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Abstract: Medium manganese steel has excellent comprehensive properties due to the TRIP effect of
retained austenite, but its welding performance is unsatisfactory for its high alloy content. This study
obtained retained austenite in low-carbon low-alloy steel with low contents of silicon and manganese
elements through intercritical heat treatment. The influence of intercritical quenching temperature
on the content and characteristics of the retained austenite, as well as the functional mechanism of
the retained austenite during low-temperature impact, was studied. The results showed that the
content of the retained austenite increased from 12% to 17%, and its distribution extended from
grain boundaries to martensite lath boundaries, with increasing intercritical quenching temperature.
The retained austenite on the grain boundaries was in blocks, and that on the martensitic lath
boundaries formed slender domains. The stability of the retained austenite was achieved through the
enrichment of C and Mn during intercritical heat treatment. The contribution of retained austenite
to low-temperature mechanical properties was closely related to its stability. The retained austenite
with poor stability underwent martensite transformation at low temperatures, and the high-carbon
martensite was a brittle phase that became the nucleation site of cracks or the path of crack growth
during impact. Stable retained austenite passivated crack tips and hindered crack propagation during
impacts, which improved the impact performance of the steel.

Keywords: low-carbon low-alloy steel; retained austenite; intercritical heat treatment; low-temperature
impact

1. Introduction

In recent years, medium manganese steel with Mn contents from 4 to 12 wt.% has at-
tracted widespread attention due to its high strength, plasticity, and toughness [1–6]. Retained
austenite plays a great role in improving the ductility and toughness of the steel [7–9]. The
uniform extension and toughness can be improved by the deformation-induced transfor-
mation of retained austenite when the steel deforms [10–12]. However, due to the high
manganese content of medium manganese steel, its welding performance is poor, which limits
its widespread use [13,14]. Low-alloy steel has excellent welding performance and is widely
used in daily life. Introducing retained austenite that can be stable at room temperature
or even low-temperature into low-alloy steel with low-carbon and manganese contents has
always been a hot research topic.

Numerous methods have been developed to obtain multiphase structures comprised
of austenite and one or two other phases, such as quenching and partitioning (Q&P) [15–21]
and TRIP treatment [22–25]. These methods are thought to obtain retained austenite by
stabilizing austenite through diffusion of carbon from adjacent carbon-rich martensite or
bainite to austenite [26]. However, it is very difficult to obtain plenty of retained austenite in
low-carbon low-alloy steel. The low content of Si cannot effectively inhibit the precipitation
of carbides, resulting in insufficient enrichment of carbon [27]. Recently, an intercritical
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heat treatment [28–34] was proposed to obtain retained austenite in high Mn and Ni steel
via diffusion of Mn and Ni to austenite to stabilize reverted austenite. Austenite enriched
with both C and Mn is sufficiently stable at room temperature, even low temperatures, and
the effect of silicon is greatly reduced.

In this study, the authors attempted to increase only the content of Mn appropriately on
the basis of the composition of traditional low-carbon low-alloy steel and aimed to introduce
retained austenite into conventional low-carbon low-alloy steel through intercritical heat
treatment to improve its overall properties without reducing welding performance. The
influence of the intercritical quenching temperature on the content, size, distribution, and
morphology of retained austenite was studied, and the mechanism of stabilization of
retained austenite was analyzed. The functional mechanism of retained austenite during
low-temperature impact was explored.

2. Materials and Experimental Procedure

The materials used in this study were smelted in a vacuum induction melting furnace
(VIM200L-00); the chemical composition was 0.12C-2.98Mn-0.21Si (in wt.%) and Fe (the bal-
anced). The addition of elements was carefully considered based on production experience
and calculations, such as less carbon for better matching of strength and toughness, an ap-
propriate level of Mn for control of retained austenite and good welding performance, and
less Si for ensuring the surface quality of medium-thick plates. First, the ingot was forged
into 100 × 100 × 100 square billets for rolling using a forging machine (C41-750B). After
holding at 1200 ◦C for 3 h, the experimental steel was rolled into 12 mm thick steel plates
using a two-stage controlled rolling process on a Ø450 × 450 two-high reversing hot mill.
Intercritical heat treatments were conducted on hot-rolled steel plates to achieve the best
combination of strength, toughness, and plasticity. A schematic diagram of the controlled
rolling and intercritical heat treatment process is shown in Figure 1. After hot rolling, the
experimental steel was austenitized, then quenched to obtain a uniform structure, followed
by intercritical quenching at 700, 720 and 740 ◦C (IQ700, IQ720 and IQ740, respectively),
and finally critical quenched at 680 ◦C. The effects of intercritical quenching temperature
on the structure and properties were studied.
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Figure 1. Schematic diagram of the controlled rolling and heat treatment process.

