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Abstract: This manuscript explores the stiffness and strength of Square Hollow Section (SHS) tubes
subjected to localised transverse actions applied to the open side of a rectangular hole created using
3D laser cutting technology (3D-LCT). Understanding the behaviour of this specific detail is crucial as
it is a key component in the connections between SHS columns and passing-through IPE beams. The
methodology employed in this manuscript involved developing analytical equations to predict both
stiffness and strength of this structural element. The provided equations are presented in a straight-
forward manner and were deduced by applying elasticity principles to structural components. To
validate these equations, a parametric analysis was conducted, simulating the response of 27 distinct
geometric configurations of the analysed structural detail thanks to the Finite Element (FE) software.
Their accuracy was confirmed by comparing the results of these simulations with the outcomes
derived from the formulated equations. The primary findings indicated that the proposed equations
could predict the stiffness and strength of the studied detail with an average ratio close to 1 when
comparing predicted and numerical results, and a coefficient of variation of approximately 10%.

Keywords: Square Hollow Sections; passing-through elements; stiffness; Finite Element (FE)
modelling; parametric analysis; regression analysis; component method; 3D laser cutting technology

1. Introduction

The last few decades have been characterised by technological and materials engineer-
ing innovations, which have also impacted civil engineering, promoting the development
of various solutions for rehabilitating existing structures, and designing resilient buildings.
For example, on the one hand, there has been increasing use of composite and polymeric
materials for seismic retrofitting of buildings [1–4], while, on the other hand, several in-
novative seismic-resilient structural systems have been developed to provide solutions
capable of withstanding high-intensity seismic events while ensuring full functionality
(or minimal damage) in the aftermath of an earthquake [5–12]. Most of these solutions
rely on innovative seismic devices such as passive control systems, isolation, or energy
dissipation, aiming to preserve the structure from damage or concentrate the damage in
easily replaceable components, enabling rapid repair and recovery actions.

Beyond the aforementioned aspects related to materials and resilient design strategies,
new technologies were also embraced. One example is represented by 3D laser cutting
technology (3D-LCT), which is a technique that offers numerous practical advantages by
enabling the precision cutting of steel elements into custom shapes, seamlessly incorporat-
ing bevels and holes in a single manufacturing step. In recent years, this innovative method
has demonstrated remarkable efficiency, facilitating the rapid and accurate production of
structures [13]. Notably, within civil engineering, it has emerged as a highly promising
application, particularly for producing components with complex geometries [13]. A recent
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example includes the ability, explored in recent research endeavours [13], to create com-
plex three-dimensional steel joints featuring circular hollow section (CHS) columns and
passing-through IPE beams.

Traditionally, constructing joints between hollow profiles and IPE beams has been
fraught with limitations. The conventional approaches involve the following: (i) welding
the beam onto the external surface of the column [14–16]; (ii) welding plates onto the flanges
of the IPE profile, where they intersect with the column [17]; (iii) welding the beam to collar
plates that are externally welded or bolted to the column [18–21]; and (iv) filling the column
with concrete while welding the beam to its external surface [22–25]. The first method is
relatively straightforward but lacks the necessary stiffness and strength, making it suitable
primarily for pinned or semi-continuous frames [26]. The second and third solutions offer
increased strength and stiffness but require additional welds and plates [27,28], leading to
sustainability concerns and added connection costs. On the other hand, the final approach
involves composite elements and introduces construction delays due to on-site concrete
pouring [29,30].

Connections incorporating passing-through beams circumvent the issues associated
with these four typical configurations, minimising manufacturing costs (without the need
for extra stiffeners and welding) whilst maximising performance in terms of strength and
stiffness (yielding rigid partial or full-strength joints). By cutting the tubular profile on
two opposing sides to match the passing-through IPE cross section, the beam can cross
the hollow column, enhancing stiffness, resistance, and overall aesthetics. Consequently,
significant interest has arisen in the technological aspects of constructing these joints [27,28],
as well as their mechanical behaviour [31,32].

Starting from 2016, numerous studies have delved into this topic, particularly within
the framework of the LASTEICON (Laser Technology for Innovative Connections in Steel
Construction) research project [13]. The primary objective of the LASTEICON project is
to reduce material usage and costs for hollow structures using 3D-LCT. Consequently,
considerable attention has been dedicated to the technological aspects associated with
manufacturing such joints [27,28].

