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Abstract: In the present study, the effect of γ′-phase dispersed particles on both the L21(B2)-10M/14M-
L10 martensitic transformations and the elastocaloric effect in aged Ni54Fe19Ga27 single crystals
oriented along the [001]-direction was investigated. It was experimentally shown that aging strongly
affects the elastocaloric properties of these crystals. The precipitation of semi-coherent γ′-phase
particles up to 500 nm in size in the crystals aged at 773 K for 1 h leads to a 1.4 times increase in the
operating temperature range of the elastocaloric effect up to ∆TSE = 270 K as compared with the initial
as-grown crystals (∆TSE = 197 K). The adiabatic cooling values ∆Tad are similar for the as-grown
crystals ∆Tad = 10.9 (±0.5) K and crystals aged at 773 K ∆Tad = 11.1 (±0.5) K. The crystals containing
incoherent γ′-phase particles sized 5–35 µm (after aging at 1373 K for 0.5 h) possess an operating
temperature range of ∆TSE = 255 K with slightly smaller adiabatic cooling ∆Tad below 9.7 (±0.5) K.
The aged [001]-oriented Ni54Fe19Ga27 single crystals demonstrate high cyclic stability: the number of
cycles does not influence the adiabatic cooling values and parameters of loading/unloading curves
regardless of the particle size. The ways to improve the elastocaloric cooling parameters and stability
of the elastocaloric effect by means of dispersed particles in the NiFeGa ferromagnetic shape memory
alloy were discussed.

Keywords: martensitic transformation; elastocaloric effect; dispersed particles; single crystals;
ferromagnetic shape memory alloy

1. Introduction

Developing eco-friendly materials for solid-state cooling systems is a promising solu-
tion to the global warming problem. The main operating principle of solid-state cooling
systems is based on the caloric effect that is associated with a reversible change in the
entropy or temperature of a solid body caused by the influence of external fields (electric
E, magnetic H, mechanical σ, or hydrostatic pressure P) under isothermal or adiabatic
conditions, respectively. New materials should possess significant cooling capability, high
reliability, stability, and durability, as well as satisfy the economic requirements in order to
be used as efficient solid-state cooling systems [1,2].

Shape memory alloys (SMAs) are widely used for engineering such devices because
of the promising elastocaloric effect (EC effect). The EC effect is accompanied by a giant
value of adiabatic cooling up to 31.5 K per working cycle [3]. Moreover, it is easier to create
conditions for the implementation of the EC effect during loading/unloading cycles in
SMAs than in magneto-caloric or electro-caloric materials.

Ferromagnetic NiFeGa-based SMAs with L21(B2)-10M/14M-L10 martensitic transfor-
mations (MTs) are one of the most promising materials possessing functional properties
required for solid-state cooling systems. Single crystals of such SMAs are characterized
by a wide superelasticity (SE) temperature interval, which is also the working range of
the EC effect. To date, the EC effect has been studied only in as-grown NiFeGa single
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crystals without additional heat treatments. It was shown that the best properties were
found in high-strength crystals oriented along the [001]L21-direction: adiabatic cooling
∆Tad reaches 8.4–9.8 K for one loading/unloading cycle with narrow stress hysteresis in a
wide temperature range of 190–200 K in compression [4–7].

Improving functional properties in NiFeGa crystals by aging is a topical task. Improve-
ments will strengthen materials, expand a working temperature range, and ensure high
cyclic stability of functional properties. It is known that the precipitation of γ(γ′)-phase
particles with the face-centered lattice or ordered L12-structure occurs in NiFeGa SMAs
after austenite aging [8–10]. Thus, aging in austenite enables the creation of heterophase
crystals whose matrix undergoes thermoelastic MT, whereas precipitated dispersed par-
ticles do not undergo MT, they act as elastic elements that store elastic energy, and they
contribute to the development of reversible thermoelastic MT. It is assumed that, in aged
NiFeGa alloys containing dispersed particles, necessary conditions will be created to obtain
the wide operating temperature range and high cyclic stability of the EC effect. It should be
noted that the precipitation of γ(γ′)-phase particles in Ni49Fe18Ga27Co6 and CoNiAl single
crystals decreases stress hysteresis, increases the SE temperature interval, and improves the
SE cyclic stability [9–12].

