
Citation: Wu, J.; Shi, J.; Gao, Y.; Gai, S.

Penetration Recognition in GTAW

Welding Based on Time and

Spectrum Images of Arc Sound Using

Deep Learning Method. Metals 2022,

12, 1549. https://doi.org/10.3390/

met12091549

Academic Editor: Vincenzo Crupi

Received: 15 August 2022

Accepted: 15 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Penetration Recognition in GTAW Welding Based on Time and
Spectrum Images of Arc Sound Using Deep Learning Method
Jiazhou Wu 1,*, Jiawen Shi 1, Yanfeng Gao 2 and Shan Gai 1

1 School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science,

Shanghai 201620, China
* Correspondence: woojz@nchu.edu.cn

Abstract: The weld penetration rate is an important evaluation criterion for welding quality. However,
it is difficult to identify the weld penetration state during GTAW welding process. This paper presents
a new penetration recognition method based on time and spectrum images of arc sound using deep
learning for DC GTAW welding. The time domain and spectrum images of the three penetration
states from the non-periodic arc sound were used as the dataset for the penetration prediction model.
VGG16, AlexNet, and custom convolutional neural network (CNN) were used to extract image
features, and softmax was used to classify images for penetration recognition. The influence of image
feature extraction networks, input methods, and different sampling methods on the recognition
accuracy was deeply analyzed. The results show that the overall validation accuracy of the proposed
model is approximately 96.2%. Particularly, the validation accuracy of the model in the excessive
penetration state is approximately 100%. This study provides a new and feasible method for the
online detection of weld penetration during the GTAW welding process.

Keywords: penetration recognition; deep learning; GTAW welding; non-periodic; feature extraction;
image classification

1. Introduction

The penetration state of the weld has an important influence on the quality of welded
product. Stress concentration is likely to occur inside the weld, resulting in cracks, which
ultimately affects the fatigue strength of welded workpiece at a low penetration rate. When
the weld is in excessive penetration state, the surface of the weld collapses, the welding
contact area decreases, and the mechanical and plastic properties of the welded product
may be reduced. Kainuma et al. [1] studied the mechanism of root cracking and believed
that penetration rate has an impact on the root cracking direction and fatigue life at the
initiation stage and high penetration rate prevents root crack initiation. Dung et al.’s [2]
research indicated that 100% penetration increased fatigue resistance of rib-to-deck welded
joints compared to 75% penetration. The study of weld penetration has an economic and
theoretical value.

Charge-coupled device (CCD), complementary metal oxide semiconductor, and in-
frared cameras are used to collect weld pool, arc and plasma images during the welding
process, and the images are processed to extract their features. Then, the relationship
between the features and the penetration state is established. Finally, the penetration state
is estimated based on this relationship. Several researchers have used this method to
predict penetration states. Yu et al. [3] used a CCD camera to collect the images of the
weld pool during pulsed gas tungsten arc welding (GTAW), and then principal component
analysis and wavelet transform were used to extract the features of the weld pool. Finally,
the relationship between the features and the penetration was established using the fuzzy
logic model to estimate the penetration of the weld. Chandrasekhar et al. [4] used an
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infrared camera to collect the thermal images of the weld pool during tungsten inert gas
(TIG) welding. The features extracted from the images were used as the input of the neural
network to train the network model. The depth and width of the weld were estimated using
the trained model. Chen et al. [5] extracted the surface features of a three-dimensional (3D)
weld pool using computer vision technology during GTAW, and calculated the back weld
width using the weld pool width, trailing length, and surface height on the top surface
of the weld to evaluate the penetration state. Similar to reference [5], Wu et al. [6] and
Huang et al. [7] also calculated the backside weld width in variable polarity plasma arc
welding (VPPAW) and gas metal arc welding, respectively, and predicted the penetration
state of the weld based on this weld width. Liang et al. [8] directly used 3D image sensors
to obtain the 3D geometric parameters of the weld pool in GTAW, and predicted the pene-
tration based on the empirical data. Evidently, the images of the weld pool and keyhole
can contain abundant welding information, and the image processing method is reliable
for penetration recognition.

