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Abstract: A condensation reaction of 2,3,5,6-tetraamino-1,4-benzoquinone 1 with 4,5-Dichloro-3,6-
dihydroxy-phthalonitrile 2 produced p-benzoquinone [2,3-b:2,3-b]bis[(5,8-dihydroxybenzopyrazine)-
6,7-dinitrile] 3. Utilizing acetic acid with lithium/pentanol, the tetra-nitrile monomer was cyclo-
tetramerized, yielding the matching network polymer, tetra p-benzoquinone[2,3-b:2,3-b]. bis[(5,8-
dihydroxybenzopyrazino) porphyrazine (2H-Pz) 4a. The equivalent tetra p-benzoquinone[2,3-b:2,3-
b]bis[(5,8-dihydroxybenzopyrazino) metallic porphyrazine networks (M-Pz) M = Zn 4b or Ni 4c,
were obtained by cyclo-tetramerizing the tetra-nitril monomer 3 using metal salt and quinoline.
The synthesized molecules’ elemental analytical results, as well as their IR and NMR spectral data,
are consistent with their assigned structures. The prepared compounds have large molecular weights
and metal content, indicating that reactions of tetramerization, polymerization, and chelation were
all productive. The synthesized porphyrazines were proved to be excellent substrates for oxidizing
thiophenol and benzyl thiol to their respective disulfides in atmospheric oxygen. The maximal
production of the corresponding disulfides after 15 min was 96 percent for thiophenol and 93 percent
for benzyl thiol, respectively.

Keywords: cyclotetramerization; porphyrazines; metal(II)-based catalysts with polymer base

1. Introduction

Porphyrin derivatives, tetra benzoporphyrazine derivatives, and associated aza coun-
terparts are interesting macro heterocycle systems that have been the subject of substantial
research and practical applications in science, industry, and medicine. As an outgrowth of
phthalocyanines, Sir R. Patrick Linstead produced tetra azaporphyrins, commonly known
as porphyrazines, which are tetrapyrrole macrocycles connected to porphyrins and ph-
thalocyanines [1]. Porphyrazine compounds are distinguished from porphyrin compounds
by the presence of meso nitrogen instead of carbon atoms and they are distinguished
from phthalocyanines by the interchangeability of their pyrrole sites. Both porphyrins
and phthalocyanines have physical features that distinguish them from one another [2].
The cyclotetramerization reaction following the Linstead approach led to novel symmetrical
magnesium(II) aminoporphyrazines with methyl(6-bromo-3-pyridylmethyl) and methyl(4-
bromobenzyl) substituents [3]. Porphyrazines are a new category of tetrapyrroles that
have high absorption and retention qualities in situ, making them ideal for photodynamic
treatment of cancer (PDT) [4].
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In the breakdown of hydrogen peroxide under heterogeneous conditions, the cat-
alytic characteristics of network poly tetra pyrazinoporphyrazine complexes with Cu2+,
Co2+, and Fe2+ were investigated [5]. In a one-pot manner, the aromatic replacement
processes of pyrrole and aldehydes were employed to fabricate stable porphyrin-based per-
meable macromolecular chains, PPN-23 and PPN-24 [6]. Cyclotetramerization of dinitrile
derivative with magnesium butoxide in hot butanol affords the crosswise phthalocyanine
derivatives or naphthalocyanine counterparts, notably tetra pyrazino-porphyrazines and
tetra-6,7-quinoxalino-porphyrazines [7]. The pyrazino-porphyrazine compound (without
metal, zinc, and copper variants) were afforded by tetramerizing 2,3-dicyanopyrazine [8].

Beginning with 3,3-dimethyl-2-butanone, selenium dioxide, 2,3-diaminomaleonitrile,
salts, and urea, manufacture of cobalt combination of tetra-2,3-(5-tert-butyl-pyrazino) por-
phyrazine as porphyrazine analogues with six-membered pyrazines was evaluated [9].
Substituted porphyrazine macrocycles were described and prepared from easily functional-
ized diaminomaleonitrile (DAMN) [10]. Chloranil was used to make novel cyanine dyes
by combining it with mercapto-, or imino-pyrazole derivative [11].

Organic components have been increasingly popular in the creation of microporous
materials in recent years. It is evident that accurate prediction over the chemical charac-
teristics of the obtainable surface, as well as the incorporation of catalytic sites, can be
accomplished by carefully choosing organic materials, enabling for chemo adsorption on
the surface and the layout of high-performance heterogeneous catalysts. Diffusion failures
are associated with insoluble resins, while the optimal catalysts are soluble linear polymer
ligands. The use of cobalt (II) phthalocyanines to accelerate thiol autoxidation has proved
to be quite advantageous [12–14].

