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Abstract: The effect of Sr2+ ions on the microstructure and high frequency properties of 2.5 wt% Bi2O3

added to Co(2)Z hexaferrites (3Ba(1-x)SrxO•2CoO•12Fe2O3, x = 0.0, 0.2, 0.4 and 0.6) synthesised using
the solid-state reaction method was investigated. Experimental results indicate that the dielectric
properties were markedly enhanced with the increase in the content of Sr2+ ions, thereby increasing
the miniaturisation factor, which enables a size reduction in a long frequency range. Slight changes to
saturation magnetisation (Ms) and coercivity (Hc) were observed, i.e., the saturation magnetisation
(Ms) decreased from 39.99 to 38.11 emu/g, and coercivity (Hc) increased from 59.05 to 65.21 Oe
when x increased from 0.0 to 0.6. Meanwhile, ε′ increased from approximately 8 to 12, indicating
the invariability in µ′. In addition, the processed materials exhibit relatively low magnetic loss and
dielectric loss (magnetic loss tanδµ ≈ 0.08 and dielectric loss (tanδε ≈ 0.007)). These results indicate
that the substituted CO(2)Z ferrites have excellent potential in high-frequency antenna applications.

Keywords: Co(2)Z hexaferrites; miniaturisation factor; permeability; dielectric properties; low loss

1. Introduction

The rapid development of information and communication technology has led to
greater demand on the size and properties of modern communication equipment.
Lightweight, high-performance ferrite-based antennas play important roles in wireless
communication systems. Another important factor is the miniaturisation of antennas,
which has become the topic of recent research [1–3]. However, one problem is miniaturi-
sation of the antenna negatively affects the performance of the wireless communication
system. Thus, the search for a range of new approaches to determine size and performance
is urgent. One method to achieve miniaturisation is to increase the miniaturisation factor,
which depends on the refractive index (n = (µ′ε′)1/2, where µ′ and ε′ are actual parts of
permeability and permittivity, respectively). Therefore, n increases as the value of µ′, ε′

or both increases [4]. However, this approach is insufficient in the reception and trans-
mission process of electromagnetic waves, as matching impedance between the antenna
substrate and free space weakens the excitation of the surface wave, which is the key
to mutual coupling between antenna arrays, causing deterioration of antenna radiation
performance [5–7]. Therefore, adjusting the impedance of the antenna substrate to achieve
impedance matching is important to ensuring the radiation performance of the antenna.
The impedance (Z) of electronic materials is closely correlated to µ′ and ε′, according to the
definition of Z in the following equation [8]:

Z = η0(µ′/ε′)1/2 (1)

where η0 is the impedance of free space. If µ′ and ε′ values could be tailored to become
close or equal to each other, then Z becomes close to η0. In addition, low loss properties
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are equally important for the antenna substrate material, as loss control is of paramount
importance to reducing energy consumption [9–11]. Therefore, ferrite materials are ideal
for antenna substrate applications that possess µ′ and ε′, relatively high working frequency
and low magnetic and dielectric loss.

The soft magnetic material Ba3Co2Fe2O41 (Co2Z) hexaferrite has been broadly used
in high-frequency devices owing to its high intrinsic magnetic anisotropy field, moder-
ate saturation magnetisation and permittivity [12–14]. It has high permeability and low
loss properties in the range of terrestrial digital multimedia broadcasting (T-DMB) fre-
quency [15], and its crystal structure consists mainly of stacked layers of tetrahedral and
octahedral Fe3+ sites shared by Co2+ (3d7) ions. The high-temperature magnetoelectric
coupling is ascribed to magnetic Co2+ (3d7) ions contributing to enhancing the electronic ex-
change strength [16]. Nanomaterials play important roles in various applications including
energy, biomedical, sensing and pharmaceuticals [17–19]; recent research has focused on
Co(2)Z barium ferrites to tailor the magnetic–dielectric properties through substituting Ba3+