In this context, the University of Salerno is currently engaged in a combination of
experimental, numerical, and theoretical research endeavours aimed at formulating equa-
tions for estimating the strength and stiffness of such connections. These efforts are in
line with the methodology prescribed in the current Eurocode 3 part 1.8 [16]. Studies
have already been conducted, yielding semi-empirical expressions designed to predict the
flexural strength and initial stiffness of connections involving circular hollow section (CHS)
columns and passing-through IPE beams [33–37]. In particular, the studies have been car-
ried out according to the component method approach [38–41]. This methodology enables
the determination of the response of a joint by considering the mechanical behaviour of its
individual components, which contribute to the connection’s strength and deformability.
The component method encompasses three fundamental stages [42]:

(i) Identification of strength and deformability sources. In this initial phase, the various
sources of strength and deformability within the connection, which are essentially the
joint components, are identified. This identification process relies on a combination of
experimental data, engineering judgment, and Finite Element (FE) modelling.

(ii) Mechanical modelling of individual components, which consists of the mechanical
modelling of each of the identified components, considering their respective strength
and stiffness characteristics.

(iii) Assembly of a mechanical spring model that accurately represents the behaviour of
the entire connection. This model is constructed by combining the responses of the
individual components, resulting in a comprehensive representation of the joint’s
stiffness and strength.

By following these three steps, the component method approach facilitates the evalua-
tion of the joint’s overall performance, allowing for a thorough understanding of how its
constituent parts collectively contribute to strength and deformability.
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The same strategy is intended to be applied to the case of Square Hollow Section (SHS)
columns and passing-through IPE beam connections (Figure 1). The recent development of
this solution makes it innovative; however, at the same time, it limits its use since design
guidelines are not currently available in existing standards. In fact, the current draft of
Eurocode 3 part 1.8 [16] does not provide formulations for such nodes or tends to extend
equations defined for other available types, making the procedure over-conservative.
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Figure 1. Connection between SHS column and passing-through IPE beam.

The current investigation presented in this paper belongs to a wider research pro-
gram characterised by experimental, numerical, and theoretical activities to extend the
component method to the case of connections between Square Hollow Section columns
and passing-through IPE beams. To achieve this objective, the primary components of this
joint were properly identified, as shown in Figure 2:

- The passing-through plate transversally welded to the column in tension/compression
(pcc/pct), which is representative of the behaviour of the attachment between the
flanges of the beam and the SHS profile.

- The column in transverse tension or compression stresses (ttt/ttc). These components
are crucial, particularly concerning the overall stiffness of the connection because
the rigid rotation of the beam induces localised stresses at the junctions between
the flanges of the IPE profile and the sections of the hollow profile adjacent to the
hollow section.

- The column and the beam web in shear (cs stands for the column in shear, while bws
is the acronym of beam web in shear).

Figure 2 illustrates the nodal components that constitute the examined connection,
clearly showing the topological configuration of the series and parallel links representing
the aforementioned components. If a shear force is applied at the free end of the beam, it
results in both shear and bending moments at the attachment between the beam and the
column face (Figure 2). Consistently with the approaches currently provided by Eurocode
3 [16] concerning traditional connections, and in this case as well, it is intended to proceed
with mechanical modelling of the components using elastic perfectly plastic laws.
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Figure 2. Nodal components of the connection between the SHS column and passing-through
IPE beam.

After identifying the components, it is necessary to examine them in terms of their
strength and stiffness. It is important to note that the stiffness and strength of the pcc/pct
components have already undergone a comprehensive investigation, as detailed in [43].
This investigation encompassed a combination of experimental, numerical, and analytical
analyses. The equations pertaining to the strength and stiffness of the pcc/pct components
are presented in Equations (1) and (2) for reference, as follows:

Fpcc/pct = 2 fyt2
0

(
4

√
b0

b0 − b1
+

2t1

b0 − b1

)
(1)

kpcc/pct =
377.08 Eb0β−2.10τ2.45(4− 3β)

γ5.47(1− β)3(7− 3β)
(2)

In Equations (1) and (2), fy is the yield stress, β, γ and τ are dimensionless parameters
defined as β = b1/b0, γ = b0/(2t0), and τ = t1/t0, where b1 and t1 are the plate’s width
and thickness, while b0 and t0 represent, respectively, the diameter and thickness of the
SHS profile.

