique
shape and motion of electrodes, it is difficult to accurately compute the electric field intensity in
the machining area. In this paper, the complex electric field model is simplified by conformal
transformation, and the analytical solution of electric field intensity is exactly calculated. A material
removal model is built on the basis of the electric field model, and the dynamic simulation of the
material removal process is realized. The effects of the cathode radius, applied voltage, feed rate
and initial interelectrode gap on the interelectrode gap (IEG) and material removal rate (MRR) are
analyzed. The simulation results indicate that the MRR is always slightly less than the feed rate in a
quasi-equilibrium state, resulting in a slow reduction in IEG. In addition, the final machining state is
not affected by the initial IEG, and the MRR in a quasi-equilibrium state is determined by the feed
rate. Several comparative experiments were carried out using the optimized processing parameters,
in which the MRR and IEG were measured. The convex structures were successfully machined inside
the annular workpiece with optimum machining parameters. The experimental results are in good
agreement with the theoretical results, indicating that the established model can effectively predict
the evolution process of MRR and IEG.

Keywords: electrochemical machining; interelectrode gap; co-rotating motion; electric field intensity;
conformal transformation

1. Introduction

In the aerospace industry, there are many complex parts manufactured by difficult-
to-machine materials such as flame tubes, helicopter propeller hubs, engine blades, and
aero-engine casings [1–4]. Conventional mechanical methods are used to manufacture these
parts, and the tool wear is so serious that it is necessary to replace the tool frequently [5,6].
Due to the long processing cycle, low processing efficiency and high processing cost, it is a
great challenge for conventional mechanical methods to fabricate these parts manufactured
by using difficult-to-machine materials [7,8]. Electrochemical machining (ECM) is a non-
contact processing method that works on the basis of anodic dissolution to remove materials,
which can effectively remove the workpiece materials regardless of hardness [9–11]. ECM is
extensively applied in the defense and aerospace industries due to its many advantages of
good surface integrity, no residual stress, no tool wear and no machining deformation [12–14].

A small interelectrode gap (IEG) is usually used in ECM, and a small change in IEG
will have a significant effect on the machining accuracy [15,16]. Due to the impact of many
parameters on IEG, the evolution of IEG is difficult to predict [17,18]. Despite this, many
scholars have focused on the evolution of IEG during ECM. Clifton et al. [19] accomplished
the measurement of IEG with an ultrasonic measuring system and compensated for the
movement of the electrode in real time. According to the profile of the cathode tool and
measured IEG, the final shape of the workpiece was exactly predicted. Hewidy et al. [20]
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added low-frequency vibration to cathode tools to improve machining accuracy, and a new
analysis method was proposed to analyze the effect of cathode vibration on the equilibrium
IEG value in ECM. A super-finishing process that could remove the surface layer up to
200 µm was developed, and the material removal thickness and IEG were accurately
estimated by using a mathematical model [21]. Lu et al. [22] used a six-axis force sensor to
measure the force signals on a cathode tool applied by the electrolyte, and the experiential
equation between the force and gap was derived to realize the on-line monitoring of IEG. In
order to improve the precision of pulse electrochemical machining (PECM), an IEG model
was established to estimate the machining parameters under the limit state, and the on-line
monitoring of IEG was realized by detecting the current signal [23]. Mount et al. [24]
analyzed the IEG by using the finite difference method, and the relationship between
the migration current and the voltage was established. Counter-rotating electrochemical
machining is a novel processing technology for machining the outer surface of revolving
parts, and the IEG during the leveling process is analyzed and controlled by establishing
a mathematical model [25,26]. So far, although much progress has been made in the
monitoring of IEG, there are still many problems to be solved. It is also crucial to make the
machining enter a quasi-equilibrium state quickly [27,28].