The image processing method has achieved positive results in predicting penetration.
However, the installation of the camera is often difficult, particularly for the camera on the
back of the weld, and it is also very susceptible to welding spatter contamination. Therefore,
the use of the arc sound signal as a model input to predict weld penetration has attracted
considerable attention. Lv et al. [9,10] used a sound sensor to collect the arc sound signal
in pulsed GTAW, and filtered the signal. Two different methods were used to estimate
the weld penetration. First, the arc length was linearly fitted to the sound signal, and the
penetration was estimated according to the arc length. The other was to extract audio signal
features using wavelet transform, creating a classification model to estimate the penetration.
Zhang et al. [11] proposed a mathematical model with the arc voltage and welding current
as the input and the arc sound signal as the output to predict weld penetration in pulsed
GTAW. Similar to Lv et al. [10], Chen et al. [12] revealed the generation mechanism of arc
sound in pulsed GTAW welding and used the principal component analysis method to
extract the features of sound signals under different penetration states. Yusof et al. [13]
used the synchrosqueezed wavelet method to extract sound signal features in pulsed laser
welding, and a support vector machine (SVM) model to classify penetration. Furthermore,
song et al. [14] discovered the distribution structure and formation mechanism of arc sound
under different penetration states in VPPAW and used the hidden Markov model to classify
weld penetration. Gao et al. [15,16] deeply analyzed the features of the arc sound in GTAW
and confirmed that the features extracted from arc sound can be used for penetration
recognition. The results of these studies show that it is convenient and feasible to extract
the sound features of arc sound signals to identify weld penetration.

In weld penetration recognition, in addition to using a single image or sound sensor,
several sensors are simultaneously used. Wu et al. [17] and Zhu et al. [18] used a CCD cam-
era to acquire keyhole images in VPPAW and TIG, and simultaneously used a microphone
to collect arc sound. Sound and image features were extracted, and fusion feature data
were used as model inputs to achieve penetration classification. Zhang et al. [19] collected
three types of data, namely arc sound, arc voltage, and arc spectrum in pulsed GTAW, and
used a SVM model to classify the penetration. Similar to Zhang et al. [19], Cui et al. [20]
also collected the arc sound, welding current, and arc voltage for penetration recognition
in TIG. Chen et al. [21] simultaneously collected the welding current, arc voltage, weld
pool image, and arc sound in pulsed GTAW, and input them into the BP network model
to classify weld penetration. Butdee et al. [22] used data similar to reference [21] to infer
penetration state using the expert system in pulsed GTAW. It is undeniable that the use of
multiple sensors has higher accuracy for penetration recognition, but it is not easy to install
multiple sensors, and the collected heterogeneous data should be fused.

In recent years, the application of deep learning in image and audio fields has devel-
oped rapidly, and weld penetration detection based on deep learning has become a research
hotspot. Several researchers have used visual sensors to acquire images of the arc and weld
pool and extracted image features using CNN calculations. Then, the relationship between
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the features and the penetration has been established through model training to accom-
plish penetration recognition [23–26] in the welding process. Wu et al. [27] simultaneously
collected two-dimensional (2D) molten pool and sound spectrum images in VPPAW and
used a convolutional neural network to extract image features. The fused features were
then used to predict the weld penetration, and a high accuracy was achieved. Ren et al. [28]
transformed a one-dimensional (1D) sound signal from pulsed GTAW into a 2D spectrum
signal and used a CNN in deep learning method to process 2D spectrum signal matrix
to extract signal features, based on which the penetration was classified. These studies
show that arc sound signals contain abundant welding information, and sound sensors
are easy to install. Deep learning for image classification and recognition can achieve a
much higher accuracy than that of human eye recognition. In addition, earlier studies have
mainly focused on penetration recognition in pulsed welding, and few studies exist on
penetration recognition in DC GTAW welding. It has important economic and academic
value using both advantages to identify weld penetration in welding process.