Palladium (II) has recently been supported by a structured quinone polymer pos-
sessing sulphonic acid moieties, providing a catalyst capable of converting ethylene to
acetaldehyde [15]. Novel 2H- and metal-pyrazino-porphyrazine derivatives, as well as
2H- and metal-phthalocyanines, were investigated for conductivity [16]. The pyrazino-
porphyrazine networks supported metal (II)-based catalysts were produced, evaluated,
and spectroscopically examined [17]. Two novel kinds of neutral porphyrazine compounds
have recently been discovered [18]. Porphyrazine combinations of Y, La, and Lu were
studied in terms of optoelectronic and architectural aspects [19].

The diazepine rings were created by employing ultrasonic energy as a friendly form of
energy to 1,4-cycloaddition operations of chalcones with 2,3-diaminomaleonitrile, resulting
in unique Cu-porphyrazines annulated with diazepine moieties [20]. The fundamental
macrocyclic pyrazinoporphyrazine combination of In(III) complex was produced [21].
New zinc(II) porphyrazine derivatives were revealed [22]. The goal of this work, which is a
continuation of our previous work [23], is to synthesize novel porphyrazine-based network
polymers with a quinone moiety for use as supported metal (II)-based catalysts.

2. Materials and Methods
2.1. Ingredients and Procedures

All substances were provided by different sources and utilized without being purified.
Zhengzhou Alfa Chemical Co., Ltd., Jiaozuo, China, provided the 2,3,5,6-tetraamino-1,4-
benzoquinone (purity: 97 percent min). Dayang Chem (Hangzhou) Co., Ltd., Hangzhou,
China, provided 4,5-dichloro-3,6-dihydroxy-phthalonitrile (purity: 98.0 percent). Ethyl
alcohol, N,N-dimethylformamide (anhydrous, purity: 99.8 percent), 1-pentanol (purity:
99 percent), quinoline (purity: 98 percent), petroleum ether (AR, bp 40–60 ◦C), acetone
(purity: 99.5 percent), lithium metal (purity: 99 percent), zinc chloride (purity: 98 percent),
nickel(II) chloride (purity: 97%), and copper(II) chloride (purity: 98 percent), pyridine
(anhydrous, purity: 99.8 percent), dichloromethane (anhydrous, purity: 99.8 percent),
methanol (anhydrous, purity: 99.8 percent), acetonitrile (anhydrous, purity: 99.8 percent),
chloroform (anhydrous, purity: 99.8 percent), anhydrous, (purity: 99 percent), sodium
thiosulfate pentahydrate (purity: 99 percent), n-hexane, benzyl thiol (purity: 99 percent),
and thiophenol (purity: 99 percent) were acquired from Merck Ltd., Shanghai, China. Elec-
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trothermal melting point equipment (Electrothermal Engineering) was used to determine
uncorrected melting points in open capillaries.

2.2. Characterization

Infrared analyzer Shimadzu 8101 M including Fourier transform (Shimadzu, Tokyo,
Japan) was used to take infrared spectral studies. Ultraviolet spectra were obtained using
the spectrometer (Pye Unicam SP6-550 UV/Vis, 5651 CA, Eindhoven, the Netherlands).
A Varian VXR 400S NMR device operated in deuterochloroform at 400 MHz (1HNMR) and
100 MHz (13CNMR) using tetramethyl silane as a standard procedure. Spectrometry of
plasma-optical emission with a flame ionization detector ICP-OES (Horiba Instruments,
Shanghai, China) was used to assess the composition of metals in polymers in a more
practical way.

PerkinElmer 2400 CHN (International Equipment Trading Ltd., Illinois, IL, USA) was
used to acquire the elemental evaluations. Thin-layer chromatography (TLC) technique
examining the rates of reactions utilized pre-coated (Merck, Darmstadt, Germany) silica gel
60F-254 plate with a chloroform/acetone (8:2 v/v) solvent system. The apparent molecular
masses (Mn: number average molecular weight, Mw: weight average molecular weight)
were calculated using gel permeation chromatography (GPC) with polymeric references
and mild polymer concentrations (10 mg/5 mL) in tetrahydrofuran (THF) at ambient
temperature at a level of approximately 1 mL/min (Polymer laboratories, PL-GPC 20)).
Utilizing a Micromeritics ASAP 2000 surface detector, BET surface values were estimated
from nitrogen isotherm models at 77 K. ′