Metallographic samples were cut from intercritical heat treatment plates with different
intercritical quenching temperatures to analyze their microstructure and the characteristics
of retained austenite. A Zeiss Ultra-55 (Zeiss Microscopy, Munich, Germany) scanning
electron microscope operating at 15 KV was used to perform scanning electron microscopy
(SEM) to observe the microstructure of steels under different intercritical quenching tem-
peratures, and electron backscattering diffraction (EBSD) was used to investigate features
such as the shape, size and distribution of retained austenite. The detailed characteris-
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tics of retained austenite were studied using FEI Tecnai G2 F20 (Thermo Fisher Scientific,
Waltham, MA, American) transmission electron metallography (TEM). The distribution
and variation of elements were obtained by energy-dispersive X-ray spectroscopy (EDS)
using a JEOL JXA-8530F (JEOL, Tokyo, Japan) field emission electron probe (EPMA). The
retained austenite was detected in the experiment steels using an X-ray diffraction (XRD)
equipped with a Cu target. The tensile testing was performed using the standard style of
5 mm diameter and 25 mm gauge length and was conducted on a universal tensile testing
machine at room temperature. Specimens for impact tests were cut along the longitudinal
direction of the plates, and low-temperature toughness performance testing was conducted
on an Instron 9250HV (Instron, Norwood, MA, USA) falling impact testing machine using
standard 10 mm × 10 mm × 55 mm V-notched samples. The force-displacement curves
can be automatically recorded by a computer.

3. Results and Discussion
3.1. Microstructure Characterization

The microstructure of steels after austenitization and intercritical heat treatment at
different intercritical quenching temperatures is shown in Figure 2. The microstructure
of the experimental steel after hot rolling and austenitization quenching was uniform
lath martensite (Figure 2a). This indicated that the defects formed during the casting
and solidification process in the experimental steel healed after hot rolling, which was a
prerequisite for obtaining good overall properties of the experimental steel after subsequent
heat treatment. There were significant differences in the microstructure of the experimental
steels after the same critical quenching and different intercritical quenching procedures,
as shown in Figure 2b–d. The microstructure of IQ700 was mainly tempered martensite,
and there was little fresh martensite. The fresh martensite of IQ720 obviously increased,
but there was still a large amount of tempered martensite. The microstructure of IQ740
was mainly fresh martensite, and there was only a small number of small domains of
tempered martensite. Intercritical quenching was incomplete austenitizing quenching;
only part of the structure was austenitized and then quenched as fresh martensite, but
the structure without austenitizing was only tempered. During the tempering process
of martensite, carbon and manganese were discharged into the surroundings, and the
austenitized structure absorbed carbon and manganese. More carbon and manganese
accumulated in the fresh martensite, which provided good conditions for the formation of
retained austenite during critical quenching.

The content of retained austenite in experimental steels under different intercritical
quenching temperatures was statistically analyzed using XRD data, as shown in Figure 3.
The diffraction pattern (Figure 3a) for the experimental steels had five broad peaks, cor-
responding to (111)FCC, (110)BCC, (200)FCC, (200)BCC and (211)BCC, respectively. The
height of diffraction peaks of FCC in the experimental steels increased with increasing
intercritical quenching temperatures, indicating that the content of retained austenite grad-
ually increased. Figure 3b shows that the content of retained austenite increased from
12% for IQ700 to 17% for IQ740. The XRD results indicated that increasing the intercritical
quenching temperature enhanced the effect of element segregation, allowing more reversed
austenite to be retained at room temperature after critical quenching. However, the role of
retained austenite in steel depended not only on its content but also on its size, morphology,
distribution, and stability. XRD provided only a macroscopic measurement of the content
of retained austenite in steel, and it could not fully display the characteristics of retained
austenite. Therefore, further detailed characterization of retained austenite was needed.
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Figure 2. SEM images of experimental steel after different stages of heat treatments. (a) steel after
austenitization; (b) IQ700; (c) IQ720; (d) IQ740.
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Figure 3. The diffraction patterns (a) for retained austenite content (b) in experimental steels with
different intercritical quenching temperatures.