Instead, no further investigations were conducted concerning the shear components
cs and bws. This is because it is feasible to employ the formulas already established in
Eurocode 3 part 1.8 [16], which are also presented in this document as Equations (3)–(6) as
follows:

Fcs =
0.9Av,cs fy√

3γM0βv
(3)

kcs =
0.38EAv,cs

βvz
(4)

Fbws =
0.9Av,bws fy√

3γM0βv
(5)
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kbws =
0.38EAv,bws

βvz
(6)

In Equations (3)–(6), the partial safety factor γM0 is equal to 1, Av,cs is the shear area
of the Square Hollow Section (Av,cs = A/2), Av,bws is the shear area of the beam web
(Av,bws = b0tbw), tbw is the thickness of the web of the beam, βv is the transformation
parameter equal to βv = 1− z/Lc, z is the distance between the centerlines of the beam
flanges, and Lc is the column length.

2. Aim of This Research

The previous paragraph addressed the primary components of connections between
SHS columns and passing-through IPE beams. Additionally, it presented strength and
stiffness equations associated with specific components, which have been investigated in
previous studies [43] and/or are now included in current codes [16].

As a result, to achieve a comprehensive understanding of the whole behaviour of the
joint using the component method approach, the study of the ttt/ttc sources of deformability
is still required. Consequently, this work aims to investigate these components, which
represent the parts of the column locally subjected to transverse actions transmitted from
the flanges of the beam. The attention is focused on investigating the stiffness of the
analysed components, considering the assumption that kttt = kttc, consistently with the
evidence dealt with in [37], referring to the case of CHS columns and passing IPE beams.
Furthermore, the assessment of the yield and ultimate strength of the ttt/ttc components is
also provided.

The reason that has led the authors to study the ttt/ttc components relies on the
consideration that a single-sided beam-to-column connection is equipped with a hinge and
a roller at the column extremities, and exposed to an applied force (V) at the free end of
the beam; this force (V) induces beam rotation that has the potential to generate stresses at
the attachment between the flanges and the tube along the direction parallel to the column
axis. Consequently, these stresses tend to propagate through the thickness of the tube, as
illustrated in Figure 3.
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The significance of this paper lies in the exploration of the stiffness and strength
of the nodal components ttt/ttc, as they possess the potential to influence the overall
flexural behaviour of the connection between SHS columns and passing-through IPE
beams. In fact, there are currently no established guidelines or formulations available for
determining the stiffness and strength of these components. This objective is achieved
through a combination of theoretical and numerical methods. Specifically, analytical
techniques were employed and are discussed in Section 3 to establish formulations for
describing the stiffness and strength of the component under examination. On the other
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hand, Section 4 encompasses the execution of a parametric analysis involving 27 distinct
geometric configurations of connections, which are simulated numerically to assess their
behaviour. Lastly, in Section 5, the primary findings of this study are discussed.

3. Analytical Activity to Characterise the Stiffness and Strength of the
ttt/ttc Components

This section is devoted to the analytical development of equations to predict the initial
stiffness and yield strength of the analysed components ttt/ttc.

When the analysed components have a response in the elastic range, some of the
following assumptions are adopted: The stress diffusion in the tube induced by the rigid
rotation of the flanges of the beam (Figure 4a) is analysed according to a simplified scheme
(Figure 4b) in which the beam web does not affect the behaviour of the system. Con-
sequently, the obtained scheme can be assumed as a cantilever with a variable section
(Figure 4c,d) in which the width varies between the width of the passing plate and that
of the SHS tube, and whose length is defined as the distance between the hole and the
intersection of the diffusion pattern with the external edges of the SHS profile. The spread
of the stresses is characterised by an angle α which usually ranges between 30◦ and 45◦.
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The stiffness is evaluated by assuming that the part of the tube interested by these
stresses behaves as a cantilever subjected to axial force.
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Therefore, the expected elongation of the ideal cantilever is achieved through
Equation (7) as follows:

δ =
XLe

EA
==>

X
δ
= kttt/ttc =

EA
Le

(7)

In Equation (7), δ, X and Le represent, respectively, the elongation, the axial force, and
the length of the ideal cantilever. Instead, E is Young’s modulus, while kttt/ttc represents the
initial stiffness of the analysed components ttt/ttc. Since the stresses propagate according
to a linear pattern, instead of evaluating the stiffness through the integration method, it
is assessed assuming an equivalent section whose area is evaluated by multiplying the
thickness of the tube and the average width of the cantilever: A = t0(b0 + b1)/2, where b0
and b1 represent, respectively, the widths of the column and plate. Instead, trigonometric
considerations allow to define the length of the cantilever as Le = (b0 − b1)/(2 tan α).