This paper presented a penetration recognition model in GTAW welding based on time
and spectrum images of arc sound using a deep learning method. Input images included:
time and frequency spectrum images from the arc sound. VGG16, ResNet and custom
CNN models were used to extract the image features of the time and frequency spectrum,
and the classification was implemented using fully connected networks. The validation
accuracy of the dual-input and single-input models was compared, and the influence of
samples on the model accuracy was analyzed. Therefore, the structure of this article is as
follows. Section 1 introduces the research background of weld penetration recognition.
Section 2 proposes a penetration recognition model using deep learning in GTAW welding.
Then, in Section 3, the experiment was carried out, and the factors affecting the accuracy of
the model were analyzed. Finally, Section 4 gives conclusions.

2. Penetration Recognition Using Deep Learning Method

In general, the penetration state determines the connection strength of the welded
joint, which is generally determined by measuring the weld depth. In a factory, weld
penetration can generally be divided into three types: non-penetration, full penetration,
and excessive penetration. Non-penetration and excessive penetration lead to an insuf-
ficient joint connection strength, and welded parts are generally judged as unqualified
products [1,2]. Weld penetration state inspection is an important guarantee of the quality
of welding products. In addition, the online inspection of weld penetration is a promising
avenue for welding automation. However, previous studies mainly focused on pulsed
welding, because of its periodicity and the convenience of the data collection. Combined
with the latest developments in deep learning, this study proposed single-input and dual-
input penetration recognition models, respectively. Figure 1 shows a two-input model.
The model mainly includes dataset, CNNs, full connection (FC), and classification. The
dataset is the data that are fed to the model during the training and validation of the model.
CNNs are mainly used for feature extraction. The full connection is to flatten the extracted
features to facilitate the image classification of these features.
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2.1. Time and Spectrum Images of Arc Sound

The original data used in this study were from Reference [16]. TIG300s DC inverter
TIG welding machine was used, and the shielding gas was argon in the welding process.
The welding torch and sound signal collector remained stationary, and the wire feeding
device was not required. Welding was performed by moving the welding material. The
welding material was Q235 mild steel with a thickness of 2 mm. The process parameters in
three states are shown in Table 1.

Table 1. Welding parameters in three penetration states.

Experiment Welding Current (A) Welding Speed (mm/min) Thickness of Base
Metal (mm) Penetration States

1 110 120 2 Excessive penetration
2 110 125 2 Full penetration
3 110 130 2 Non-penetration

When the full penetration weld is achieved, the quality of the welded product is
considered qualified in industrial application. The heat-affected zone (HAZ) cannot be seen
on the back of the welded workpiece, which is considered a non-penetration state. For full
penetration welding, a narrow weld is seen on the back of the welded workpiece. If a large
number of collapses occur on the back of the weld, it is considered excessive penetration.

The arc voltage and welding current in pulsed welding generally have a certain
periodicity; therefore the collected sound signals also have a specific periodicity, which is
easy to extract and analyze. In this study, the DC GTAW welding mode was studied, and
the collected sound signal was non-periodic. The extraction of features from the collected
sound signals is crucial for penetration classification. The collected sound was a 1D signal,
and the time domain and frequency waveforms were displayed using the Adobe Audition
software, as shown in Figure 2. Human eye observation revealed that the waveforms were
different in the three penetration states.

Figure 2 depicts the time and frequency spectrum images of the arc sound within
100 µs. Notably, the time-intensity signal of the arc sound did not exhibit periodicity in
GTAW. Therefore, the sound signal at the peak stage could not be extracted as a classification
feature. The training and validation set of the model were intercepted randomly using a
260 × 175 pixels window. Similar to the time domain image, the frequency spectrum image
did not exhibit periodicity. The spectrum images were intercepted synchronously with the
time domain images. These intercepted images data were converted into 128 × 128 pixels
before being sent to the feature extraction module. These images were then used to create a
model training and validation dataset. For time images, the amplitude and change rate
of the curves were different under the three states. The amplitude and change rate of
the curve were the largest, and the sudden change was the most evident in the excess
penetration state. The amplitude and change rate of the curve were the smallest in the
non-penetration state, whereas they were between the two states in the full penetration
state. The differences between time and frequency domain images can be recognized by the
human eye, which is also the original basis for using machine vision methods to identify
the penetration state. Similarly, it can be observed from Figure 2 that the spectrum images
of sound signals in different states are different, but it is difficult to identify the differences
between images through human eyes. Therefore, penetration identification using machine
vision is a reliable method for GTAW.
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2.2. Image Feature Extraction