According to the above-mentioned, the aim of the present study is to find out the effect
of particles precipitated after austenite aging on the SE and the EC effect in Ni54Fe19Ga27
single crystals oriented along the [001]-direction. Along this direction, the theoretical value
of the compressive transformation strain for L21(B2)-L10 MT is the maximum value of
6.2% [13]. Moreover, this high-strength [001]-orientation is characterized by the absence
of detwinning of L10-martensite under compressive stress because of the zero Schmid
factors for the L10-martensite twinning system. In this case, the SE is accompanied by
the minimal value of dissipative energy and stress hysteresis ∆σ in comparison with the
other orientations ([011], [123]), where the detwinning of L10-martensite occurs under
compressive stress [13–16]. Therefore, the [001]-direction provides optimal conditions for
observing both the SE and the EC effect in studied crystals.

2. Materials and Methods

The single crystals of Ni54Fe19Ga27 (at. %) alloy were grown by Bridgman method in
an inert gas atmosphere. For compression testing parallelepiped samples with dimensions
of 3 × 3 × 6 mm3 were cut using an electrical-discharge machine ARTA 123 (Delta-Test,
Moscow, Russia). The compression axis corresponds to the long side of a sample and
possesses the [001]-orientation in austenite. The orientation of single crystals in L21(B2)-
austenite was defined by a DRON-3 X-ray diffractometer (Burevesnik, St. Petersburg,
Russia) using FeKa radiation.

Two aged single crystals were studied in the present research:

− aged at 773 K for 1 h followed by slow air cooling in order to keep the austenite
L21-structure (after aging at 773 K);

− aged at 1373 K for 0.5 h followed by quenching in water.

Such a choice of thermal treatments will allow varying the particle size and austenite
structure [8–10] in order to create a different degree of particle coherency with austenite
and martensite and to study the influence of particle size to EC effect. To compare and
find out the effect of dispersed particles on both the EC effect and stress-induced MT, the
previously obtained results [17] on the initial [001]A-oriented Ni54Fe19Ga27 single crystals
were used.

Transformation temperatures of L21(B2)-10M/14M-L10 MT are defined by differential
scanning calorimetry (DSC) method using a DSC 404 F1 Pegasus calorimeter (NETZSCH,
Bayern, Germany). Temperature Ms, Mf for forward and As, Af for reverse transforma-
tion, changes in the entropy ∆S and specific heat capacity at constant pressure Cp were
established according to the standard methods after DSC studies, as it was shown in [18].
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SE was studied along the [001]-compression axis using an Instron VHS 5969 universal
testing machine (Instron, High Wycombe, UK); the instrumental error is ±2 MPa. The
adiabatic temperature change ∆Tad in the single crystals was defined by direct measure-
ment using a highly-sensitive T-type thermal couple (RS International, Northamptonshire,
UK) fixed on the sample surface. The mechanical experiments with the EC effect mea-
surement were arranged as follows: first, the sample was loaded with a low strain rate of
2.0 × 10−3 s−1 until the given stress was reached; then, the sample was kept at that stress
level for about 10 s in order to equalize the sample temperature; the following unloading
was performed with a high strain rate of 6.7 × 10−1 s−1 to create the conditions close to
adiabatic. The instrumental error for ∆Tad during the EC effect is ±0.5 K. The data on
the change in the sample temperature depending on the test time is recorded by the data
acquisition module along with the data on the stress change and strain depending on
the test time. This allows us to accurately match two datasets and to establish σ(ε) and
∆Tad(t) dependences. Transmission electron microscopic studies (TEM) were performed in
Krasnoyarsk Science Center SB RAS on transmission electron microscope HT-7700 Hitachi
(Hitachi, Tokyo, Japan).

3. Results

The microstructure of the Ni54Fe19Ga27 crystals after austenite aging at 773 K and
1373 K was examined using TEM. It is shown that aging results in the precipitation of
γ′-phase particles having the ordered L12 crystal structure (Figures 1 and 2).