2.3. Synthesis of p-Benzoquinone [2,3-b:2′,3′-b′]bis[(5,8-dihydroxybenzopyrazine)-6,7-dinitrile] 3

For 6 h, a combination of 2,3,5,6-Tetraamino-1,4-benzoquinone 1 (0.01 mol) and bi-
molar ratio of 4,5-Dichloro-3,6-dihydroxy-phthalonitrile 2 (0.02 mol) was refluxed in ethyl
alcohol (50 mL)/pyridine (20 mL) mixture. At the end of the refluxing, the mixture had
turned a deep blue color. It was filtered while heating, precipitated with cold water, washed
multiple times with distilled water, dried, and crystallized using ethyl alcohol. Yield: 94%.
MP: 246 ◦C. FT-IR ν (cm–1): 1623 (C=C), 1688 (C=O), 2232 (CN), 3358 (NH), 3422 (OH);
1H-NMR (CDCl3): δ (ppm) = 6.32 (s, H, NH), 5.62 (s, H, OH); 13C-NMR (CDCl3) δ = 106.4,
111.5, 134.7, 162.6, 164.8, 188.6. Anal. calcd. for C22H8N8O6 (MWt: 480.34) requires C, 55.01;
H, 1.68; N, 23.33%. Found: C, 55.08; H, 1.76; N, 23.39%.

2.4. Synthesis of Tetra p-Benzoquinone [2,3-b:2′,3′-b′]bis[(5,8-dihydroxybenzopyrazino)
Porphyrazine-Based Network (2H-Pz) 4a

We heat mixed 3 (0.5 mmol) in a blend of pentanol (100 mL) and lithium metal
(20 mg, 2.8 mmol) for 16 h. Upon cooling, 2 mL acetic acid was added into the mixture
and extraction was used to collect the result. Column chromatography (eluent: chloro-
form/dichloromethane 90:10) was used to refine the light blue substance, which was then
precipitated from methyl alcohol.

FT-IR ν (cm–1): 1518 (C=N), 1624 (C=C), 1694 (C=O). 3342, 3368 (NH), 3414 (OH). UV-
Vis (CH2Cl2), λmax (nm): 310, 544, 632. 1H-NMR (CDCl3): δ (ppm) = 6,45, 1.82 (s, H, NH),
5.45 (s, H, OH). 13C-NMR (CDCl3) δ = 103.4, 133.5, 151.7, 152.1, 152.8, 161.4, 163.7, 189.2.
Anal. Calcd. for the polymeric repetition unit predicted C84H42N28O24 (MWt = 2118.1937)
requires C, 61.24; H, 1.99; N, 18.51%. Found: C, 61.32; H, 2.06; N, 18.59%.

2.5. Synthesis of Porphyrazinato-Metal II-Networks (M-Pz), M = Zn 4b or M = Ni 4c

The corresponding porphyrazine network was formed by reacting the tetra-nitrile
precursor 3 (0.5 mmol) with quinoline (100 mL) at 200 ◦C for 16 h with 0.75 mmol of metal
salt (Zn Cl2, or NiCl2). The mixture was milted in acetone and the metals that had not
been entrapped dropped out of the solution and were retrieved. A large amount of cold
methanol was added to the resulting acetone solution, resulting in particles that can be
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refined by chromatographic separation (eluent: chloroform/methylene chloride 90:10).
Overnight, the porphyrazines were vacuum dried.

4b: FT-IR ν (cm–1): 1512 (C=N), 1608 (C=C), 1690 (C=O), 3354, 3372 (NH). UV-Vis
(CH2Cl2), λmax (nm): 360, 478 (shoulder), 628, 726. 1H-NMR (CDCl3): δ (ppm) = 6.48
(s, H, NH), 5.33 (s, H, OH). 13C-NMR (CDCl3) δ = 104.6, 113.8, 134.2, 154.6, 160.2, 161.5,
168.5, 189.8. Anal. Calcd. for the polymeric repetition unit predicted C108H40N28O24Zn
(MWt = 2181.5737) requires C, 59.46; H, 1.84; N, 17.97; Zn, 2.99%. Found: C, 59.54; H, 1.91;
N, 18.07; Zn, 3.05%.