Consequently, by substituting the previous expressions in Equation (7), it is possible
to obtain Equation (8) as follows:

kttt/ttc = E t0
b0 + b1

2
1

b0−b1
2

1
tan α

(8)

Finally, the last equation can be written in a dimensionless form, shown as Equation (9)
as follows:

kttt/ttc = E t0
1 + β

1− β
tan α (9)

The equation to predict the initial stiffness of the analysed components was defined,
but the doubt related to the angle still remains. For this reason, to avoid leaving this aspect
unexplored, it is expected to perform a parametric analysis concerning a set of different
geometrical configurations of SHS with holes representative of the passing-through plates
and subjected to action parallel to the tubular axis. The initial stiffness of these cases will
be evaluated through numerical simulations developed in Abaqus [44] and exploited to
calibrate the unknown angle α.

However, when the analysed components undergo plastic deformation, it is reasonable
to consider, similarly to the case of stiffness, that the strength of the analysed components
ttt/ttc can be defined as the strength of a plate with a thickness equal to that of the tube and
a width equal to the average of the widths of the hole and the hollow profile as follows:

Fy,ttt/ttc = t0
b0 + b1

2
fy (10)

This formulation is straightforward to define, and as it is evident, it incorporates a
term, t0

b0+b1
2 , which is already present in Equation (8).

4. Finite Element (FE) Simulations

The investigation of the ttt/ttc components is conducted through a parametric analysis
involving 27 geometric configurations of tubular profiles with rectangular holes represent-
ing the connections between SHS columns and flanges of IPE profiles.

Based on the analytical model presented in the previous paragraph, β is expected to
be the only parameter influencing the response of the analysed component. Therefore, the
27 cases were carefully selected by varying β between 0.44 and 0.68 (Table 1).

The numerical simulations were carried out using the Finite Element (FE) software
Abaqus [44]. Specifically, the adopted scheme refers to the specimen shown in Figure 5,
which is an SHS profile with a length of 500 mm, fixed at its ends and characterised
at its centre by a rectangular hole whose dimensions depend on the cross shape of the
passing plate.



Metals 2023, 13, 1767 8 of 16

Table 1. Parametric analysis.

Case b0 (mm) t0 (mm) b1 (mm) t1 (mm) β = b1/b0 γ = b0/(2t0) τ = t1/t0

1 150.00 5.00 82.00 7.40 0.55 15.00 1.48
2 150.00 5.00 91.00 8.00 0.61 15.00 1.60
3 150.00 5.00 100.00 8.50 0.67 15.00 1.70
4 180.00 5.00 91.00 8.00 0.51 18.00 1.60
5 180.00 5.00 100.00 8.50 0.56 18.00 1.70
6 180.00 5.00 110.00 9.20 0.61 18.00 1.84
7 200.00 6.00 110.00 9.20 0.55 16.67 1.53
8 200.00 6.00 120.00 9.80 0.60 16.67 1.63
9 200.00 6.00 135.00 10.20 0.68 16.67 1.70

10 220.00 6.00 120.00 9.80 0.55 18.33 1.63
11 220.00 6.00 135.00 10.20 0.61 18.33 1.70
12 220.00 6.00 150.00 10.70 0.68 18.33 1.78
13 250.00 6.30 110.00 9.20 0.44 19.84 1.46
14 250.00 6.30 120.00 9.80 0.48 19.84 1.56
15 250.00 6.30 135.00 10.20 0.54 19.84 1.62
16 250.00 8.00 150.00 10.70 0.60 15.63 1.34
17 250.00 8.00 160.00 11.50 0.64 15.63 1.44
18 250.00 8.00 170.00 12.70 0.68 15.63 1.59
19 300.00 8.00 160.00 11.50 0.53 18.75 1.44
20 300.00 8.00 170.00 12.70 0.57 18.75 1.59
21 300.00 8.00 180.00 13.50 0.60 18.75 1.69
22 350.00 10.00 180.00 13.50 0.51 17.50 1.35
23 350.00 10.00 190.00 14.60 0.54 17.50 1.46
24 350.00 10.00 200.00 16.00 0.57 17.50 1.60
25 400.00 10.00 180.00 13.50 0.45 20.00 1.35
26 400.00 10.00 190.00 14.60 0.48 20.00 1.46
27 400.00 10.00 200.00 16.00 0.50 20.00 1.60
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The material properties of the specimen refer to a nominal S355JR steel, whose consti-
tutive model has a quadri-linear shape (Figure 6) according to the suggestion provided by
Faella et al. [42]; furthermore, the elastic modulus is 210 GPa, and Poisson’s ratio is equal
to 0.30.
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The current modelling approach was derived from a numerical model validated in
studies referred to connections between CHS columns and passing-through beams and
plates [33–37]; consequently, we decided to also include the evolution of material damage
in the FE model. In particular, the equivalent plastic strain at fracture was set equal to
2.4 mm, following the recommendations provided by [45,46]. The tubular sections were
meshed using 5 mm sized C3D8-type elements (8-node linear brick).