Aging at 773 K for 1 h leads to the precipitation of γ′-phase particles with the size
of 170–500 nm (Figure 1). The particles have the ordered L12 crystal structure, which
is confirmed by the superlattice reflections of 100 and 110 (Figure 1c). The precipitated
particles have an elongated or close to equilateral shape. It is assumed that such particles
are semi-coherent. The assumption is confirmed by both the strain contrast near particles
and the absence of dislocations at the interphase boundary.
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Figure 1. TEM image of the microstructure in the Ni54Fe19Ga27 single crystals aged at 773 K for 1 h: 

bright field (BF) image of matrix and particles (a,b) and the selected area diffraction patterns from 
Figure 1. TEM image of the microstructure in the Ni54Fe19Ga27 single crystals aged at 773 K for 1 h:
bright field (BF) image of matrix and particles (a,b) and the selected area diffraction patterns from
γ′-phase particles with the ordered L12 structure (area 1 is indicated in b) (c) and L21-austenite, zone
axis [001]L21 (area 2 is indicated in b) (d).
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Figure 2 shows the microstructure of the Ni54Fe19Ga27 single crystals aged at 1373 K
for 0.5 h. There are large incoherent particles with the size of 5–35 µm and volume fraction
of (24 ± 5)% in these crystals. It should be noted that the high density of dislocations is
observed at the particle–matrix boundary. As mentioned above, the superlattice reflections
of 100 and 110 are the evidence of the ordered L12 crystal structure in such particles. Some
of γ′-phase particles have an elliptical shape and consist of two parts connected by twinning
relation (Figure 2c,d), which is consistent with the previous study [19]. The transformation
temperatures as well as the heat parameters of MT for all studied Ni54Fe19Ga27 single
crystals were defined by DSC method (Figure 3, Table 1). The single crystals aged at 773 K
for 1 h are characterized by lower transformation temperatures as compared with the
as-grown crystals or crystals aged at 1373 K, which demonstrate the highest temperatures.
The decrease in the MT temperatures in the crystals aged at T = 773 K can occur due to
an increase in the degree of order of the high-temperature phase, the effects of dispersion
strengthening, and an increase in the elastic and surface energies necessary to maintain the
compatibility of the martensitic deformation of the matrix and the elastic deformation of the
γ’-phase particles. The increase in the MT temperatures in the crystals aged at 1373 K, firstly,
is caused by the change from L21 to B2 in the austenite structure. This is in accordance with
the previously obtained results [6,20,21]: changes in the austenite structure from L21-phase
to B2-phase in the NiFeGa alloy occur at 933–978 K. Secondly, the dislocation formation
near large γ’-phase particles (Figure 2d), as well as the changing chemical composition of
the matrix during the precipitation of large γ’-phase particles (for example the decrease in
Fe component by 2 at.%) increases the transformation temperatures [22].
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Figure 2. TEM image of the microstructure in the Ni54Fe19Ga27 single crystals aged at 1373 K for 0.5 h:
BF image of matrix and particles (a–c) and the selected area diffraction patterns (area is indicated in
(a)) from γ′-phase particles with an ordered L12 structure (d).

Table 1. Characteristic parameters of MT and heat characteristics from DSC response for [001]-single
crystals Ni54Fe19Ga27.

Heat Treatment Ms, (±2) K Mf, (±2) K As, (±2) K Af, (±2) K Cp, J/(kgK) ∆SA–M,
J/(kgK)

∆SM–A,
J/(kgK)

∆Tad
t(A–M),

K
∆Tad

t(M–A),
K

As-grown [17] 276 265 280 289 488 −17.6 16.5 10.2 9.6
Aged at 773 K 259 245 257 270 434 −15.9 14.2 9.7 8.7
Aged at 1373 K 281 261 274 295 418 −14.0 10.1 9.6 7.0
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Figure 3. DSC curves for aged [001]-oriented Ni54Fe19Ga27 single crystals.

It is experimentally shown that the precipitation leads to a decrease in the magnitude
of the change in entropy ∆SA–M (∆SM–A) during both forward and reverse MT (Table 1).
It is mainly associated with the increase in the volume fraction of particles that do not
undergo transformations. Therefore, the volume of the material undergoing MT decreases.
The specific heat capacity Cp also decreases by 54 J/(kgK) in the crystals aged at 773 K
and by 70 J/(kgK) in the crystals aged at 1373 K in comparison with the as-grown crystals
(Table 1).

Based on the experimental data, it is possible to estimate the maximum theoretical
value of adiabatic cooling ∆Tad during the manifestation of the EC effect [6]:

∆Tad ≈
T0∆S

Cp
, (1)

where Cp—specific heat capacity, ∆S—entropy change, T0 ≈ 1/2(Ms + Af)—equilibrium
temperature between austenite and martensite phases.

