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Abstract: Martensitic/bainitic wear-resistant steels are widely used in civilian industry, where a good
combination of strength and toughness is required. In the present study, a double-quenching process
was applied and compared to the conventional single-quenching process. The microhardness and
ductile–brittle transition temperature were measured, and the microstructure was characterized with
scanning electron microscopy and electron backscatter diffraction (EBSD) technique. It was found
that the double-quenching process refined the prior austenite grain size by 43% and simultaneously
improved the toughness and hardness. The ductile-to-brittle transition temperature was decreased
from −77 ◦C to −90 ◦C, and the hardness was increased by 8%. Based on the EBSD data, a detailed
analysis of the grain boundary distribution was performed using a recently developed machine
learning model. Unlike what was found in previous studies, for the studied wear-resistant steel, the
refinement of the prior austenite grain did not increase the block boundary density while increasing
the high-angle packet boundary density. As a result, the total density of the high-angle grain
boundaries in the double-quenched specimen was not improved compared to the single-quenched
specimen. Further inspection suggested that it is the prior austenite grain boundaries and high-angle
packet boundaries that contribute to the hardness and toughness, and the key factors that determine
their effectiveness are the high misorientation angle between the {110} slip planes and the high slip
transmission factor.

Keywords: martensitic and bainitic steels; grain boundaries; toughness; crystallography; high-strength
low-alloy steels; wear-resistant steels; heat treatment

1. Introduction

Martensitic wear-resistant steels are widely employed in civil constructions, where a
combination of high strength and high toughness is of great importance. While as-quenched
martensite provides a sufficient hardness, a subsequent tempering process is needed to
achieve the required toughness. Multiple studies have been carried out to investigate
the effects of quenching and tempering conditions on the mechanical properties of wear-
resistant steels. While the impact toughness can be improved by an appropriate increase
in the tempering temperature, temper embrittlement takes place when the tempering
temperature exceeds a critical value. Meanwhile, the hardness decreases constantly with
increasing tempering temperature [1–3]. On the other hand, simultaneous improvements
in strength and toughness can be achieved by grain refinement via lowering the quenching
temperature. Haiko et al. altered the reaustenitization (quenching) temperatures of an
as-quenched 500 HB wear-resistant steel and found that a finer prior austenite grain (PAG)
size led to a significant improvement in low-temperature impact toughness and a slight
increase in hardness [4]. Cyclic quenching (reaustenitizing and quenching two or more
times) has also proved to be an effective way to refine the grain size and improve the
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comprehensive properties of a wide range of steels [5–10]. However, so far, studies on the
cyclic quenching of martensitic/bainitic wear-resistant steels are still scarce.

In the martensitic/bainitic microstructure, a PAG is divided into several packets. Each
packet consists of laths with the same habit plane and is further divided into blocks consisting
of laths with similar orientations [11]. Corresponding to the hierarchical microstructure, there
are different types of grain boundaries. While the positive effect of grain refinement on
the mechanical properties of steels is commonly described by the Hall–Petch relationship,
the ‘effective’ grain size, or in other words, the effective grain boundary governing the
relevant properties in a martensitic/bainitic microstructure, is still under debate. Concerning
the toughness, Wang et al. proposed that packet boundaries strongly hindered fracture
propagation and packets acted as the effective microstructure unit for cleavage [8]. It was
also reported that the finer packet size or higher density of packet boundaries decreased
the ductile-to-brittle transition temperature (DBTT) [12,13]. Zhang et al. argued that block
boundaries dominate the high-angle boundaries and blocks should be the minimum structure
unit controlling the toughness [14]. As reported in Ref. [15], there were many studies that
supported that the block boundary is the key microstructural feature dominating the toughness
and strength. Morito et al. analyzed the yield strengths of low-carbon martensitic steels
with respect to the packet and block sizes, respectively, and the results suggested that the
block size is the key structural parameter for the strength [16]. Wang et al. [17] also found
a near-linear relationship between the block boundary density and the hardness of two
bainitic/martensitic steels.

The overall misorientation angle (OMA), or simply the misorientation angle, was
usually used as the criterion to define high-angle or low-angle grain boundaries. It has long
been recognized that the high-angle (OMA) grain boundaries are effective in impeding crack
propagation. Guo et al proposed, more specifically, that the crystallographic feature that
governs transgranular fracture is the {100} cleavage plane, while the dislocation plasticity
is governed by the {110} slip plane [18]. The specific misorientation angle (SMA), as
opposed to the OMA, was thus proposed to describe the misorientation relationship
(OR) [13,19,20]. The SMA was defined as the angle between specific crystallographic planes
of two neighboring sub-volumes. The SMAs between {100} cleavage planes ({100}-SMA)
and between {110} slip planes ({110}-SMA) were considered to be relevant to the cleavage
fracture and dislocation gliding, respectively. In low-carbon martensitic/bainitic steels,
the parent austenite phase and product phase often hold the Kurdjumov–Sachs (K–S)
relationship, which is characterized by the parallelism between close-packed planes and
directions in the two phases: {111}G‖{110}α’ and <110>G‖<111>α’. Due to symmetry, for the
K–S relationship there are four possible habit planes, (111)γ,