It is worth highlighting that Figures 2 and 3 pertain to the connections between SHS
columns and passing-through IPE beams, while Figure 5 narrows its focus to one of the
components within the aforementioned connection, labelled as ttt/ttc, and illustrates that
the examination of this component can be achieved by evaluating the behaviour of the tube
independently, with the application of displacements at the edge of its aperture.

A static solver was employed to perform the analyses, and the loading history con-
sisted in the application of increasing displacements along the thickness of the bottom face
of the holes in the direction of the longitudinal axis of the tubular profile, as shown in
Figure 5.

For the sake of clarity, Figure 7 shows the in-plane vertical stress distribution in the
tubular profile induced at the early stage of analysis related to Case 7 for the characterisation
of the initial stiffness of the component.
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Table 2 summarises the key findings from the parametric analysis, presenting the initial
stiffness (kttt/ttc,Abaqus), yield strength (Fy,ttt/ttc,Abaqus), and ultimate strength (Fu,ttt/ttc,Abaqus)
observed in each of the 27 analysed cases. Notably, stiffness was determined by assessing
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the slope derived from the initial points of the force–displacement curve. Yield strength,
on the other hand, was calculated as the force at which a 5% plastic deformation occurred,
as suggested by Eurocode 3 part 1.5 [47]. Finally, ultimate strength was determined as the
maximum force that the analysed components could withstand.

Table 2. Results of the parametric analysis.

Case kttt/ttc,Abaqus
(N/mm)

Fy,ttt/ttc,Abaqus
(kN)

Fu,ttt/ttc,Abaqus
(kN) Case kttt/ttc,Abaqus

(N/mm)
Fy,ttt/ttc,Abaqus

(kN)
Fu,ttt/ttc,Abaqus

(kN)

1 3375498 211 325 15 4229122 418 618
2 3895147 252 371 16 6137837 573 844
3 4272330 254 379 17 6137837 573 844
4 3107079 231 358 18 6751198 612 895
5 3385264 242 380 19 5362997 610 891
6 3815627 259 415 20 5362997 610 891
7 4095428 314 495 21 6159641 670 988
8 4095428 314 495 22 6561348 844 1231
9 5445403 412 602 23 6993271 888 1317
10 4081222 337 539 24 6561348 844 1231
11 4081223 337 539 25 5856770 852 1242
12 5328507 425 626 26 5856770 852 1242
13 4247004 418 618 27 6529677 930 1377
14 3481750 340 529

Table 2 reveals that, across the 27 cases, the average ratio between yield and ultimate
strength is approximately 67%, with a coefficient of variation of about 2.2%. This observa-
tion holds significant potential for future research in this topic. Specifically, if an analytical
formulation is developed to determine the yield strength of the components under analysis,
this finding suggests a direct method to calculate ultimate strength: multiplying the yield
strength by a factor of 1/0.67 (equivalent to 1.5) would yield the ultimate strength.

To enhance clarity, Figure 8 displays the force–displacement curve for Case 3, empha-
sising the defined key parameters of interest.
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5. Discussion

Sections 3 and 4 were devoted, respectively, to deriving an analytical formulation to
predict the initial stiffness and yield strength of the analysed component and performing
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a parametric analysis, through numerical simulations, of a wider set of its geometrical
configurations. Instead, this section focuses on evaluating the effectiveness of the proposed
theoretical formulations. For clarity, in Equation (9), the angle α has remained undefined.
Generally, it varies between 30◦ and 45◦ and since no rules are defined, and it was chosen
to calibrate it against the parametric analysis results.