The common methods used for image feature extraction include scale-invariant feature
transform, histogram of oriented gradient, difference of Gaussian, features from accelerated
segment test, and various improved algorithms. These methods extract global and local
information from the image and achieve better results in image registration and classifi-
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cation. However, they cannot obtain evident features, and their robustness is poor under
different lighting conditions and complex scenes. In the deep learning network model,
CNNs are used to extract image features, which effectively overcomes the shortcomings
of traditional image feature extraction. The local features of the image are extracted using
the CNN method, which can effectively overcome the influence of light changes, and is
position-independent. In this study, CNNs such as VGG16, ResNet, and custom CNN were
used to extract the time domain and spectral image features. These features were then
flattened, and input into fully connected neural networks for penetration classification,
as demonstrated in Figure 1. The image feature extraction was described using the CNN
method, considering VGG16 as an example.

The CNN in VGG16 exhibits an excellent performance for image feature extraction,
although its basic theory is not completely clear. The model obtains various features of
the image owing to the use of numerous convolution kernel filters. Figure 3 displays
18 feature images of the model after convolution computation in the first layer (256 in the
first layer). In the convolution calculation, numerous feature images were obtained. Owing
to the multi-channel convolution operator, different features at the same position were
extracted, which is conducive to classification.

Metals 2022, 12, x FOR PEER REVIEW 6 of 12 
 

 

states in the full penetration state. The differences between time and frequency domain 
images can be recognized by the human eye, which is also the original basis for using 
machine vision methods to identify the penetration state. Similarly, it can be observed 
from Figure 2 that the spectrum images of sound signals in different states are different, 
but it is difficult to identify the differences between images through human eyes. 
Therefore, penetration identification using machine vision is a reliable method for GTAW. 

2.2. Image Feature Extraction 
The common methods used for image feature extraction include scale-invariant 

feature transform, histogram of oriented gradient, difference of Gaussian, features from 
accelerated segment test, and various improved algorithms. These methods extract global 
and local information from the image and achieve better results in image registration and 
classification. However, they cannot obtain evident features, and their robustness is poor 
under different lighting conditions and complex scenes. In the deep learning network 
model, CNNs are used to extract image features, which effectively overcomes the 
shortcomings of traditional image feature extraction. The local features of the image are 
extracted using the CNN method, which can effectively overcome the influence of light 
changes, and is position-independent. In this study, CNNs such as VGG16, ResNet, and 
custom CNN were used to extract the time domain and spectral image features. These 
features were then flattened, and input into fully connected neural networks for 
penetration classification, as demonstrated in Figure 1. The image feature extraction was 
described using the CNN method, considering VGG16 as an example. 

The CNN in VGG16 exhibits an excellent performance for image feature extraction, 
although its basic theory is not completely clear. The model obtains various features of 
the image owing to the use of numerous convolution kernel filters. Figure 3 displays 18 
feature images of the model after convolution computation in the first layer (256 in the 
first layer). In the convolution calculation, numerous feature images were obtained. 
Owing to the multi-channel convolution operator, different features at the same position 
were extracted, which is conducive to classification. 

  
(a) (b) 

Figure 3. Time and frequency spectrum partly feature images from arc sound using CNN. (a) Time 
domain and (b) frequency spectrum. 

The local detail information of the image was also obtained owing to numerous 3 × 3 
convolution kernels. Multi-layer convolution calculations expand the receptive field, 
reduce the number of model parameters, and obtain the high-level abstract information 
of the image. In particular, the convolution image features extracted by the CNN were 
flattened and connected to the full connection network to achieve penetration 
classification. This method made the local features extracted by the CNN position-
independent, which is crucial for the image classification. It can be noted from Figure 2 
that the time domain waveform shape and peak time in the three penetration states are 
not regular, which is because the collected arc sound signal has no periodicity in DC 
GTAW welding process. The use of classification models such as VGG16 for penetration 
classification can efficiently address this problem. 