EBSD characterization was performed to investigate the effect of intercritical quench-
ing temperature on the microstructure of the experimental steels. Results of the EBSD
analysis of experimental steels intercritical quenched at 700, 720 and 740 ◦C are shown in
Figures 4–6. The BC maps show the microstructure morphologies within the corresponding
selected areas of different steels; phase maps indicate the distribution of retained austenite,
and IPF maps show different colors that represent different crystal orientations of each
point. The red areas in the phase maps represent the distribution of retained austenite in
the microstructure, as shown in Figures 4b, 5b and 6b. The quantity, size, and distribution
of retained austenite are closely related to the intercritical quenching temperature. The
amount of retained austenite increased with the increase in intercritical quenching temper-
ature. The areas of retained austenite first increased and then decreased, mainly because
the distribution of retained austenite changed. The combination of phase maps, IPF maps
and grain boundary maps determined that the retained austenite in IQ700 and IQ720 was
mainly distributed on the grain boundaries, while the retained austenite in IQ740 was not
only limited to the grain boundaries but was also distributed on the martensitic lath bound-
aries. The increase in the number of nucleation points led to the smaller areas of retained
austenite. This may have been because element enrichment occurred not only at the grain
boundaries but also at the martensite lath boundaries. When the intercritical quenching
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temperature increased to 740 ◦C, the number of nucleation points of reversed austenite
greatly increased. Alternatively, the reverted austenite at the martensitic boundaries may
have been stable at room temperature until the intercritical quenching temperature reaches
740 ◦C.
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EBSD provided a more detailed representation of the distribution, size, and quantity of
retained austenite in experimental steel, while TEM accurately represented the morphology
of retained austenite. Figure 7 shows the morphology of retained austenite in IQ720. Com-
pared with the bright field map (Figure 7a) and the dark field map (Figure 7b), retained
austenite appeared black in the bright field image. The diffraction pattern of retained
austenite is shown in Figure 7c. This was because the retained austenite was relatively soft
and prone to concentrate under stress. The retained austenite in IQ720 mainly appeared
in the shape of a block, which was consistent with the EBSD observations. In addition,
Figure 7e shows the diffraction pattern of the microstructure in the circled area in Figure 7d,
which was <113> twin martensite. This was because the C element accumulated in the
reversed austenite during the intercritical heat treatment process, and the content of the C
element in the reversed austenite reached a very high level during quenching. Reversed
austenite with high C content could be stable at room temperature without martensite
transformation, but there was still some reversed austenite that could not reach the C
content to reduce its Ms point below room temperature, and martensite transformation
occurred again during quenching. In the quenching process of C-rich austenite, the strain
energy increased because the transformation point of martensite decreased, and a fine twin
substructure formed during the formation and growth of martensite to adjust the strain
energy, causing twin martensite to form. This proved that the segregation of C and Mn
occurred during the intercritical quenching process. Figure 8 presents the morphologies of
retained austenite in IQ740. This indicated that there were two forms of retained austenite,
block retained austenite (Figure 8a,b), similar to IQ720, and slender domains of retained
austenite (Figure 8c,d). Reviewing the distribution of retained austenite, Figure 6b clearly
shows that the slender areas of retained austenite corresponded to retained austenite be-
tween the martensitic laths, while the large blocky areas of retained austenite corresponded
to retained austenite between the grain boundaries.
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The intercritical heat treatment process could introduce stable retained austenite at
room temperature into low-carbon low-alloy steel, which was inevitably accompanied by
the migration, diffusion, and aggregation of C and Mn. EMPA was used to conduct surface
and line scanning on the experimental steels to analyze the variations in C and Mn during
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intercritical heat treatment. Figure 9 shows the distribution of C and Mn elements in the
microstructure of IQ700. The distributions of C and Mn in the microstructure were uneven,
and there was obvious aggregation at the grain boundaries and martensite lath boundaries.
Figure 9a,b showed that the aggregation of Mn and C remained basically synchronized,
and C and Mn atoms simultaneously aggregated in a certain region. The line scanning
results are shown in Figure 9c. The red curve represents the distribution of C on the green
line, while the blue curve indicates the distribution of Mn along the green line. The peak
positions of the two curves corresponded. This indicated that there was a simultaneous
aggregation of C and Mn on the green line. The chemical composition of retained austenite
was analyzed using TEM, as shown in Figure 9d. The black microstructure was retained
austenite. EDS diffraction analysis was conducted on it and the surrounding white area,
and the contents of C and Mn in the retained austenite were as high as 2.74% and 5.07%,
respectively. The content of C in the white area was close to 0%, and the percentage of Mn
element was 1.05%. The above results indicated that there was a significant enrichment
of C and Mn elements in retained austenite. Mn had the effect of expanding the austenite
zone, and the stability of austenite was directly proportional to its C and Mn contents [35].
The combined effects of the two factors caused the Ms point of retained austenite to
decrease below room temperature so that it can be stably retained at room temperature
without transformation.
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Figure 9. Distributions of C and Mn in IQ700. (a) Surface scanning of C, (b) Surface scanning of Mn,
(c) Line scanning of C and Mn, and (d) TEM-EDS analysis.
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3.2. Mechanical Properties