ions using other ions by introducing nanomaterials. Amongst them, Sr2+ ion substitution
is considered an effective method to adjust the magnetic–dielectric properties [20,21]. In
addition, Bi2O3 sintering aids can not only lower sintering temperature but also tailor
magnetic–dielectric properties of Co(2)Z barium ferrites. Harris et al. investigated how
Bi2O3 aids modified M-type barium ferrites to achieve equal permeability and permittivity
over a long frequency range. Our previous research explored the effect of ion substitu-
tion on the adjustment of magnetic properties of M-type barium ferrite, as well as Bi2O3
aids on the sintering temperature and ferrite densification [22,23]. Results showed that
combined with the excellent tuneable characteristics of Co(2)Z barium ferrites, improving
high-frequency electromagnetic characteristics by ion substitution is an effective method
to achieve matching permeability and permittivity as well as high miniaturisation factor.
Here, 3Ba(1-x)SrxO•2CoO•12Fe2O3 (x = 0.0, 0.2, 0.4 and 0.6) ferrites with 2.5wt% Bi2O3 were
prepared. The magnetic–dielectric properties of the resultant materials were studied to
achieve equal permeability and permittivity and low loss properties over a long frequency
band in the high frequency range [24].

2. Experiment and Measurement
2.1. Materials and Methods

Sr2+ ion-substituted Co(2)Z barium ferrites 3Ba(1-x)SrxO•2CoO•12Fe2O3 with added
2.5 wt% Bi2O3 were synthesised using analytical grade BaCO3 (AR grade, ≥99%), Fe2O3
(AR grade, ≥99.5%), Co2O3 (AR grade, ≥99.5%), SrO (AR grade, ≥99%) and Bi2O3 (AR
grade, ≥99.5%). Subsequently, the objective products were synthesised through the con-
ventional solid-state reaction method. The raw powders were mixed in a ball mill for 10 h,
with zirconia balls and deionised water as the milling media. Then, the mixed powders
were dried and pre-sintered at 1150 ◦C for 4 h in a muffle furnace. Bi2O3 was added to the
pre-sintered powder and then milled once more for 12 h. After drying, the milled powders
were pelleted by adding 10 wt% polyvinyl alcohol (PVA) and then pressed into thick plates
and rings. Finally, the dense samples were sintered at 925 ◦C for 4 h.

2.2. Measurements

The phase constitution of the ferrites was detected by an X-ray diffractometer (XRD,
DX-2700, Haoyuan Co., Chengdu, China) with Cu-Kα radiation. The microtopography
of the ferrite surface was detected using a scanning electron microscope (SEM, JEOL,
JSM-6490, Tokyo, Japan). The complex permeability and dielectric constant were mea-
sured with a HP-4291BRF impedance analyser (Agilent, Santa Clara, CA, USA). The bulk
density was measured using an auto density tester (GF-300D, AND Co., Tokyo, Japan)
based on Archimedes’ principle. A vibrating sample magnetometer (VSM, EZ Model 10,
MicroSense, Encinitas, CA, USA) was used to measure the magnetisation hysteresis loops.
All measurements were performed at room temperature.
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3. Results and Discussion
3.1. SEM

Surface topography of cross sections of the ferrite samples with different Sr2+ ion
substitution x values is displayed in Figure 1. On the one hand, a marked change in
the average grain size is observed, indicating that as the content of substituted Sr2+ ions
increases, the average grain size shows a downward trend. The average grain size can be
calculated as 1.03, 0.89, 0.67 and 0.61 µm for different x values using a statistical method
with the following formula [25]:

Ga =
1.5 L
M N

(2)

where L is the total line length, and M and N are the magnification and the total number of
intercepts, respectively. The decrease in grain size with the increase in Sr2+ ion substitution
is due to the smaller ion radius of Sr2+ ions than that of Ba2+; small ion radius always
causes low grain size [26]. On the other hand, with the increase in Sr2+ ion substitution,
more pores are observed due to the increased difficulty in crystallisation and clusters of
grains [27].
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Figure 1. SEM images of the materials with different Sr2+ ion substitution x values. (a) x = 0.0,
(b) x = 0.2, (c) x = 0.4 and (d) x = 0.6.