Theoretical values of the adiabatic temperature change ∆Tad obtained from DSC
assume a small decrease in ∆Tad by 1–2 K in the aged crystals in comparison with the
as-grown ones.

The stress–strain curves at different temperatures in loading/unloading cycles and cor-
responding sample temperature change for the [001]-oriented Ni54Fe19Ga27 single crystals
aged at 773 K for 1 h and 1373 K for 0.5 h are shown in Figure 4. For each test temper-
ature, the red line shows a change in the sample temperature during loading, the blue
line shows a change in the sample temperature during unloading. The adiabatic cooling
∆Tad was measured during loading/unloading cycles under the SE conditions at different
test temperatures. The maximum applied stress level was 800 MPa in each cycle at the
test temperature from Af to 473 K. In the studied crystals, the EC effect is also observed
at T > 473 K, but to complete the stress-induced MT it is necessary to increase the applied
stresses above 800 MPa.

The obtained experimental data show that the working temperature range and the EC
cooling in the Ni54Fe19Ga27 single crystals depend on the aging temperature.

The single crystals aged at 773 K demonstrate a wide SE and EC effect temperature
range ∆TSE = 270 K (from 278 to 548 K), which is 1.4 times greater compared with the
as-grown crystals (∆TSE = 197 K, from 298 up to 493 K) [17]. This wide temperature range
is facilitated, on the one hand, by the lower temperature Af = 270 K (Table 1). On the other
hand, in the crystals aged at 773 K, a higher dislocation slip resistance is observed during
the stress-induced MT. The resistance is higher because of the hardening of the matrix
by γ’-phase dispersed particles, which expands the SE and EC effect temperature range
towards high temperatures. The temperature, at which the irreversible strain more than
0.5% was observed on the σ(ε) curves, was taken as the end temperature of the SE range.
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In these crystals, aged at 773 K for 1 h, the EC cooling value reaches ∆Tad = 11.1 (±0.5) K at
the test temperature T = 296 K (Figure 4a).
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In the single crystals undergoing high-temperature aging at 1373 K, the MT temper-
atures increase due to the precipitation of incoherent γ’-phase particles, which leads to
narrowing of the SE temperature range ∆TSE = 255 K (from 313 to 568 K) as compared with
low-temperature aging at 773 K. The single crystals aged at 1373 K are characterized by
wider stress hysteresis because of the presence of a large volume fraction of incoherent
γ’-phase particles in the material that do not undergo MT and the stored elastic energy can
relax due to plastic deformation of the particles during the forward MT (Figure 4b).

4. Discussion

It has been experimentally established that in the single crystals aged at 773 K for
1 h, the maximum EC cooling value ∆Tad = 11.1 K is observed. The single crystals with
incoherent particles aged at 1373 K for 0.5 h are characterized by the lower maximum
values of ∆Tad = 9.7 K as compared with the crystals aged at 773 K. A decrease in the
∆Tad value with an increase in the γ’-phase particle size was predicted using the DSC data
(Table 1). However, the maximum experimental ∆Tad values slightly exceed the theoretical
estimates of adiabatic cooling ∆Tad

t(M–A) obtained from DSC (by 1.0–2.5 K). The theoretical
values ∆Tad

t(M–A) are usually greater than the experimental ones because the heat exchange
of the sample with testing machine grips is always observed and experimental conditions
are not strictly adiabatic.

This difference between the theoretical, i.e., calculated with the DSC data ∆Tad
t(M–A)

for the reverse MT (Table 1), and experimental EC cooling ∆Tad values is determined
by different staging and entropy change for thermal-induced and stress-induced MT in
NiFeGa single crystals. It has been found that in the as-grown NiFeGa(Co) crystals [23–25],
one-stage L21-14M MT occurs and a self-accommodated structure of 14M martensite is
formed during cooling/heating in the stress-free state. During the stress-induced MT,
the growth of oriented L10-martensite is observed and L21-14M-L10 or L21-L10 MT takes
place. Therefore, the magnitude of the entropy change during the stress-induced MT can
be estimated using the temperature dependence of the critical stresses σMs(T) or σAs(T)
required for the onset of forward and reverse MT according to the Clausius–Clapeyron
equation [17,26]:

∆SA–M =
εtr

ρ

dσMs

dT
and ∆SM–A =

εtr

ρ

dσAs

dT
(2)