  

Figure 3. Time and frequency spectrum partly feature images from arc sound using CNN. (a) Time
domain and (b) frequency spectrum.

The local detail information of the image was also obtained owing to numerous
3 × 3 convolution kernels. Multi-layer convolution calculations expand the receptive field,
reduce the number of model parameters, and obtain the high-level abstract information
of the image. In particular, the convolution image features extracted by the CNN were
flattened and connected to the full connection network to achieve penetration classification.
This method made the local features extracted by the CNN position-independent, which
is crucial for the image classification. It can be noted from Figure 2 that the time domain
waveform shape and peak time in the three penetration states are not regular, which is
because the collected arc sound signal has no periodicity in DC GTAW welding process.
The use of classification models such as VGG16 for penetration classification can efficiently
address this problem.

2.3. Weld Penetration Recognition

As shown in Figure 1, the time domain and frequency image features were extracted
using CNN, and 512 feature images were obtained. However, these images could not
be used directly for classification purposes. The 1D array was obtained by flattening
512 images, and then the two 1D arrays were merged into a new 1D array to achieve data
fusion. The fusion data were connected to three fully connected networks, and three output
values were calculated for the last layer. The softmax function was used to calculate the
probability density of each state, as shown in Equation (1). The maximum probability was
the most possible penetration state.

yi =
ezi

∑C
j=1 ezj

i = 1 . . . C (1)
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In Equation (1), z represents the output of the previous layer, and yi represents the
output probability of class i.

3. Results and Discussion

To verify the universality and practicability of the deep learning method for pene-
tration recognition, this study also used AlexNet and a custom CNN to extract image
features. Figure 4 illustrates the structure of a custom CNN. The CNN proposed in this
study included three groups of convolution modules, each group included 2D convolution,
normalization, maxpool, and dropout. The number of convolution operators in each group
was 128, 256, and 128, respectively, with a dimension of 3 × 3. Other parameters were the
same as those for VGG16. This paper does not introduce the AlexNet network structure.
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3.1. Validation of Weld Penetration Recognition

The study used opensource framework of Google TensorFlow. Image features were
extracted using VGG16, AlexNet, and a custom CNN. The fully connected layer and
softmax function were used for penetration classification. Development environment
configuration: Windows 10, Intel i7-10750H CPU, Nvidia GeForce 2060 GPU, TensorFlow-
gpu 2.1, Python 3.7, CUDA 10.1, and cuDNN 7.6.5. Program training and validation were
performed on GPU. When the loss value of training and validation was less than 0.2 and
the difference in accuracy value was approximately 0.02, it was considered stable.

The training and validation images were obtained from Reference [16], and the pro-
cessed image sizes were 128 × 128 pixels. Each penetration state included 800 times images
and 800 frequency spectrum images. For time domain images, the training dataset and
validation dataset images were 600 and 200, respectively, and the ratio was 3:1. frequency
spectrum images were the same.

In the process of model training and validation, the network weight initialization value
and optimizer significantly influence the result. Keskar [29] and Cui [30] believed that the
choice of optimizer was determined by the characteristics of the sample, and the mixed use
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of ADAM and SGD optimizers would yield better calculation results. It avoided the local
optimal solution, and its stability was good. In the model training, the ADAM optimizer
was first used to obtain the weight initialization value, and then the SGD optimizer was
used for training, validating and testing.

Figure 5 shows the validation accuracy of the model in AlexNet, VGG16, and the
custom neural convolutional network structure. When AlexNet extracted image features,
the validation accuracy of the model was the lowest, approximately 91.50%. The validation
accuracy of the other two models was approximately 96.20%. This indicated that it was
feasible to classify the penetration using deep learning method, which could realize the
classification of penetration in GTAW. The higher the accuracy of image feature extraction,
the better the classification effect.
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In addition, the validation accuracy of the proposed CNN model was similar to that of
VGG16. However, compared to VGG16, custom CNN has the advantages of fewer network
layers and parameters, which makes the model computationally less expensive and easier
to deploy on hardware.