3.2. XRD

The XRD patterns of the ferrites with different Sr2+ ion substitution x values are shown
in Figure 2. Normal Co(2)Z barium ferrite phase can be obtained by adding 5 wt% Bi2O3
aids, from which the peaks with normal BaFe12O19 phase and BiFeO3 phase can be obtained,
indicating no other phase or structure generated during the sintering process.

The formation of the BiFeO3 dielectric phase is due to the Bi3+ ions from superfluous
Bi2O3 aids combining Fe3+ and O2− ions [28,29]. With more Sr2+ ion substitutions, the
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peak phase of the Co(2)Z ferrites shifts towards a higher angle direction, indicating that the
lattice constant decreases with the increase in Sr2+ ion content, according to the relationship
between the phase and lattice constant [30,31].
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Figure 2. XRD patterns of ferrites with different Sr2+ ion substitution x values.

3.3. Magnetic and Dielectric Properties

Figure 3 shows the magnetic hysteresis loops and magnetic properties of samples sin-
tered at five different temperature points (x = 0.0, 0.2, 0.4 and 0.6). The magnetic hysteresis
loops in Figure 3a indicate that the Sr2+ ion-substituted barium ferrites have excellent soft
magnetic properties at low temperature. The loops also indicate that the magnetisation
slightly weakened as x increased from 0.0 to 0.6. The coercivity and saturation magneti-
sation value can be induced based on the loops. As shown in Figure 3b, the saturation
magnetisation (Ms) decreased from 39.99 to 38.11 emu/g when x increased from 0.0 to 0.6.
Meanwhile, coercivity (Hc) increased from 59.05 to 65.21 Oe when x increased from 0.0 to
0.6. The decrease in saturation magnetisation could be attributed to the decrease in grain
size, according to the Neel theory of two sublattices [32], whereas the coercivity changes
with inverse proportion to the saturation magnetisation. Their relationship is indicated by
the following equation [33,34]:

Ms =
0.96K

Hc
(3)

where Ms is saturation magnetisation, K is a dependence constant, and Hc is coercivity.
Frequently, larger grain size conducts lower coercivity due to domain wall pinning that
requires high energy for switching [35].

Figure 4 shows the complex magnetic permeability and complex dielectric permittivity
of the Co(2)Z ferrites substituted by Sr2+ ions. As Sr2+ ions increased, the real part of the
magnetic permeability (µ′) hardly changed, whereas the imaginary part of the magnetic
permeability (µ”) remained at a low value (~0.2 for all samples). According to the magnetic
tangent tanδµ equation definition [23], as follows:

tanδµ = µ”/µ′, (4)

an ultra-low order of magnitude of tanδµ (approximately 8 × 10−2) can be obtained over
a long frequency band from 1 MHz to 1 GHz. tanδµ is a valuable factor for the antenna
substrate materials. Herein, tanδµ is derived from three factors, namely the eddy current
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loss tangent tanδe, the hysteresis loss tangent tanδa and the remaining loss tangent tanδc;
their relationship is as follows [8]:

tanδµ = tanδe + tanδa + tanδc (5)