(
111

)
γ

,
(
111

)
γ

, and
(
111

)
γ

,
i.e., four packets within a PAG, and there are six variants, i.e., six blocks within each packet.
Theoretically, there are three possible inter-variant OMAs, 10.53◦, 49.47◦, and 60◦, within a
packet [11], and in practice small deviations from the theoretical OR are usually observed.
In the following, the inter-variant boundaries within a packet with an OMA smaller and
greater than 15◦ are referred to as sub-block boundaries and block boundaries, respectively.
The packet boundaries with OMA values smaller and greater than 40◦ are referred to as
low-angle and high-angle packet boundaries, respectively. In summary, each inter-variant
grain boundary within a PAG holds a theoretically fixed OR and can be categorized as a
packet or block/sub-block boundary, while there are no defined ORs for PAG boundaries
(PAGBs). A machine learning model was developed to distinguish different types of grain
boundaries based on their features in four parameters: OMA, {100}-SMA, {110}-SMA, and
{111}-SMA [13]. For example, a sub-block or block boundary must have a {110}-SMA close to
zero due to the K–S relationship, while a packet boundary usually has a larger {110}-SMA.

In the present study, the effect of the double-quenching process on a wear-resistant
steel was examined. The mechanical properties and microstructure of a double-quenched
specimen were compared with those of a single-quenched specimen. Special attention was
paid to the distribution of different types of grain boundaries, and the key microstructural
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feature that affects the mechanical properties of the martensitic/bainitic wear-resistant steel
is discussed.

2. Materials and Methods

The as-rolled NM400 wear-resistant steel plate was received from the industry with
the chemical composition listed in Table 1. Two groups of specimens were prepared. The
first group was austenitized at 900 ◦C and then quenched in oil; the process was repeated
for the second group, as illustrated in Figure 1. These specimens are denoted as single-
quenched (SQ900) and double-quenched (DQ900), respectively. After the heat treatment,
the specimens were machined into 10 mm × 10 mm × 55 mm V-notched Charpy test
specimens following the ASTM standard, and instrumented Charpy impact tests were
performed at various temperatures ranging from −120 ◦C to −40 ◦C. Three tests were
performed for each condition. Vickers hardness tests were performed on the heat-treated
specimens at 1 kgf, and the microstructure was characterized with a scanning electron
microscope (SEM) and electron backscatter diffraction (EBSD). A TESCAN MIRA3 SEM
system equipped with an Oxford Instruments Symmetry EBSD detector was employed
for the SEM and EBSD analyses. For SEM imaging, the specimens were prepared by the
standard metallographic method, including grinding with silicon carbide sandpapers and
polishing with diamond polishing paste, followed by etching with 4% nital. For EBSD
measurements, the specimens were electropolished after the mechanical polishing using a
solution with 10% perchloric acid, 5% glycerol, and 85% ethanol.

Table 1. Chemical composition of the studied steel.

Element C Si Mn Cr + Mo Nb + Ti B Fe

mass% ≤0.20 ≤0.30 ≤1.10 0.7–0.9 ≤0.04 ≤0.002 Bal.
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Figure 1. Heat treatment processes of single-quenched (a) and double-quenched (b) specimens.

The EBSD data were analyzed with the machine learning model, as presented in
Ref. [13]. The types of the grain boundaries (PAGBs, high-angle packet boundaries, low-
angle packet boundaries, block boundaries, and sub-block boundaries) were determined
based on the K–S relationship using the model.

3. Results
3.1. Mechanical Properties

Figure 2a shows the total absorbed energy as a function of the temperature at which
the Charpy test was performed. The DBTT was shifted from −77 ◦C to −90 ◦C by the extra
quenching process, which suggests an improvement in the toughness. In contrast to the
tempering process, where the increase in toughness is always associated with a degradation
in hardness, the double-quenching process also led to a slight improvement in hardness:
the microhardness increased from 379.7 HV to 408.5 HV (Figure 2b), with both meeting the
requirement for the hardness of an NM400 steel.
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Figure 2. Impact energy–temperature curves (a) and microhardness (b) of the single-quenched and
double-quenched specimens.