Metals 2022, 12, 1398 7 of 13

where εtr is the transformation strain; ρ = 8450 kg/m3—density [27].
Figure 5 shows the temperature dependence of the critical stresses of forward σMs and

reverse σAs stress-induced MT. For the single crystals aged at 773 K, σMs and σAs stresses
increase linearly with the test temperature. In contrast, a significant deviation of σAs(T)
from the linear dependence is observed in the crystals aged at 1373 K at test temperature
T > 450 K.
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Figure 5. The temperature dependence of the critical stresses of forward σMs and reverse σAs MT for
[001]-oriented Ni54Fe19Ga27 single crystals aged at 773 K for 1 h (a) and at 1373 for K 0.5 h (b).

As it was shown in [17,28,29], the critical stresses for forward σMs and reverse σAs MT
can be expressed as:

σMs(T) = σ0(T) + ρ
|∆Gdis(0, T)|+ |∆Grev(0, T)|

εtr(T)
(3)

σAs(T) = σ0(T)− ρ
|∆Gdis(0, T)|+ |∆Grev(0, T)|

εtr(T)
(4)

Here ∆Gdis(0,T), ∆Gdis(1,T), ∆Grev(0,T), and ∆Grev(1,T) are the dissipated and the
stored elastic energy (reversible energy) per unit mass at the start (volume fracture δ = 0)
and at the end of (δ = 1) stress-induced MT. If we assume that ∆Grev(0,T) has small values
and weakly depends on the test temperature, stress σ0 can be defined as:

σ0(T) =
σMs − σAf

2
(5)

If the dissipation energy ∆Gdis and stored elastic energy ∆Grev do not depend on
temperature, the Clausius–Clapeyron slope for forward αMs = dσMs/dT and reverse MT
αAs = dσAs/dT is similar. However, there is a strong temperature dependence of both
dissipation ∆Gdis and stored elastic ∆Grev energy in the temperature range of the EC effect
in the studied aged single crystals. It is known [17,28,29] that the dissipation energy ∆Gdis
is proportional to stress hysteresis ∆σ and the stored elastic energy ∆Grev is proportional to
the strain rate hardening θ = dσ/dε during the stress-induced MT.

In the crystals aged at 773 K, the strain rate hardening θ = dσ/dε and, accordingly,
the stored elastic energy ∆Grev increase with the test temperature. That is why, according
to Equations (3) and (4), the Clausius–Clapeyron slope for reverse MT αAs = dσAs/dT =
3.1 MPa/K is higher than for the forward one MT αMs = dσMs/dT = 2.7 MPa/K. A
similar dependence was observed earlier for as-grown [001]-oriented crystals [17]. The
elastic accommodation of austenite and martensite crystals becomes more difficult during
the stress-induced MT with an increase in the test temperature. Therefore, at elevated test
temperatures in the as-grown crystals and the crystals aged at 773 K, MT is accompanied
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by high θ and significant accumulation of stored elastic energy ∆Grev(1,T), which is the
driving force of the reverse MT (Figure 4). As Figure 5 shows, at T > 400 K, the reverse MT
begins at critical stresses σAs higher than for the forward one σMs. For the reverse MT, the
temperature dependence of θ = dσ/dε and ∆Grev (1,T) leads to a sharper increase in critical
stresses σAs with the test temperature and, accordingly, to higher Clausius–Clapeyron slope
dσAs/dT in comparison with the forward one (σMs and dσMs/dT).

The crystals with large incoherent γ’-phase particles aged at 1373 K are characterized
by wide stress hysteresis ∆σ, which is 2–4 times greater than for the as-grown crystals and
crystals aged at 773 K and increases sharply at test temperatures T > 450 K (Figure 4). This
leads to high energy dissipation ∆Gdis(1,T), and, in accordance with Equation (4), to a sharp
decrease in σAs at test temperatures T > 450 K (Figure 5).

The test temperature grows and alters the values of the stored elastic energy ∆Grev(1,T)
and the dissipated energy ∆Gdis(1,T). These changes contribute to the experimental dσAs/dT
values and the ∆SM–A values calculated with Equation (2). dσAs/dT can change sharply
with an increase in the strain rate hardening θ = dσ/dε or stress hysteresis ∆σ that also
change with the test temperature. The conditions for the martensite nucleation and, ac-
cordingly, stored elastic ∆Grev(0,T) and dissipated ∆Gdis(0,T) energy weakly depend on the
test temperature. Thus, it is necessary to use αMs and ∆SA–M for forward MT for entropy
change during stress-induced MT and EC cooling ∆Tad

t(A–M) estimations. The calculated
values are shown in Table 2. It can be seen that there is good agreement between the
theoretical and experimental values of the EC cooling.