Aero-engine casings are large thin-walled annular parts with complex structures on
the surface and are usually made of difficult-to-cut materials such as nickel-based super
alloys or titanium alloys [29–31]. To fabricate convex structures inside annular parts, Zhu
et al. proposed a new ECM technology: the inner surface co-rotating electrochemical
machining (ICRECM) [32]. It is completely different from sinking ECM due to the complex
and unique motion of the electrodes. Figure 1 shows the principle of ICRECM. The annular
anode rotates clockwise at a constant angular velocity (ω). At the same time, the cylindrical
cathode with several concave windows rotates clockwise at n times the angular velocity of
the anode and moves toward the anode at a speed (vf). The annular anode and cylindrical
cathode are respectively connected with the positive and negative poles of the power source.
The annular anode is located outside the cylindrical cathode to contain the electrolyte. The
neutral electrolyte brings out the electrolytic product from the processing zone. Over time,
a large amount of material inside the anode are removed, and then the desired convex
structures are formed. Owing to the special shape and relative position of the electrodes, the
IEG studied in this paper is the minimum IEG located on the center line of the cylindrical
cathode and annular anode.
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It is necessary to study the material removal process because the shape and motion of
electrodes for ICRECM is significantly different from the conventional ECM. This paper
mainly analyzes the evolution of the material removal rate (MRR) and IEG and optimizes
the parameters to make the processing quickly enter a quasi-equilibrium state. The complex
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electric field model is simplified by conformal transformation, and then the analytical
solution of electric field intensity is exactly calculated. A material removal model is built
on the basis of the electric field model, and the dynamic simulation of the material removal
process is realized. The effects of cathode radius, applied voltage, feed rate and initial IEG
on MRR and IEG are analyzed. Simulations show that the MRR is always slightly less than
the feed rate in a quasi-equilibrium state, resulting in a slow reduction in IEG. The initial
IEG does not affect the final machining state, but it has a strong effect on the transition time.
The MRR in a quasi-equilibrium state is determined by the feed rate. There are optimum
parameters to make the machining enter a quasi-equilibrium state at the beginning. Several
comparative experiments are carried out, and the metrical data coincide quite well with
the theoretical data. This indicates that the established model can effectively predict the
evolution process of MRR and IEG.

2. Mathematical Model
2.1. Electric Field Model

As shown in Figure 2, the electric field model of ICRECM is established to calculate the
analytical solution of electric field intensity. In the original electric field model (Figure 2a),
the cylindrical cathode is inside the annular anode, and the two circular electrodes are not
concentric. The anode boundary (Γ1) rotates counterclockwise at ω. The cathode boundary
(Γ2) rotates counterclockwise with n times the angular speed (ω) and moves toward Γ1
along the concentric line. The electric field is distributed inside the anode boundary (Γ1).
Due to the continuous movement of boundaries, it is extremely difficult to obtain the
electric field intensity of the electrolyte domain (Ω). To exactly calculate the analytical
solution of electric field intensity, the conformal transformation is used to simplify the
original electric field model [33–36]. As shown in Figure 2b, two non-concentric circular
electrodes can be mapped to two concentric circular electrodes. The outer circle is the
annular anode, whose radius increases gradually. The inner circle is the cathode boundary,
which rotates in the same direction as the outer circle. Since the electric field is symmetrical,
the analytical solution of electric field intensity can be exactly calculated according to
Gauss’s Law [37,38].

In the original model, the center of the workpiece is O1, and the connecting line O1O2
is taken as the X axis. According to the definition of symmetric points, the following
equations can be obtained:

s1 × s2 = R2
a (1)

(L− s1)× (L− s2) = R2
c (2)

where s1, s2 are the surface points of the annular anode and cylindrical cathode, respectively,
Rc is the radius of the cylindrical cathode, and Ra is the internal radius of the annular anode.

The center distance L is as follows:

L = Ra − Rc − G (3)

where G is IEG.
According to Equations (1)–(3), s1 and s2 can be obtained as follows:

s1 =
1

2L
[(L2 + R2

a − R2
c )

2 −
√
(L2 + R2

a − R2
c )

2 − 4R2
a L2 (4)

s2 =
1

2L
[(L2 + R2

a − R2
c )

2
+

√
(L2 + R2

a − R2
c )

2 − 4R2
a L2 (5)

Based on conformal transformation, the original electric field model can be equiva-
lently mapped to the model in which the annular anode is concentric with the cylindrical



Metals 2023, 13, 1771 4 of 16

cathode. The expression of fractional linear transformation of s1 and s2 can be expressed
as [39,40]

ξ(z) =
z− s1

z− s2
(6)

where z is a complex variable. The points s1 and s2 in the original model are mapped to the
coordinate origin and infinity in the equivalent model, respectively.
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The anode and cathode radii will change after the linear transformation, according to
Equation (6), and R′a and R′c can be derived as follows:

R′a =
∣∣∣∣Ra − s1

Ra − s2

∣∣∣∣ = (L + Ra)
2 − R2

c −
√
(R2

c + R2
a − L2)2 − 4R2

aR2
c

(L + Ra)
2 − R2

c +
√
(R2

c + R2
a − L2)2 − 4R2

aR2
c

(7)

R′c =
∣∣∣∣Rc − s1

Rc − s2

∣∣∣∣ = (L + Rc)
2 − R2

a −
√
(R2

c + R2
a − L2)2 − 4R2

aR2
c

(L + Rc)
2 − R2

a +
√
(R2

c + R2
a − L2)2 − 4R2

aR2
c

(8)

The potential difference in the electric field model will not change after the linear
transformation, satisfying the Laplace equation [41,42]:

∂2U
∂2ξ

+
∂2U
∂2η

= 0 (9)
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On the rounded region, the series solution of the Laplace equation can be obtained by
using polar coordinates and the variable separation method as follows [43]:

U = C0 + A0 × Lnr +
∞

∑
n=1

(An cos(nθ) + Bn sin(nθ))× (Cnrn + Dnr−n) (10)

According to the orthogonality of the trigonometric function and the Fourier function
solution formula, the following formulas can be obtained:

An = Bn = Cn = Dn = 0 (11)

A0 =
Ua

ln R′a/R′c
=

Ua

arcch((R2
a + R2

c − L2)/(2RaRc))
(12)

C0 =
−Ua ln R′c
ln R′a/R′c

=
2Uaarcth

√
(Ra+Rc−L)(Ra−Rc+L)
(Ra−Rc−L)(Ra+Rc+L)

arcch((R2
a + R2

c − L2)/(2RaRc))
(13)

Based on Equations (10)–(13), the expression of potential difference can be simplified as

U = C0 + A0 × Ln
√

ξ2 + η2 = C0 +
A0

2
× Ln

(x− s2)
2 + y2

(x− s1)
2 + y2

(14)

For the x-y plane, the analytical solution of electric field intensity is derived as

E = −gradU = A0a
→
e x + A0b

→
e y (15)

a =
(x− s1)[y2 − (x− s1)(x− s2)]

[(x− s1) + y2][(x− s2) + y2]
(16)

b =
(s2 − s1)(2x− s1 − s2)y

[(x− s1) + y2][(x− s2) + y2]
(17)

where
→
e x and

→
e y denote unit vectors of electric field intensity along x and y directions,

respectively.

2.2. Material Removal Model

Figure 3 shows the dynamic material removal process inside the annular anode. The
annular anode rotates counterclockwise at ω. The cylindrical cathode rotates in the same
direction at nω and moves right along a horizontal direction. In order to accurately calculate
the MRR, the anode boundary (Γ1) is discretized into K short arcs. The point Pi on the inner
surface of the annular workpiece moves outward at a speed v→

e
under the electric field.

According to Faraday’s law, the real-time movement velocity of the point Pi can be
obtained as [44]

v→
e
= ηWi→

e
= v→

x
+ v→

y
(18)

where ηW is the actual volume electrochemical equivalent, and v→
x

and v→
y

are the con-
stituents of v→

e
.

The current density on the anode boundary (Γ1) is proportional to the electric field
intensity [45]:

i→
e
= κE = κE→

x
+ κE→

y
(19)

where κ is the electrical conductivity of the processing area, and E→
x

and E→
y

are the con-
stituents of E on x and y axes respectively.
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The anode material on the inner surface dissolves outward along the workpiece radius
for each time interval ∆t, and the coordinates of points P after m time intervals can be
expressed as

xp = Ra cos(ωt) +
m

∑
j=1

v→
x
(j) ∗ ∆t (20)

yp = Ra sin(ωt) +
m

∑
j=1

v→
y
(j) ∗ ∆t (21)

The MRR can be obtained according to the change of the inner radius for time
interval ∆t:

va(j) =
Ra(j + 1)− Ra(j)

∆t
(22)

where Ra(j) is the internal radius of the anode at the jth time interval ∆t.
The real-time interelectrode gap can be calculated as follows:

G = G0 − v f t +
m

∑
j=1

va(j) ∗ ∆t (23)

where G0 is the initial interelectrode gap.