Unlike conventional Charpy impact tests, which only give the total absorbed energy, in-
strumented Charpy tests also record the impact load/energy–displacement curves. Figure 3
displays the curves measured at−80 ◦C, which is between the DBTT of the single-quenched
and double-quenched specimens. The curves can be divided into two parts: the crack
initiation stage and the crack propagation stage. The cracks were initiated at the maximum
load (Fm), and beyond Fm the crack propagated steadily until a critical crack length was
reached. After that, unstable crack propagation took place, manifested as a sudden drop in
the impact load. The absorbed energy at Fm was the crack initiation energy (CIE), as illus-
trated in Figure 3, and the difference between the total absorbed energy and CIE was the
crack propagation energy (CPE). The CIEs for the single-quenched and double-quenched
specimens were quite similar (34 J and 38 J, respectively), and it was the distinct CPEs (16 J
and 176 J, respectively) that accounted for the remarkably different total impact energies
(50 J and 214 J, respectively) at −80 ◦C. It is clear that the double-quenched specimen
underwent a longer ductile propagation [21] and exhibited a much better plasticity.
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3.2. Microstructure Characterization

SEM images of the heat-treated specimens are shown in Figure 4. Both single-quenched
and double-quenched specimens exhibited granular bainitic microstructures with fine,
dispersed martensite/austenite islands, resembling that of a water-quenched and tempered
NM400 steel with a similar chemical composition [22]. The PAGBs could be visualized, as
the arrows indicate. It can be seen that the double-quenched specimen had a much smaller
prior austenite grain size than the single-quenched specimen. As reported in the literature,
the PAG size can be effectively refined by cyclic quenching due to more nuclei for austenite
reversion generated from the preceding quenching [5,7,23].
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Figure 4. SEM images of the single-quenched (a) and double-quenched specimens (b).

Figure 5a presents the EBSD band contrast (BC) maps overlapped with grain bound-
aries shown as lines colored according to their OMAs. In Figure 5b, the grain boundaries
are colored according to their types, with PAGBs shown separately in Figure 5c for the
convenience of visualization. The PAG size was measured by the intercept method based
on three sets of EBSD data for each specimen, and the average PAG size decreased from
12.7 ± 2.6 µm to 7.3 ± 0.6 µm by the double-quenching process. It can clearly be seen
that the double-quenching process effectively refined and homogenized the PAG size.
However, from Figure 5a,b, it seems that the total density of high-angle grain boundaries
(with OMA > 45◦) was reduced by the double-quenching process, which was confirmed
by the quantitative analysis shown in Figure 6: double-quenching led to a higher PAGB
density, corresponding to the decreased PAG size and a higher high-angle packet boundary
density. However, the double-quenched specimen showed a much smaller block boundary
density compared to the single-quenched specimen. As the block boundaries accounted
for the majority of the high-angle grain boundaries, the total density of the high-angle
grain boundaries of the double-quenched specimens was smaller than that of the single-
quenched specimen.



Metals 2023, 13, 61 6 of 11Metals 2023, 12, x FOR PEER REVIEW 6 of 11 
 

 

 

Figure 5. (a) EBSD band contrast map overlapped with grain boundaries, where lines of different 

colors represent different overall misorientation angles; (b) Grain boundary maps, where lines of 

different colors represent different types (PAGB: prior austenite grain boundary, HAPG: high-angle 

packet boundary, BB: block boundary, LAPG: low-angle packet boundary, SBB: sub-block bound-

ary); (c) Prior austenite grain boundaries. The left and right columns are maps for the single-

quenched and double-quenched specimens, respectively. 

 

Figure 6. Density of grain boundaries of different types in the single-quenched and double-

quenched specimens, quantified based on the EBSD data shown in Figure 5b. 

Figure 5. (a) EBSD band contrast map overlapped with grain boundaries, where lines of different
colors represent different overall misorientation angles; (b) Grain boundary maps, where lines of
different colors represent different types (PAGB: prior austenite grain boundary, HAPG: high-angle
packet boundary, BB: block boundary, LAPG: low-angle packet boundary, SBB: sub-block boundary);
(c) Prior austenite grain boundaries. The left and right columns are maps for the single-quenched
and double-quenched specimens, respectively.
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4. Discussion
4.1. Effective Grain Boundaries for DBTT