Table 2. Maximum theoretical ∆Tad
t(A–M), calculated by Equations (1) and (2), and experimental

∆Tad
exp(max) EC effect values for [001]A-oriented Ni54Fe19Ga27 single crystals.

Heat
Treatment

αMs,
MP/K

Cp,
J/(kgK)

|εrev|max,
%

∆SA–M,
J/(kgK)

∆Tad
t(A–M),
K

∆Tad
exp(max),
K

Aged at 773 K 2.7 434 5.4 −17.2 10.5 11.1 (±0.5)
Aged at 1373 K 2.5 418 4.7 −13.9 9.6 9.7 (±0.5)

Figure 6 shows the temperature dependence of the adiabatic temperature change
∆Tad, reversible strain, and stress hysteresis in the aged single crystals in comparison with
the as-grown single crystals of the Ni54Fe19Ga27 alloy. The aged crystals demonstrate the
similar temperature dependences of the adiabatic temperature change ∆Tad, which do not
depend on the size of the dispersed γ’-phase particles (Figure 6a). There is an increase
in ∆Tad to the maximum values at the start of the SE temperature range. This ∆Tad(T)
dependence behavior is typical for many SMAs [6]. During the test temperature near Af
and the SE manifestation, the sample is locally cooled by ∆Tad to temperature below Af.
This can inhibit the reverse MT and reduce the ∆Tad. Therefore, the maximum adiabatic
temperature change ∆Tad is reached at the test temperature T ≥ Af + ∆Tad(max). Then
almost constant ∆Tad is achieved in the temperature interval of 50–75 K (Figure 6a). After
that, unlike the as-grown crystals, the aged crystals see ∆Tad decrease linearly with the
increasing temperature. In the as-grown crystals, a weak temperature dependence of ∆Tad
in the operating temperature range is observed (Figure 6a).

In the aged crystals, both the adiabatic temperature change ∆Tad and transformation
strain εrev decrease with an increase in the test temperature (Figure 6a,b). The maxi-
mum transformation strain εrev at SE in the single crystals aged at 773 K is equal to
εrev = 5.4 (±0.3)%. The reversible strain decreases by 2.2 times with an increase in the test
temperature in the SE temperature window (εrev = 2.3% at T = 548 K). The maximum
reversible strain at the SE is less (εrev = 4.7 (±0.3)%) in the crystals aged at 1373 K than
in the crystals aged at 773 K. This is associated with a large volume fraction of particles
(up to 24%) that do not undergo the transformation. The εrev in these crystals also de-
creases by 1.6 times with an increase in the test temperature. At elevated test temperatures
T ≥ 448 K, εrev is equal to 3.0 (±0.3)% in the crystals aged at 1373 K (Figure 6b). Decreasing
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transformation strain εrev associated with an increase in the test temperature is a distin-
guishing characteristic of [001]-oriented single crystals of ferromagnetic CoNiGa, CoNiAl,
NiMnGa, and NiFeGa(Co) alloys [12,13,17,25,30]. The reason for this εrev(T) dependence is
the difference between the elastic moduli of austenite and martensite EA 6= EM (Figure 4).
This is discussed in detail in our previous work on as-grown [001]-oriented NiFeGa single
crystals [17].
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as-grown and aged Ni54Fe19Ga27 single crystals.

A decreasing transformation strain associated with an increase in the test temperature
is observed in both [001]-oriented as-grown and aged crystals. However, the adiabatic
cooling ∆Tad in the as-grown crystals remains constant with a decrease in transformation
strain by 2.3–1.6 times [17]. Therefore, a decreasing transformation strain with an increase
in temperature due to the difference between the elastic moduli of austenite and martensite
cannot be the main reason for the ∆Tad decrease in [001]-oriented aged NiFeGa crystals.