3. Simulation of the Material Removal Process

The radius of the cathode tool, applied voltage, feed rate, and initial IEG are important
processing parameters, which significantly affect the material removal process. The annular
anode is manufactured by 304 SS, whose internal radius is 120 mm. During the simulation, a
variety of cathode radii (12–60 mm), applied voltages (10–30 V), feed rates (0.012–0.024 mm/min)
and initial IEG (0.1–0.5 mm) are selected to analyze the evolution process of MRR and IEG.

3.1. Effect of Cathode Tool Radii

In ICRECM, the cylindrical cathode works inside the annular anode, so the cathode
radius is proportionally smaller than the anode radius. The radius formula between the
cylindrical cathode and annular anode is

Rc =
Ra

n
(24)

where n is the angular speed ratio between the cylindrical cathode and annular anode.
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A range of cathode radii (Rc = 12–60 mm) are selected to analyze the MRR and IEG.
As shown in Figure 4a, the initial MRR increases with the increase in cathode radius. Over
time, the final MRR is infinitely close to the feed rate (vf = 0.015 mm/min). The final MRR is
slightly less than the feed rate for different cathode radii, which causes the IEG to gradually
decrease. When the feed rate is greater than the initial MRR, the IEG will decrease rapidly
to reach a quasi-equilibrium state. When the feed rate is less than the initial MRR, the
machining slowly reaches a quasi-equilibrium state. In order to accurately calculate the
transition time for processing to reach the quasi-equilibrium state, the following equation
is obtained:

∆va = v f − va(j) < 10−4 mm/min (25)
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Figure 5 shows the transition time for different cathode radii. When Rc = 20 mm,
the shortest transition time is only 41 min. When Rc = 30 mm, the MRR decreases to
0.015 mm/min at 139 min, and the IEG reaches the maximum of 0.41968 mm. When
Rc = 60 mm, the quasi-equilibrium state is slowly reached at 227 min, and the IEG is as
high as 0.84107 mm. Therefore, when the cathode radius exceeds 20 mm, the machining
parameters need to be adjusted to reduce the transition time and IEG.
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To explore the effect of the radius on the initial MRR, the current density of the anode
surface is calculated for different cathode radii. It can be seen from Figure 6a that the peak
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current density of different cathode radii is the same. However, the area of high current
density increases with the increase in the cathode radius. The current inside the anode
workpiece is calculated by integrating the current density. As shown in Figure 6b, the
initial current increases sharply with the increase in the cathode radius, which leads to the
increase in the initial MRR.
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3.2. Effect of Applied Voltage

The applied voltage can determine the electric field strength, which strongly affects
the MRR. Figure 7 shows the evolution of MRR and IEG over time for a series of applied
voltages (U = 10–30 V). As shown in Figure 7a, MRRs are different at the initial time, but
MRRs eventually tend to be consistent. When the machining is in a quasi-equilibrium state,
the IEG increases with the increase in applied voltage, but the final MRR decreases slightly
with the increase in applied voltage. After 46 min, the MRR of 10 V exceeds the MRR of
15 V to reach a quasi-equilibrium state earlier. The initial MRR of 10 V is very low, which
causes the IEG to decrease rapidly from 0.3 mm to 0.09 mm. When the machining reaches a
quasi-equilibrium state, the MRR with different applied voltages is slightly less than the
feed rate (Figure 7a), which causes the IEG to gradually decrease with time (Figure 7b).
When the voltage is greater than 20 V, IEG will have a peak value. The IEG reaches the
peak value when the machining just reaches a quasi-equilibrium state. The peak values of
IEG at 25 V and 30 V are 0.42304 mm and 0.57578 mm, respectively.

Figure 8 shows the transition time with different applied voltages. When U = 5 V, the
transition time is shortest. However, the final IEG is far less than 0.1 mm, which cannot be
realized in actual processing. When U = 20 V, the transition time is 41 min, and the IEG can
be maintained to 0.27 mm. Therefore, the appropriate applied voltage will not only shorten
the transition time but also maintain the IEG in the achievable range.