In particular, Table 3 shows how the mean value of the ratios among the predicted and
numerically simulated stiffness of all the analysed cases varies accordingly to the angle.
The prediction is more precise as the mean is equal to 1. Table 3 highlights that the angle α
can be assumed equal to 42◦.

Table 3. Validation of the proposed formulation.

Angle (◦) Mean
(kproposal/kAbaqus) Angle (◦) Mean

(kproposal/kAbaqus) Angle (◦) Mean
(kproposal/kAbaqus)

30 0.64 36 0.80 42 0.99
31 0.66 37 0.83 43 1.03
32 0.69 38 0.86 44 1.06
33 0.71 39 0.89 45 1.10
34 0.74 40 0.92
35 0.77 41 0.96

After setting the angle, the outcomes obtained by applying Equation (11) to the analysis
of 27 cases are presented in Figure 9 and Table 4.

kttt/ttc = tan 42◦E t0
1 + β

1− β
= 0.9 E t0

1 + β

1− β
(11)

As previously mentioned, the average of the ratios between the predicted and nu-
merical stiffness values is close to 1. Additionally, Table 4 reveals that both the standard
deviation and the coefficient of variation are approximately 10%. In Figure 9, a comparison
between the Finite Element (FE) results and analytical predictions is depicted, with these
parameters plotted on the x-axis and y-axis, respectively. It is evident from Figure 9 that
there are no cases where the deviations exceed 30%. This evidence substantiates the preci-
sion of the proposed formulation and marks a significant milestone in the assessment of
the behaviour of the ttt/ttc components.
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Table 4. Validation of the proposed stiffness formulation.

Case t0 (mm) β
kttt/ttc,FE
(N/mm)

kttt/ttc,proposal
(N/mm) kttt/ttc,proposal/kttt/ttc,FE

1 5.00 0.55 3375498 3256461 0.96
2 5.00 0.61 3895147 3902905 1.00
3 5.00 0.67 4272330 4784420 1.12
4 5.00 0.51 3107079 2913450 0.94
5 5.00 0.56 3385264 3351959 0.99
6 5.00 0.61 3815626 3902905 1.02
7 6.00 0.55 4095428 3907754 0.95
8 6.00 0.60 4095428 4538036 1.11
9 6.00 0.68 5445403 5956173 1.09
10 6.00 0.55 4081222 3907754 0.96
11 6.00 0.61 4081223 4683486 1.15
12 6.00 0.68 5328507 5956173 1.12
13 6.30 0.44 4247004 3063175 0.72
14 6.30 0.48 3481750 3390437 0.97
15 6.30 0.54 4229122 3988046 0.94
16 8.00 0.60 6137837 6050715 0.99
17 8.00 0.64 6137837 6891092 1.12
18 8.00 0.68 6751198 7941564 1.18
19 8.00 0.53 5362997 4924252 0.92
20 8.00 0.57 5362997 5523037 1.03
21 8.00 0.60 6159641 6050715 0.98
22 10.00 0.51 6561347 5826900 0.89
23 10.00 0.54 6993271 6330232 0.91
24 10.00 0.57 6561347 6903796 1.05
25 10.00 0.45 5856770 4984964 0.85
26 10.00 0.48 5856770 5381646 0.92
27 10.00 0.50 6529677 5672545 0.87

Mean 0.99
Standard deviation 0.10

Coefficient of variation 0.10

It is important to note that Equation (11) is presented in a straightforward manner,
emphasising that the stiffness of the ttt/ttc components is influenced solely by the steel’s
elastic modulus, the tube’s thickness, the dimensionless parameter β, and a coefficient
equal to 0.9, corresponding to tan42◦. This simplified formulation facilitates its practical
application and incorporation into design codes.

In order to validate the yield strength presented in Equation (10), Table 5 displays the
values and the ratios between the yield strength calculated using the derived formulation
and the values obtained from numerical simulations. Moreover, considering the observation
made in the last paragraph that the ultimate strength is generally 1.5 times the yield strength,
Table 5 predicts the ultimate strength based on Equation (12) as follows:

Fu,ttt/ttc = 1.5·Fy,ttt/ttc = 1.5t0
b0 + b1

2
fy (12)

Table 5 demonstrates that the proposed formulations accurately predict both the
yield and ultimate strength values from numerical simulations. The mean ratios between
analytical and numerical results are 1.04, indicating a high level of accuracy, with coefficients
of variation at 0.10. Instead, Figure 10 clearly shows that the discrepancies between
numerical and analytical results consistently remain below 30%.
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Table 5. Validation of the proposed strength formulations.