The γ’-phase precipitation leads to the two-fold increase in stress hysteresis ∆σ and,
consequently, energy dissipation in the operating cycle in the aged crystals compared with
the as-grown ones (Figure 6c). This is due to an increase in the friction force needed for
the movement of the interphase boundary in the crystals containing dispersed particles,
which do not undergo transformation. Stress hysteresis of ∆σ ≈ 60–67 MPa in the single
crystals aged at 773 K and of ∆σ ≈ 34–40 MPa in the as-grown crystals are independent
of the test temperature up to T ≈ 448 K. The SE curves at temperature T > 440 K in the
crystals aged at 773 K are characterized by irreversible strain of εirr < 0.5% and stress
hysteresis increase from 87 MPa (T = 448 K) to 297 MPa (T = 548 K) (Figures 4 and 6c).
The crystals with incoherent γ’ phase particles aged at 1373 K are characterized by the
maximum stress hysteresis ∆σ among the studied crystals. Stress hysteresis increases from
92 MPa to 431 MPa with the growth of the test temperature from T = 398 K to T = 568 K.
A sharp increase in stress hysteresis also begins at the test temperature above 450 K in
crystals aged at 773 K. Stress hysteresis generates from the energy dissipation not only in
the form of frictional work to interfacial motion, but also in the form of plastic relaxation
of the coherence stress in the martensite–austenite interface. The plastic relaxation of the
coherence stress results in the irreversible strain εirr in loading/unloading. The analysis of
the obtained experimental results shows that if there is no plastic relaxation of the coherence
stress during MT, ∆Tad weakly depends on stress hysteresis ∆σ. However, if irreversible
strain εirr is observed and stress-induced MT is accompanied by plastic accommodation
in the working cycle, the ∆Tad decreases with increasing ∆σ. This is observed in the aged
crystals at elevated test temperatures T > 450 K.

The energy dissipation in the operating cycle, which is proportional to stress hysteresis,
is an important parameter for practical application and can have a significant influ ence
on the cyclic stability of SE and EC effect. The cyclic stability of the SE and the EC
effect in 150 loading/unloading cycles was studied in the crystals aged at 773 K at test
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temperatures near T = 323 K and in the crystals aged at 1373 K at test temperatures near
T = 373 K (Figures 7 and 8). This choice of test temperatures allows investigating the cyclic
stability of the SE and the EC effect at similar critical stresses for martensite formation
in these crystals. The maximum stress in the loading/unloading cycle was 600 MPa.
It has been experimentally established that the aged [001]-oriented Ni54Fe19Ga27 single
crystals demonstrate high cyclic stability of the SE and the EC effect, which does not
depend on the γ’ phase particle size and stress hysteresis ∆σ. An increase in the number of
loading/unloading cycles, n from 1 to 150, does not affect the value of ∆Tad = 9.0 (±0.8) K
(aged at 773 K for 1 h) and ∆Tad = 8.5 (±0.8) K (aged at 1373 K for 0.5 h).
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Figure 7. Compressive functional fatigue responses and EC fatigue at T = 323 K in aged at 773 K, 1 h
Ni54Fe19Ga27 single crystals, oriented along the [001]-direction: the dependence of SE curves with
corresponding thermograms on number of cycles (a) and the dependence of adiabatic temperature
change ∆Tad, critical stresses of forward MT σMs and stress hysteresis ∆σ on number of cycles (b).
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Figure 8. Compressive functional fatigue responses and EC fatigue at T = 373 K in aged 1373 K, 0.5 h
Ni54Fe19Ga27 single crystals oriented along the [001]A-direction: the dependence of SE curves with
corresponding thermograms on number of cycles (a) and the dependence of adiabatic temperature
change ∆Tad, critical stresses of forward MT σMs and stress hysteresis ∆σ on number of cycles (b).

A degradation of the critical stresses of martensite formation σMs and stress hysteresis
∆σ is observed only in the first three cycles, n = 1−3. The critical stresses σMs go down
by 12–13 MPa and stress hysteresis decreases by 20–28 MPa in the second cycle, n = 2,
compared with n = 1 in the single crystals aged at 773 K and 1373 K. This is determined by
the effect of the first cycle, which is accompanied by irreversible strain less than 0.5% in
the first cycle and the formation of a small volume fraction of residual martensite and/or
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dislocations. This contributes to the creation of favorable internal stress fields for the onset
of stress-induced MT during the next cycles and a decrease in energy dissipation due to
dislocation hardening, which leads to a decrease in σMs and ∆σ. Such an effect of the first
cycle is the common characteristic of SMAs when SE occurs [31].