When the weld was excessive penetration or non-penetration, the weldment was
determined as unqualified. Therefore, the accuracy of the three penetration states must
be calculated separately. Table 2 presents the validation accuracy of the three penetration
states in the VGG16 network structure. Notably, the validation accuracy of the exces-
sive penetration state is 100%, and that of the other two states is approximately 94.8%.
The original image and high-level feature image in the excessive penetration state are
considerably different from that of the other states, particularly high-level feature image
shown in Figure 6. It can also be observed from the human eyes that Figure 6a is evidently
different from Figure 6b,c. The difference between Figure 6b,c is not evident. The model
can fully identify the excessive penetration state. It is difficult to distinguish between
non-penetration and full penetration, but the proposed method can efficiently address this
problem and can achieve an accuracy of approximately 94.80%.

Table 2. Validation accuracy in three penetration states (VGG16, dual-input).

Number 1 2 3 4 5 6 7 Accuracy (%)

Excessive penetration 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Non-penetration 96.67 96.67 93.33 94.17 94.67 95.00 94.00 94.93
Full penetration 96.67 96.67 95.56 94.17 93.33 93.33 93.50 94.75



Metals 2022, 12, 1549 9 of 12

Metals 2022, 12, x FOR PEER REVIEW 9 of 12 
 

 

original image and high-level feature image in the excessive penetration state are 
considerably different from that of the other states, particularly high-level feature image 
shown in Figure 6. It can also be observed from the human eyes that Figure 6a is evidently 
different from Figure 6b,c. The difference between Figure 6b,c is not evident. The model 
can fully identify the excessive penetration state. It is difficult to distinguish between non-
penetration and full penetration, but the proposed method can efficiently address this 
problem and can achieve an accuracy of approximately 94.80%. 

   
(a) (b) (c) 

Figure 6. High-level image characteristics of three penetration states. (a) Excessive penetration, (b) 
non-penetration, and (c) full penetration. 

Table 2. Validation accuracy in three penetration states (VGG16, dual-input). 

Number 1 2 3 4 5 6 7 Accuracy (%) 
Excessive penetration 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Non-penetration 96.67 96.67 93.33 94.17 94.67 95.00 94.00 94.93 
Full penetration 96.67 96.67 95.56 94.17 93.33 93.33 93.50 94.75 

3.2. Influence of Input Methods on Recognition Accuracy 
In contrast to the dual-input model, the single-input model only has time domain or 

frequency image input. Image features are extracted through a set of CNNs, and data 
fusion is not required. The single-input and dual-input classification algorithms are the 
same. Figure 7 shows the validation accuracy of the single-input and dual-input models. 
The validation accuracy of the time single-input and dual-input models was 
approximately 96.20%, and the stability of the validation accuracy of the fusion data input 
model was slightly higher than that of the time single-input model. The validation 
accuracy of the frequency spectrum single-input model was much lower than those of the 
aforementioned two models, approximately 91.80%. Comparing to Tables 2 and 3, 
notably, the classification accuracy of the three states is similar in time single-input and 
dual-input models. Furthermore, the time single-input model is simple in structure, 
requires fewer parameters, and is easy to train and deploy. For fewer requirements, time 
single-input model may be a better choice for penetration classification. 

 
Figure 7. Validation accuracy in three kinds of model. 

Figure 6. High-level image characteristics of three penetration states. (a) Excessive penetration,
(b) non-penetration, and (c) full penetration.