3.3. Effect of Feed Rate

A series of feed rates (vf = 0.012–0.024 mm/min) were selected to analyze the changes
of MRR and IEG. It can be seen from Figure 9a that the final MRR is determined by the
feed rate. It is different from conventional ECM in that the feed rate is always higher than
the final MRR in ICRECM. This is due to the fact that the internal material of the anode
gradually dissolves along the radius, and the internal radius gradually increases. When the
machining is in a quasi-equilibrium state, the IEG decreases with the increase in the feed
rate. Figure 10 shows the transition time for different feed rates. When vf = 0.015 mm/min,
the transition time decreases to the minimum of 41 min. As the feed rate increases to more
than 0.018 mm/min, the IEG changes sharply resulting in machining instability. When
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vf = 0.012 mm/min, it takes a long time to make the machining enter a quasi-equilibrium
state. A suitable feed rate will make the IEG change smoothly, which is conducive to stable
machining.
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3.4. Effect of Initial Interelectrode Gap

Figure 11 shows the curves of MRR and IEG for different initial IEG (G0 = 0.1–0.5 mm).
The curves of MRR and IEG with different initial IEG tend to be consistent, respectively,
indicating that the initial IEG does not affect the final machining state. As shown in
Figure 12, the initial IEG has a strong influence on the transition time. An appropriate
initial IEG (G0 = 0.3 mm) can not only make the machining enter a quasi-equilibrium
state quickly but also reduce the fluctuation of the machining gap, thereby improving the
accuracy of electrochemical machining. When the machining reaches a quasi-equilibrium
state, the IEG decreases slowly over time because the MRR is always slightly lower than
the feed rate. This is quite different from conventional ECM in that the quasi-equilibrium
state of ICRECM is accompanied by the gradual reduction in IEG.
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4. Experimental Validation
4.1. Experimental System

Figure 13 shows the developed experimental system for ICRECM, which consists of
an electrode motion system, a power supply system and an electrolyte circulation system
(electrolyte, cooler, heater and filter). The cylindrical cathode and annular anode were
mounted on the upper and lower rotating shafts, respectively. The electrode motion system
could realize the differential rotation of the workpiece and tool. The upper rotating shaft
could realize feeding along the direction of the center line. The power supply system
applied voltage to the rotating shafts through the conductive rings. The electrolyte circula-
tion system enabled real-time filtration of electrolytic products and temperature control,
so as to keep the electrolyte clean and temperature constant. The high-speed electrolyte
with a constant temperature was pumped from jet nozzles and flows through the narrow
electrode gap.
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Table 1 summarizes the experimental parameters corresponding to the simulation pa-
rameters. Table 2 shows the detailed machining parameters of the comparative experiments.
According to the initial MRR obtained from the simulation, the feed rates of groups 1 to 5
have been optimized to rapidly reach a quasi-equilibrium state. A variety of cathode tools
were used for comparative experiments, which were made of 304 stainless steel. Cylindrical
cathodes with different radii were selected for experiments of groups 1 to 5 (Figure 14a).
A cylindrical cathode with concave windows was used for machining convex structures
inside the annular part (Figure 14b), and it corresponded to the experimental parameters
of the sixth group. To ensure the steadiness of the machining, the parameters of the sixth
group were optimized so that there was almost no transition time.

4.2. Experimental Results

The experiments were conducted with the feed rate optimized according to the initial
MRR obtained from the simulation. According to the geometry of the annular workpiece,
the IEG could be obtained by the electrode motion system after each time interval (∆t). The
material removal thickness could be obtained by measuring the thickness variation of the
workpiece, and the MRR was obtained by dividing material removal thickness by the time
interval. As shown in Figure 15, the MRR and IEG change smoothly by using the optimized
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feed rate, which is conducive to stable machining. The metrical data fluctuate slightly near
the theoretical curves, indicating that the established model can predict well MRR and IEG
during the machining. In order to better evaluate the established model, the proportional
error between the theoretical data and metrical data can be computed as follows:

δ =
|r T − rM|

rM
× 100% (26)

where δ is the proportional error; rT is the theoretical value; rM is the metrical value.

Table 1. Machining conditions.