4c: FT-IR ν (cm–1): 1510 (C=N), 1606 (C=C), 1695 (C=O), 3348, 3368 (NH). UV-Vis
(CH2Cl2), λmax (nm): 352, 432 (shoulder), 594, 704. 1H-NMR (CDCl3): δ (ppm) = 6.53 (s, H,
NH), 5.38 (s, H, OH). 13C-NMR (CDCl3) δ = 103.5, 114.9, 134.8, 155.8, 160.4, 162.2, 167.9,
185.8. Anal. Calcd. for the polymeric repetition unit predicted C108H40N28O24Ni (MWt =
2174.89) requires C, 59.64; H, 1.85; N, 24.44; Ni, 18.03%. Found: C, 59.69; H, 1.93; N, 24.52;
Ni, 18.12%.

2.6. Catalytic Process

An appropriate flask was loaded with 10 mmol thiol compound, 30 mL acetonitrile,
and Porphyrazine catalyst (1 g). For 15 min, the resultant mix was blended under heating.
After the experiment is completed, we added 30 mL of a 1 percent aqueous sodium
thiosulfate solution and the mixture was agitated for 10 min. The catalyst was extracted
by simple filtration after diluting the solution with chloroform. Using n-hexane as an
extraction solvent, the sample was refined through chromatographic separation on a short
silica gel column. A considerable yield of disulfide compound was produced. Colorless
crystals of pure diphenyl disulfide were generated, with an average yield of 92 percent for
all used porphyrazines, MP: 59 ◦C [24], 60 ◦C); IR (KBr): ν cm–1: 3058, 1565, 1476, 1434, 736,
694, 457. Pure dibenzyl disulfide was produced as a white solid, with an average yield of
93 percent for all used porphyrazines, MP: 68 ◦C [25], 67 ◦C).

3. Results and Discussion
3.1. Synthesis

The condensation reaction of 2,3,5,6-tetraamino-1,4-benzoquinone 1 with 4,5-Dichloro-
3,6-dihydroxy-phthalonitrile 2 yielded the tetranitrile derivative, p-benzoquinone [2,3-
b:2,3-b]bis[(5,8-dihydroxybenzopyrazine)-6,7-dinitrile] 3. utilizing a mixture of lithium,
pentanol, and acetic acid, the tetra-nitrile monomer was cyclo-tetramerized, produc-
ing the corresponding network polymer, tetra p-benzoquinone [2,3-b:2,3-b]. bis[(5,8-
dihydroxybenzopyrazino) porphyrazine (2H-Pz) 4a. The matching tetra p-benzoquinone
[2,3-b:2,3-b]bis[(5,8-dihydroxybenzopyrazino) porphyrazinate metal (II)-based networks
(M-Pz), M = Zn 4b or Ni 4c, were obtained by cyclo-tetramerizing the tetra-nitril monomer
3 utilizing metal salt and quinoline (Scheme 1). The various obtained porphyrazine chem-
icals, such as THF, diethyl ether, ethyl acetate, acetone, dichloromethane, chloroform,
and dimethyl sulfoxide, can dissolve polymers.

3.2. Infrared Spectra

IR spectrum data of compound 3 indicate powerful peaks at 1623, 1688, 2226, and
3362 cm−1 attributed to C=C, C=O, C≡N and NH groups, correspondingly (Figure 1).
The spectra of the prepared porphyrazine 2H-Pz 4a revealed a wide peak at 1518 cm−1,
which is related to the absorption band of the C=N moiety. The absorbance ratios of the
C=N vibrating at 1512, 1510, and 1515 cm−1 [26] (see Experimental section), for Zn-Pz 4b
and Ni-Pz 4c, correspondingly, are about 310 cm−1 fewer than that for product 2H-Pz 4a,
showing that the nitrogen atom (azomethine) is ligand bonded to metal ions in the products.
Absorbance band of the NH bond in product porphyrazine 2H-Pz 4a is responsible for
two distinct signal bands at 3356 and 3370 cm−1. Because the absorption band of the NH
bond is not present in the spectrum of metallic porphyrazines 4b and 4c, the NH nitrogen
is implicated in ligation to metal (Figure 2).
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3.3. Measurements of NMR and Molecular Masses