Figure 10 shows the effect of the intercritical quenching temperature on the mechanical
properties of the experimental steel. The intercritical quenching temperature had little
effect on the tensile properties of the experimental steel but a significant impact on its
low-temperature impact performance. IQ720 had less tensile strength but more elongation
and good strength–ductility balance (TS × EL). The tensile properties of IQ700 and IQ740
were similar. As the intercritical quenching temperature increased, the −40 ◦C impact
energy of the experimental steel increased from 100 J to 110 J and then decreased to 43 J.
IQ740 had the highest retained austenite content but its low-temperature impact toughness
was the worst. This indicated that the characteristics of retained austenite significantly
influenced impact toughness.

To reveal the reasons for abnormal low-temperature impact performance, the force-
displacement curves of the impact processes were analyzed, as shown in Figure 11. The
three curves started to rise linearly, and when the force reached 10,000 N, the rising rate
of the curves gradually slowed down. When the force reached Fgy, the samples yielded,
and the deformation mode changed from elastic deformation to plastic deformation. The
yield points of the experimental steels with different intercritical quenching temperatures
were the same. When the curve reached its highest point Fm, cracks began to nucleate,
followed by stable crack propagation until unstable crack propagation began. The value of
the force at the beginning of the sharp decrease (Fiu) indicated the beginning of unstable
crack propagation. The force at the end of the sharp decrease (Fa) indicated the termination
of unstable crack propagation. Stable crack propagation is a ductile fracture, while unstable
crack propagation is a brittle fracture. Stable crack propagation absorbed more energy
in the force-displacement curves of IQ700 and IQ720 but less energy for IQ740. Crack
formation absorbed less energy in IQ700 than in IQ720, and the absorption energy for
the formation of the shear lip was the same. The energy absorbed for crack formation
and shear lip formation in IQ740 was small, which indicated that the retained austenite
underwent martensite transformation when cooled to −40 ◦C. When intercritical quenching
treatment was performed at a higher temperature, the volume fraction of martensite
without austenitization was smaller. During the subsequent critical quenching process,
less C and Mn accumulated in the austenite, and the stability of the retained austenite was
relatively poor. Therefore, more retained austenite in IQ740 transformed into martensite
at low-temperature, resulting in poor impact toughness. The areas enclosed by the force-
displacement curves and the X-axis were the impact energies. The impact energy was
clearly largest for IQ720 and smallest for IQ740.