Parameters Value

Electrolyte conditions 30 ◦C 0.5 Mpa
Electrolyte type 20% NaNO3
Anode material 304 SS

Applied voltage, U (V) 16, 20
Initial IEG, G0 (mm) 0.3

Radius of the anode, Ra (mm) 120, 150
Angular speed of anode, ω (r/min) 2

Processing time (min) 250

Table 2. Parameters of comparative experiments.

Machining Parameter
Value

1 2 3 4 5 6

Radius of the cathode, Rc (mm) 12 15 20 30 60 50
Radius of the anode, Ra (mm) 120 120 120 120 120 150

Angular velocity ratio, n 10 8 6 4 2 3
Feed rate, vf (mm/min) 0.011 0.013 0.015 0.019 0.033 0.014
Applied voltage, U (V) 20 20 20 20 20 16
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Figure 16 shows the theoretical values and metrical values of the transition time, and
the maximum error is 6.67%. The transition time can be shortened to 17 min with the
optimized feed rate, so that the machining can quickly enter a quasi-equilibrium state. The
experimental results show that the transition time is greatly shortened using the optimized
feed rate.

Figure 17 shows the annular workpiece machined with the optimized feed rate
(0.014 mm/min) and voltage (16 V). Clearly, a large amount of material was removed
from the interior of the workpiece. The data on MRR and IEG with the optimum machining
parameters are presented in Table 3. There is almost no fluctuation in MRR, indicating
that the machining has reached a quasi-equilibrium state in a very short time. A short
transition time can make the machining achieve higher precision. The metrical data are
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in good agreement with the theoretical data, which means that the established model can
effectively predict the evolution process of MRR and IEG.
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Table 3. Comparison of metrical and theoretical data for optimum machining parameters.

Processing Time
(min)

MRR (mm/min) IEG (mm)

Metrical
Data

Theoretical
Data Error (%) Metrical

Data
Theoretical

Data Error (%)

10 0.01369 0.01386 1.242 0.3009 0.2986 0.764
20 0.01382 0.01389 0.507 0.2989 0.2974 0.502
30 0.01374 0.01391 1.237 0.2976 0.2964 0.403
40 0.01384 0.01392 0.578 0.2964 0.2955 0.304
50 0.01389 0.01393 0.288 0.2955 0.2947 0.271
60 0.01385 0.01393 0.578 0.2943 0.294 0.102
70 0.01367 0.01394 1.975 0.2931 0.2933 0.068
80 0.01392 0.01394 0.172 0.2923 0.2927 0.137
90 0.01386 0.01394 0.577 0.2915 0.2922 0.24
100 0.01372 0.01395 1.676 0.2909 0.2916 0.241
125 0.01385 0.01395 0.722 0.2894 0.2903 0.311
150 0.01399 0.01395 0.286 0.2885 0.289 0.173
175 0.01388 0.01396 0.598 0.2874 0.2878 0.139
200 0.01392 0.01396 0.287 0.2869 0.2866 0.105
225 0.01389 0.01396 0.504 0.286 0.2853 0.245
250 0.01391 0.01396 0.359 0.2847 0.2842 0.176
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5. Conclusions

In this paper, the material removal process is simulated based on the established
analysis model, which is verified by the developed experimental system. The following
conclusions are summarized:

(1) The complex electric field model of ICRECM is simplified by conformal transforma-
tion, and then the analytical solution of electric field intensity is exactly calculated.
A material removal model is built on the basis of the electric field model, and the
dynamic simulation of the material removal process is realized.

(2) The simulative results indicate that the quasi-equilibrium state is accompanied by the
gradual reduction in IEG. The initial MRR and final IEG increase with the increase
in cathode radius. The MRR in the quasi-equilibrium state is determined by the feed
rate. The initial IEG does not affect the final machining state, but it has a strong effect
on the transition time.

(3) The experimental results show that the transition time can be greatly shortened using
the optimized feed rate (Minimum transition time 17 min). The convex structures
are successfully machined inside the annular workpiece with the optimized feed rate
(0.014 mm/min) and voltage (16 V). There is almost no fluctuation in MRR during
the manufacturing of convex structures, indicating that the machining has reached a
quasi-equilibrium state in a very short time.

(4) There are optimum parameters to make the machining enter the quasi-equilibrium
state at the beginning. The metrical data are in good agreement with the theoretical
data (Maximum error 1.975%), indicating that the established model can effectively
predict the evolution process of MRR and IEG.
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