The 1H-NMR spectra of compound 3 revealed a singlet at δ = 2.93 that was assigned
to the NH proton, which was consistent with the structure (Figure 3). The assigned
formulation matches the novel tetra-nitrile 3′s elemental analyses results and 13C-NMR
spectroscopic information (see Experimental section, Scheme 1, and Figure 4). The 1H-
NMR spectroscopy of 2H-Pz 4a, a free-metal porphyrazine-based network polymer, exhibits
two NH protons at = δ 1.82 and 6.45 [27] (Figure 5). The existence of a peak in the 1H-
NMR spectra of 2H-Pz 4a that corresponds to the hydrogen atom in the NH portion
(deshelled by tetracyclic structure) assures verification of asymmetric tetradentate ligand.
The disappearance of the pyrrole ring-NH signal in metal-porphyrazine network polymers’
1H-NMR spectra supports the complexation process (Figures 5 and 6).
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The carbon content in the porphyrazine networks’ repeat units is consistent with
the assumed structures shown in Scheme 1, according to elemental examinations of the
produced polymers. Furthermore, the observed metal concentration values (see Experimen-
tal) of the synthesized porphyrazines match those anticipated for the predicted network
backbone unit.

Additionally, the large molecular weights and metal content of the produced polymers
formed further support the effectiveness of the tetramerization polymerization and complex
formation processes. As demonstrated by the broad molecular weight distribution (Table 1),
the polymerization has a one-step kinetic reaction and it is not living and regio/stero-
regular polymerization in all materials, with Mw/Mn = 2.72–3.06. These porphyrazines’
large molar mass and strong solubility allow them to be processed using traditional solution-
based polymer processing procedures.
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Table 1. Features of the porphyrazine networks that were constructed.

No. Sample Yield (%) Mp (◦C) Mn Mw Polydispersity
(Mw/Mn)

BET Area
(m2/g)

4a 2H-Pz 83 >300 34,442 93,682 2.72 466

4b Zn-Pz 87 >300 32,626 93,310 2.86 455

4c Ni-Pz 85 >300 33,486 102,467 3.06 430

3.4. Ultraviolet-Visible Spectra and Optical Properties

A prominent band at 310 nm may be seen in the absorption spectra of 2H-Pz 4a in
methylene chloride solvent (Figure 7). At 544 and 632 nm, the π (bonding orbital)-π*
(anti-bonding orbital) transformations in 2H-Pz 4a are induced by the bandgap in between
the electronic states (HOMO) and the empty conduction orbit (LUMO). The absorption
spectra published in the literature [28] accord well with these bands. In dichloromethane
solution, the optoelectronic absorbances of the metal complexes 4b and 4c are shown in
Figure 7.
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At greater energy B-bands (absorbance bands near 355 nm and shoulder bands near
454 nm), two transitions dominate that are attributed to the π-π* and/or d-π* transformation
in the fused pyrrolobenzopyrazine ring structure [29,30]. The 1s→ 4d transition is generally
regarded for the shoulder band [31].

At lower wavelengths, combination of the central metal atom with ligands causes spin-
allowed shifts, according to early conceptual investigations [25,32]. It will be demonstrated
that all M-Pz polymers have states in the 432–478 nm region below the Q-band excitation.
Those modes are created through pulse interchange bonding and d-d excitation. Around
612 nm and 714 nm, there are two strong reduced Q-peaks, which are widespread. Metal–
ligand linkage charge-transfer bands are thought to influence the Q and B frequency
bands [33]. These porphyrazines could be useful in a range of optoelectronic applications
since metal combinations’ absorption spectrum extended past 800 nm (Figure 7).

3.5. Thermal Analysis

The thermal stability of porphyrazine polymers was investigated as well. Figure 8
shows the TGA thermograms of the produced porphyrazines. The thermograms demon-
strate that metal-free porphyrazine network 4a has a one-step decomposition temperature
(Td) at 428 ◦C that really is significantly comparable. On heating at a rate of 10 K/min,
metal-porphyrazine networks 4b and 4c show enhanced thermal stability, with a one-step
decomposition occurring at 437 ◦C for Zn-Pz and 434 ◦C for Ni-Pz.
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3.6. Effectiveness of the Manufactured Polymeric Materials as Catalysts

Oxygen can perform at elevated heat and in the oxidation reaction, a variety of oxida-
tion processes occur, such as substituting oxygen inside a phenyl ring to produce a quinol
or quinone. Rollmann [34] developed a bi-functional elastomeric catalyst that included
all Co (II) tetraphenyl porphyrin and a proton uptake base. This approach successfully
accelerated the oxidizing of thiol groups by oxygen molecules. The performance of Cu and
Ni accelerators for the oxidizing of phenol dispersions was evaluated [35].

In the air atmosphere, the synthesized porphyrazine networks 4a–4c were utilized as
catalytic materials for the oxidizing of thiol derivative of aroma molecules to respective
disulfide derivatives. Table 1 illustrates the BET surface areas of the synthesized catalysts.