The refinement of PAG size was reported to decrease both the packet and block sizes
in lath martensite structures after quenching [5,24]. However, our results suggested that
the double-quenched specimen showed a lower block boundary density compared to the
single-quenched specimen. Our finding was consistent with Wang et al.’s work [25], where
smaller PAGs were shown to have lower block boundary densities. The results imply that
the block boundaries are not responsible for the improvement in the toughness and hardness.
It is thus inferred that although both high-angle packet and block boundaries have a high
OMA, their roles as barriers are quite different. The {110}-SMA was considered to control
the plastic deformation because {110} planes are primary slip planes. Therefore, the grain
boundary with a high {110}-SMA defines the effective grain within which the free slip can
occur. As seen in Figure 3, the lowering of DBTT by the double-quenching process was owing
to the high plastic deformation. Therefore, we looked into the {110}-SMA distribution in the
two specimens, as shown in Figure 7a. Comparing Figure 7a to Figure 5b, we can see that
the high {110}-SMA grain boundaries are mostly PAGBs and high-angle packet boundaries,
which can be seen more clearly from the quantitative analysis (Figure 7b). The {110}-SMA of
block boundaries are mostly below 5◦, while those of high-angle packet boundaries are mostly
between 5◦ and 15◦. The majority of PAGBs also had {110}-SMAs greater than 5◦. As a result,
although the total density of high-angle (OMA) grain boundaries in the double-quenched
specimen was smaller than that of the single-quenched specimen, the total density of the
high-{110}-SMA grain boundaries was higher, as shown in Figure 8. The high density of
PAGBs and high-angle packet boundaries in the double-quenched specimen would contribute
effectively to the resistance to dislocation gliding. The high plastic deformation of the double-
quenched specimen thus seems counterintuitive. However, it was also reported in other
works that the refinement of PAG and packet size decreased the DBTT [12,13], consistent with
our finding. A plausible explanation is that the fine effective grains for slip decentralized
the stress concentration at the crack tip, so the unstable crack propagation was delayed. This
was confirmed in Figure 3, where one can see a prolonged crack propagation stage for the
double-quenched specimen.
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Figure 7. A {110}-SMA distribution map (a) and {110}-SMAs of different types of grain boundaries
(b) of single-quenched (left column) and double-quenched (right column) specimens (PAGB: prior
austenite grain boundary, HAPG: high-angle packet boundary, BB: block boundary, LAPG: low-angle
packet boundary, SBB: sub-block boundary).
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4.2. Effective Grain Boundaries for Hardness

In previous studies, block boundaries were considered to be most relevant to the
hardness [17]. In the present study, however, the double-quenched specimen with a lower
block boundary density had a slightly higher hardness. The hardness reflects the resistance
against localized plastic deformation, i.e., dislocation movement [26]. Therefore, the concept
of {110}-SMA seems to also work for the hardness. In that sense, PAGBs and high-angle
packet boundaries also contributed to the hardness.

Apart from {110}-SMA, we also calculated the slip transmission factor m’, which was
defined as m’ = cos(ϕ)cos(κ), whereϕ is the angle between the slip directions in neighboring
crystallographic units (‘grains’) and κ is the angle between normal to the slip planes of
neighboring grains. The slip transmission factor is thus a geometric factor to measure the
ability of slip transfer between neighboring grains without losing the coherency at the grain
boundary [27]. The slip transmission factor between different variants was reported to be
closely related to the plasticity and strength/hardness [28,29]. By definition, the higher
the m’, the more transparent a grain boundary for a specific slip system. In this study,
we took the N value, the maximum m’ of all slip systems in the adjacent sub-volumes,
to indicate the ease of slip transmission of a grain boundary. In other words, the grain
boundary with a larger 1-N value is more resistant to slip transmission. The distribution
maps of 1-N values are shown in Figure 9a, and the quantitative results are plotted in
Figure 9b. In contrast to the {110}-SMA, the 1-N value of the high-angle packet boundary
shows a bimodal distribution, while it is still the PAGB and high-angle packet boundary
that contribute most to the high 1-N values. Therefore, the double-quenched specimen also
showed a higher 1-N value than the single-quenched specimen (Figure 10), i.e., a higher
resistance to plastic deformation and hence higher hardness.
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Figure 9. The 1-N value distribution map (a) and 1-N values of different types of grain boundaries
(b) of single-quenched (left column) and double-quenched (right column) specimens (PAGB: prior
austenite grain boundary, HAPG: high-angle packet boundary, BB: block boundary, LAPG: low-angle
packet boundary, SBB: sub-block boundary).
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5. Conclusions

Compared to the conventional single-quenching process, the application of double-
quenching to the wear-resistant steel refined the PAG size significantly and improved both
the hardness and impact toughness. The quantitative analysis of the grain boundaries
indicated that the double-quenched specimen had a higher PAGB and high-angle packet
boundary density, while it showed a lower block boundary density. Further inspection
suggested that both the PAGB and high-angle packet boundary showed high {110}-SMA
and 1-N values compared to the other types of grain boundaries. Therefore, they were
more effective in hindering dislocation movement, which reduced the stress concentration
at the crack tip during the Charpy test. Meanwhile, the restriction of dislocation movement
also contributed positively to the hardness.
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