Thus, despite different stress hysteresis, both aged Ni54Fe19Ga27 single crystals ori-
ented along the [001]-direction and as-grown crystals demonstrate high cyclic stability of
SE and EC effect.

It is known that the energy dissipation and, accordingly, stress hysteresis determine
the coefficient of performance (COP). COP is used to classify the EC properties of materials
in terms of application efficiency. This coefficient is equal to the ratio of the useful thermal
energy obtained from an endothermic reaction of a sample and the environment during
cooling to the energy dissipation characterizing the input work in the loading/unloading
cycles [32,33]:

COP =
Cp ∆Tad

1/ρ
∮
σdε

(6)

where 2|∆Gdis| = 1
ρ

∮
σdε is the energy dissipation in the loading/unloading cycle.

Figure 9 shows the temperature dependence of the COP in the as-grown and aged
Ni54Fe19Ga27 crystals. It can be seen that high energy dissipation in the cycle and small
specific heat capacity Cp (Table 1) lead to a significant decrease in the COP in the aged
crystals compared with the as-grown ones. In the crystals aged at 773 K, the maximum
COP reaches 10.6 and remains constant in a wide temperature range from 290 to 425 K.
In the crystals aged at 1373 K, the maximum COP goes down and equals to 7.7. The
maximum COP remains constant in a narrower temperature range from 313 to 400 K in
these crystals. Nevertheless, the COP in the [001]-oriented Ni54Fe19Ga27 crystals aged at
773 K for 1 h is comparable to that obtained earlier in copper alloys (CuAlMn, CuZnAl) and
some ferromagnetic NiMnSn, NiMnInCo, and NiFeGaCo SMAs [1,34]. A wide range of
operating temperatures and high cyclic stability of the SE and EC parameters allows us to
conclude that the crystals aged at 773 K for 1 h have high potential for practical application
along with the as-grown crystals.
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Figure 9. The temperature dependence of the COP in [001]-oriented Ni54Fe19Ga27 single crystals.

5. Conclusions

The dependence of the EC effects on test temperature and particles size in the [001]-
oriented aged Ni54Fe19Ga27 single crystal undergoing L21(B2)-10M/14M-L10 martensitic
transformations in compression have been studied. The main findings can be summarized
as follows:
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1. It has been shown that aging at 773 K for 1 h and aging at 1373 K for 0.5 h leads
to the precipitation of semi-coherent γ’-phase particles up to 500 nm in size and
incoherent γ’-phases particles from 5 to 35 microns in size, respectively. Precipitation
of γ’-phases particles, which do not undergo transformations, results in a decrease
in the transformation entropy changes ∆SA–M (∆SM–A) for both forward and reverse
L21(B2)-10M/14M-L10 martensitic transformations as compared with as-grown single
crystals. Moreover, the specific heat capacity Cp also decreases by 54 J/(kgK) in the
crystals aged at 773 K and by 70 J/(kgK) in the crystals aged at 1373 K as compared
with the as-grown crystals;

2. The [001]-oriented Ni54Fe19Ga27 single crystals aged at 773 K for 1 h exhibit the
widest temperature range of the superelastic behavior and associated elastocaloric
effect ∆TSE = 270 K with the maximum adiabatic cooling ∆Tad up to 11.1 (±0.5) K.
The crystals with incoherent γ′-phase particles (aging at 1373 K, 0.5 h) show the
operating temperature range of ∆TSE = 255 K with slightly smaller adiabatic cooling
∆Tad below 9.7 (±0.5) K. In contrast, the temperature range of the elastocaloric effect
∆TSE = 195–200 K with the maximum adiabatic cooling ∆Tad up to 10.9 (±0.8) K is
smaller in the as-grown crystals than in the aged ones;

3. The aged [001]-oriented Ni54Fe19Ga27 single crystals demonstrate high cyclic stability:
the adiabatic cooling ∆Tad and loading/unloading curves do not depend on the
number of operating cycles from 3 to 150 regardless of the particle size;

4. Wide stress hysteresis and low values of specific heat capacity Cp lead to the decrease in
the coefficient of performance (COP = 10.6–7.7) in the aged crystals as compared with
the as-grown crystals (COP is up to 21.7). Despite this feature, the wide operating tem-
perature range of the EC effect and excellent reversibility of the EC performance make
aged [001]-orientated Ni54Fe19Ga27 single crystals a promising elastocaloric material.
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