According to nitrogen adsorption estimates, the porphyrazines possess large specific
surface area in the ranges of 430–466 m2g−1, with significant sorption at reduced pressure
(P/P0 0.02), confirming porous structure [36]. There were minor differences in metal-
porphyrazine BET surface sizes.

The maximal production of the related disulfides was 97 percent and 96 percent
after 15 min of oxidation of thiophenol and benzyl thiol, respectively (see Experimental).
As a result, metal-porphyrazines are considerably more efficient thiol oxidation catalysts,
highlighting the importance of the heterocycle rings in the catalyzed reaction [25,37].
Quinone rings distributed along the polymer structure were reported to be beneficial in the
catalytic pathway, as expected.

Following the completion of the process, spectrum examination of the employed
catalysts revealed that the catalyst containing the quinone ring had been converted into
quinol rings, following the completion of the thiol oxidation process. The reduction
in quinone rings in the produced porphyrazine networks results in the production of
disulfides, which is a key component in this process. It was reported that disulfide bonds
are generated by quinone reduction [38].

The oxidation of phenols is a complicated process that has yet to be clearly realized.
The oxidizing of phenolic molecules by oxygen molecules is usually assumed to be an
electrophilic process, with level phase step being the interaction between both the aromatic-
oxy radicals and O2. In the aerobic conditions, the phenolic moieties can self-oxidize [39].

As a result, we observed that the catalysts 4a–4c that were generated may be utilized
several times. According to Table 2, which compares the yields of disulfides produced by the
oxidative catalytic method with those reported for the catalytic oxidation of thiols [40,41],
metallic porphyrazine catalysts exhibit greater catalytic activity than porphyrazine catalysts
free of metal. Complexes’ activities are affected by the shape of complexing metal as well
as the catalysts’ BET surface ratings.

Thus, the number of reactant molecules transformed per catalytic site in a minute for
specific reaction conditions is known as the turnover number (TON), which is a useful
way to express catalytic activity. The range of the turnover number (TON), which reflects
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catalytic activity, is 820.7 to 964.0 (Table 2). Since electron-state fluctuations are more
likely to occur at bulk-like sites and have a catalytic role in the breaking and creation of
chemical bonds as well as producing a high turnover, it is thought that the catalytic process
predominates at high metal coordination sites.

Table 2. Percent yields of disulfides produced by an oxidative catalyzed reaction.

No. Catalyst
Diphenyl
Disulfide

Obtained %

Turnover
Number

(TON) (s−1)

Dibenzyl
Disulfide

Obtained %

Turnover
Number

(TON) (s−1)

4a 2H-Pz 87 820.7 89 839.6

4b Zn-Pz 97 906.5 96 897

4c Ni-Pz 94 964 93 953.8

The catalysts were studied for reuse over a period of seven cycles, with the same
value in conversion seen in each cycle. To screen out the catalyst, the free polymer was
redissolved in dichloromethane (DCM). After the reaction had been quenched, IR spectra of
all recovered catalysts were acquired and correlated to the original catalyst. This indicated
that not all disulfides had been released from active centers, highlighting the significance
of the dynamic exchange process.

4. Conclusions

The condensation reaction of 2,3,5,6-tetraamino-1,4-benzoquinone with 4,5-dichloro-
3,6-dihydroxy-phthalonitrile yielded the tetra nitrile derivative p-benzoquinone [2,3-b:2,3-
b]bis[(5,8-dihydroxybenzopyrazine)-6,7-dinitrile]. Tetra-nitrile monomer was cyclo-tetrame-
rized, yielding the matching network polymer, tetra p-benzoquinone [2,3-b:2,3-b]. bis[(5,8-
dihydroxybenzopyrazino) porphyrazine (2H-Pz). The analogous tetra p-benzoquinone
[2,3-b:2,3-b]bis[(5,8-dihydroxybenzopyrazino) porphyrazinate metal II-based networks
(M-Pz), M = Zn, or Ni, were obtained by cyclo-tetramerizing the tetra-nitril monomer.
The synthesized substituted porphyrazines have a high UV–Vis absorption, suggesting
that they could be useful as basic components for novel optical and electrical substances.
Since the absorption peaks of the produced porphyrazine polymers reach exceed 800 nm
in the ultraviolet-visible spectra, these porphyrazines could be beneficial in a variety of
optoelectronics. In the presence of air, the synthesized porphyrazines were found to be
effective accelerators for the conversion of derivatives of thiol molecules to respective
disulfides.
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