where tanδe generated from the electro-magnetic induction, causing cover fever and gen-
erating power dissipation, is closely correlated with the coercivity (Hc), and the Fe3O4
particles are scattered between the crystals. In addition, tanδe can be affected by existing
pores and changing grain size. tanδa can be tailored by changing the hysteresis constant,
which reduces the hysteresis loop and Hc. The remaining loss tangent tanδc mainly relies
on the ideal microstructure of the materials with dense arrangement, uniform thickness,
border crystal boundary and pores. In this research, the low magnetic loss is attributed to
the low-temperature sintered technology, and the appropriate sintering aids Bi2O3. How-
ever, for complex dielectric permittivity, the actual part (ε′) increased from approximately
8 to 12 when the x value increased from 0.0 to 0.6. The dielectric constant increases with
increased Sr2+ ions based on Koop’s phenomenological theory, in which the microstructure
is regarded as a non-uniform intermediary of two layers, based on the Maxwell–Wagner
type [36]. According to the theory, the dielectric construction of ferrites is composed of high-
and low-conductivity grain grain boundaries. The high-conductivity grains are separated
by grain boundaries, resulting in the localised build-up of charge carriers that increase
interfacial polarisation. As a result, ε′ increases. As Sr3+ substitution content increases, the
ability of the separation between the two layers is enhanced, and interfacial polarisation
is further excited, resulting in an increase in ε′ [37]. In addition, reports showed a strong
correlation between the conduction mechanism and the dielectric behaviour of the ferrites,
starting with the supposition that the mechanism of the polarisation process in ferrites is
similar to that of the conduction process. The electronic exchange in Fe2+⇔Fe3+ results
in local displacement that determines the polarisation of the ferrites. More electronic ex-
change occurs in Fe2+⇔Fe3+ with the increase in Sr2+ ion content, resulting in higher local
displacement that enhances dielectric properties [38]. Meanwhile, the imaginary part of
the dielectric permittivity (ε”) was approximately 0.5 to 0.1 over the frequency of 1 MHz
to 1 GHz. As a consequence, the dielectric loss tanδε was calculated (similar to that of
tanδµ) to be approximately 0.007 in all samples. This value is also fairly low amongst ferrite
ceramic materials. In general, tanδε is closely related to two factors: (i) the crystal grain
boundaries and ferrite polycrystallinity and (ii) the microstructure including porosity and
grain size. Their relationship can be expressed by the following equation [39]:

tanδε = (1 − P)tanδ0 + CPn (6)

where tanδ0 is the dielectric loss of materials with completely dense microstructure, P is
the porosity, and C is a dependent constant. In Equation (4), tanδε is mainly determined by
P, which depends on relatively low porosity. In this work, high temperature enabled Bi2O3
to form molten BiFeO3 dielectric crystals that could fill the void between grains. Thus,
the structures became denser, mainly causing low dielectric loss. In general, when tanδµ
and tanδε are remarkably reduced, the proposed ferrite materials still exhibit excellent
application prospects as antenna substrates.
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Figure 3. Magnetic hysteresis loops. (a) Magnetic properties and (b) samples sintered with various
Sr2+ ion substitution.
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The permeability and permittivity of all the samples in Figure 4 show that the actual
parts of permeability and permittivity had similar values in the experimental scope. The
miniaturisation factor (n, refractive index) and relative impedance (Z) of CO(2)Z ferrites
with various Sr3+ ions substituted were calculated and are shown in Figure 5 and Table 1.
The results show that n increases monotonically, and Z decreases with the increase in x
value. However, Z decreases by much less than n increases. Finally, the sample substituted
by Sr3+ ions with an x value of 0.6 exhibited the most ideal properties through comparison
and consideration of various trade-offs.

Table 1. Miniaturisation factor (n, refractive index) and relative impedance (Z) of CO(2)Z ferrites
corresponding to various x values.

x Value 0.00 0.20 0.40 0.60

n value 4.5 5 5 5.2
Z value 0.56 0.50 0.50 0.48
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4. Conclusions

In this study, superfluous Bi2O3 sintering aids were added to various Sr3+ ion-substituted
CO(2)Z ferrites to achieve low-temperature sintering. The ferrites were made up of two
phases and showed changing magnetic and dielectric properties, thereby approaching
equal permeability and permittivity values. When the x value was 0.6, the materials had the
topmost permittivity values (ε′ ≈ 12), whereas µ′ was barely changed. As a result, larger n
and appropriate Z could be obtained. Meanwhile, low magnetic loss (tanδµ ≈ 0.08) and
low dielectric loss (tanδε ≈ 0.007) indicate low power loss during operation. The results
showed that the Sr3+ ions enhanced dielectric properties, indicating that CO(2)Z ferrite can
be an excellent candidate for high-frequency antenna substrates.
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