3.2. Influence of Input Methods on Recognition Accuracy

In contrast to the dual-input model, the single-input model only has time domain
or frequency image input. Image features are extracted through a set of CNNs, and
data fusion is not required. The single-input and dual-input classification algorithms
are the same. Figure 7 shows the validation accuracy of the single-input and dual-input
models. The validation accuracy of the time single-input and dual-input models was
approximately 96.20%, and the stability of the validation accuracy of the fusion data
input model was slightly higher than that of the time single-input model. The validation
accuracy of the frequency spectrum single-input model was much lower than those of the
aforementioned two models, approximately 91.80%. Comparing to Tables 2 and 3, notably,
the classification accuracy of the three states is similar in time single-input and dual-input
models. Furthermore, the time single-input model is simple in structure, requires fewer
parameters, and is easy to train and deploy. For fewer requirements, time single-input
model may be a better choice for penetration classification.
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Table 3. Validation accuracy in three penetration states (VGG16, time single-input).

Number 1 2 3 4 5 6 7 Accuracy (%)

Excessive penetration 100.00 100.00 100.00 99.17 98.67 98.89 99.00 99.39
Non-penetration 93.33 91.67 94.44 95.00 94.67 95.00 95.00 94.16
Full penetration 93.33 96.67 97.78 97.50 97.73 95.00 94.50 96.07

3.3. Influence of Sampling Methods on Recognition Accuracy

In references [21–26], the pulsed welding process was periodic, therefore the samples
were collected according to an arc voltage or welding current cycle. However, the DC
GTAW welding process considered in this study was non-periodic. Moreover, owing to
the complexity of the welding process, the collected arc sound signals were irregular and
non-periodic, as depicted in Figure 2. However, the collection of training samples is crucial
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for penetration classification. The original image samples were randomly collected and
divided into training and validation datasets at a ratio of 3:1. Here, we artificially selected
200 images with the peak effect as the validation dataset, and the remaining 600 images as
the training dataset. The same network model was used to verify the impact of the sample
changes on the validation accuracy of the model.

Figure 8 shows the validation accuracy of the model when the model input is the
original sample and the exchanged sample. The validation accuracy of the model was
approximately 94.50% when the model input was the exchanged sample, which was slightly
lower than that when the sample was freely chosen. In addition, as noted from Table 4,
the validation accuracy of the model was 88.64% when the penetration state was non-
penetration, which is much lower than the original calculation value of 94.93%. Therefore,
for DC GTAW welding, sample selection was the primary issue to be considered.
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Table 4. Validation accuracy in three penetration states (VGG16, dual-input, exchanged data).

Number 1 2 3 4 5 6 7 Accuracy (%)

Excessive penetration 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Non-penetration 90.00 88.33 90.00 88.33 89.17 86.67 88.00 88.64
Full penetration 100.00 95.00 96.67 95.83 95.33 95.56 95.56 96.28

4. Conclusions

In this study, a novel penetration recognition method for GTAW welding was proposed
using a deep learning method. Unlike pulsed GTAW welding, the arc sound signal of DC
GTAW welding was non-periodic. The dataset for the recognition model was derived from
the time domain and frequency domain spectrum images of the arc sound. According to
the different input modes of the model, single-input and double-input classification models
were designed separately.

The overall validation accuracy of single-input and double-input classification models
was approximately 96%, which met the production requirements. The overall validation
accuracy of time single-input and double-input was similar, which was higher than that of
frequency single-input. The robustness of the dual-input model was slightly higher than
that of the time single-input model; however, the single-input model had the advantages
of fewer network parameters and easier deployment to hardware. Furthermore, the
recognition accuracy of the excessive penetration and full penetration models was higher
than that of non-penetration, which was approximately 96%. The penetration recognition
effect was the best in the excessive penetration state. Moreover, due to the non-periodicity
of the arc sound during DC GTAW welding, the sampling methods of the time domain and



Metals 2022, 12, 1549 11 of 12

spectrum images would also affect the validation accuracy of the model. Therefore, it was
necessary to obtain as many images as possible, and more image features were extracted
using CNNs to further improve the model accuracy.

This study investigated the feasibility of using deep learning method for penetration
recognition in GTAW welding and achieved good results. With the rapid development of
deep learning technology, the recognition accuracy of the model will be gradually improved,
and more welding methods such as GMA should be considered. Artificial intelligence
technologies such as deep learning have broad prospects in the field of welding.
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