Corresponding to the impact force-displacement curves, the impact fracture surfaces
can also reveal the fracture process of the specimens. Figure 12 shows the macroscopic
and microscopic morphologies of the impact fracture surfaces of the experimental steels
quenched at different intercritical temperatures. The macroscopic morphology of the impact
fracture surface was divided into three regions, namely, the fibrous region, the radiation
region, and the shear lip, as shown in Figure 12a–c. The fibrous region and shear lip of
IQ740 were relatively small, and the radiation region was the largest. The fibrous region
and shear lip of IQ720 were the largest, the radiation region was the smallest, and there
were two fibrous regions. The fibrous regions corresponded to the stable crack propagation
stage in the force-displacement curves between Fm and Fiu. The stable propagation stage
of the IQ720 crack was the longest, and it corresponded to the largest fibrous region. The
radiation region represented the unstable propagation of cracks after reaching the critical
size. IQ740 was the first to undergo unstable crack propagation, with the largest radiation
region. The stage after the sharp decrease in the force-displacement curve corresponded to
the shear lip. The shear lips in IQ720 and IQ700 were the same size, and the final stages of
the force-displacement curves were also the same. Therefore, the force-displacement curves
corresponded completely to the fracture morphologies. The microscopic morphologies
of the impact fracture radiation regions are shown in Figure 12(a1–c1). The direction of
crack propagation in the radiation region of IQ720 underwent multiple changes, and there
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were few secondary cracks. IQ740 had many secondary cracks with larger sizes, indicating
poor toughness.
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To further analyze the reason for the poor toughness of IQ740 with the most retained
austenite, EBSD was used to characterize the secondary crack on the impact fracture surface,
as shown in Figure 13. Figure 13b indicated that retained austenite was not present near
the IQ740 fracture surface. Combined with the IPF map (Figure 13a), this showed that
the secondary crack propagated through the grain along martensitic lath boundaries. The
crack deflected at the grain boundaries in the process of propagation, and finally, the crack
propagation stopped at the triangular grain boundary. This indicated that the energy
required for the crack to propagate along the martensitic lath boundaries was small. There
were many domains of retained austenite distributed on the martensitic lath boundaries
of IQ740, but the crack still propagated along the martensitic lath boundary. This may
have been because the retained austenite transformed into high carbon martensite at low-
temperature. The high carbon martensite was a brittle phase, and it became the crack
propagation path, causing poor low-temperature toughness [36].
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Figure 13. EBSD results of the impact fracture crack tip for IQ740. (a) Inverse pole figure (IPF) map,
(b) Band Contrast (BC) map.

4. Conclusions

In this study, retained austenite was formed in low-carbon low-alloy steel by ap-
propriately adding manganese and applying intercritical heat treatment, which achieved
good overall properties. Interestingly, we found that the low-temperature toughness of
experimental steel is not simply determined by the content of retained austenite. The effect
of retained austenite is closely related to its stability. The main conclusions were as follows:

(1) The intercritical quenching temperature had a significant impact on the content,
domain size, morphology, and distribution of retained austenite. With increasing
intercritical quenching temperature, the content of retained austenite increased, the
domain size increased first and then decreased, the distribution extended from the
grain boundary to the martensite lath boundary, and the morphology developed from
blocks to strips;

(2) During the critical heat treatment process, significant element aggregation occurred, and
a large amount of C and Mn from the surrounding structure accumulated in the retained
austenite, which made it stable at room temperature and even low temperatures;

(3) The characteristics of retained austenite had a small effect on the tensile properties,
but they had a significant impact on low-temperature impact properties. The impact
energy of IQ720 at −40 ◦C reached 110 J, while the impact energy of IQ740 with the
highest retained austenite content was only 40 J, which was closely related to the
stability of the retained austenite;

(4) The crack formation absorption energy of IQ740 was relatively small, and the cor-
responding fiber region of the impact fracture was small. This indirectly indicated
that retained austenite transformed into brittle high-carbon martensite, which did
not hinder crack growth but became the nucleation site of the crack. The retained
austenite in IQ720 was stable at low temperatures, which hindered crack propagation
and improved the impact performance of the steel;
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(5) The use of medium manganese steel is greatly limited by its welding performance.
Subsequent research may mainly focus on improving the welding performance of
medium manganese steel to meet the needs of industrial applications. Appropriately
reducing the manganese content may be a good solution.
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