Case Fy,ttt/ttc,FE
(kN)

Fy,ttt/ttc,proposal
(kN) Fy,ttt/ttc,proposal/Fy,ttt/ttc,FE

Fu,ttt/ttc,FE
(kN)

Fu,ttt/ttc,proposal
(kN) Fu,ttt/ttc,proposal/Fu,ttt/ttc,FE

1 211 206 0.97 325 309 0.95
2 252 214 0.85 371 321 0.87
3 254 222 0.87 379 333 0.88
4 231 241 1.04 358 361 1.01
5 242 249 1.03 380 373 0.98
6 259 257 0.99 415 386 0.93
7 314 330 1.05 495 495 1.00
8 314 341 1.09 495 511 1.03
9 412 357 0.87 602 535 0.89

10 337 362 1.07 539 543 1.01
11 337 378 1.12 539 567 1.05
12 425 394 0.93 626 591 0.94
13 418 403 0.96 618 604 0.98
14 340 414 1.22 529 621 1.17
15 418 431 1.03 618 646 1.04
16 573 568 0.99 844 852 1.01
17 573 582 1.02 844 873 1.03
18 612 596 0.97 895 895 1.00
19 610 653 1.07 891 980 1.10
20 610 667 1.09 891 1001 1.12
21 670 682 1.02 988 1022 1.03
22 844 941 1.11 1230 1411 1.15
23 888 959 1.08 1316 1438 1.09
24 844 976 1.16 1230 1464 1.19
25 852 1030 1.21 1242 1544 1.24
26 852 1047 1.23 1242 1571 1.26
27 930 1065 1.15 1377 1598 1.16

Mean 1.04 1.04
Standard deviation 0.10 0.10

Coefficient of variation 0.10 0.10
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Building upon the understanding of the stiffness and strength of the ttt/ttc compo-
nents, our forthcoming research endeavours will be focused on consolidating the findings
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related to all nodal components. This will facilitate the development of a model for pre-
dicting the initial stiffness of connections between SHS columns and passing-through
IPE beams.

6. Conclusions

The potential of employing connections between Square Hollow Section (SHS) columns
and passing-through IPE beams presents an intriguing solution in the construction industry,
leveraging the numerous advantages offered by tubular columns. Although advancements
such as 3D laser cutting technology (3D-LCT) have enabled the manufacturing of this joint,
its widespread adoption is hindered by the absence of design formulations. To fill this
knowledge gap, recent research activities at the University of Salerno were devoted to
study this connection using the component method approach.

In this context, this manuscript delves into the sources triggered by the rotation
of the beam flanges, resulting in local compressive (ttc) and tensile (ttt) forces on the
tubular profile.

The key steps and findings of the investigation are summarised as follows:

- By applying principles of elasticity to structural elements, analytical formulations ware
developed to predict the initial stiffness and yield strength of the ttt/ttc components.

- The need to validate the derived formulations led to a parametric analysis involving
27 geometrical configurations of Square Hollow Section (SHS) profiles with rectangular
holes subjected to displacements along the axis of the hollow profile; the parametric
analysis was conducted through numerical simulations using Finite Element software.

- The primary parameters obtained from the numerical simulations included initial stiff-
ness, yield strength, and ultimate strength of the analysed ttt/ttc components; these
parameters revealed a consistent relationship between yield and ultimate strength,
maintaining a ratio of 1:1.5.

- The stiffness and strength values obtained from the 27 numerical simulations were
compared with those derived from the analytical formulations developed in the initial
phase of this study; the comparisons demonstrated the effectiveness of the proposed
formulations since the average ratio between the analytical predictions and the nu-
merical simulations was approximately 1.00 (with a coefficient of variation of about
10% in relation to the initial stiffness), while the average was approximately 1.04 (with
a coefficient of variation of about 10% in relation to the yield and ultimate strength).

Once this phase is completed, the component method approach can be applied to
predict the flexural behaviour of connections between SHS columns and passing-through
IPE beams.
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