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Abstract: Herein, stable resistive switching characteristics are demonstrated in an atomic-layer-
deposited SiOX-based resistive memory device. The thickness and chemical properties of the
Pt/SiOX/TaN stack are verified by transmission electron microscopy (TEM) and X-ray photoe-
mission spectroscopy (XPS). It is demonstrated that much better resistive switching is obtained
using a negative set and positive reset compared to the opposite polarity. In addition, multi-level
switching is demonstrated by changing the compliance current (CC) and the reset stop voltage, and
potentiation and depression are emulated by applying pulses to achieve a synaptic device. Finally,
a pulse endurance of 10,000 cycles and a retention time of 5000 s are confirmed by modulating the
pulse input and reading voltage, respectively.

Keywords: memristor; resistive switching; synaptic devices; silicon oxide

1. Introduction

For non-volatile memory (NVM) applications, resistive random-random access mem-
ory (RRAM) has several advantages, such as a simple metal–insulator–metal (MIM) struc-
ture, superior storage capacity with small component size, fast switching speed, low power
consumption, non-volatility, multi-level data storage ability, and long retention time [1–7].
In particular, RRAM has the potential to implement multiple conductive levels in one
cell, thereby facilitating a high storage density by the implementation of multiple bits in
the NVM [8–10], and has made possible the quasi-analog modulation of synaptic weight
in the artificial neural network (ANN) [11–17]. Furthermore, RRAM can solve the vari-
ous disadvantages of dynamic random-access memory (DRAM) and flash memory. For
instance, DRAM has volatile characteristics when processing data quickly [18], whereas
flash memory is non-volatile but exhibits slow data processing and requires high voltage
operation [19].

Due to the above-mentioned advantages, RRAM has been used to implement a neu-
romorphic computing architecture [11–17]. The importance of neuromorphic computing
architecture begins with solving the bottleneck problem caused by the use of a data bus
for data exchange in the von Neumann architecture. This problem has emerged in recent
years due to the increased amount of data to be processed in artificial intelligence (AI) de-
velopment. The neuromorphic computing architecture can solve this problem by imitating
the human brain structure in order to process data in parallel with low power consump-
tion. While various novel resistance-based memory devices are attracting attention for
the implementation of the neuromorphic computing architecture, including phase-change
random-access memory (PRAM) [20] and magnetic random-access memory (MRAM) [21],
the RRAM devices are particularly attractive due to their above-mentioned advantages.

To obtain reliable resistive switching characteristics with small variation, the thickness
of the RRAM device should be uniform. In this respect, the self-limiting process of atomic
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layer deposition (ALD) enables the fabrication of thin films with very exact thicknesses and
is especially suitable for the vertical RRAM structure [22]. In the present work, the multi-
level cell (MLC) characteristics of an ALD-fabricated Pt/SiOX/TaN device are examined via
I-V curves and pulse modulation. In addition, the thickness of the stack device is estimated
via transmission electron microscopy (TEM). Further, the MLC characteristics are observed
by varying the compliance current (CC) and reset stop voltage in direct-current (DC) sweep
mode, and high endurance is demonstrated by the pulse response.

2. Experiments

The RRAM samples were fabricated using the following procedures. A 100-nm thick
TaN bottom electrode was deposited by reactive sputtering onto the SiO2/Si substrate. The
SiOx was deposited via the following sequential ALD protocol: di-isopropylaminosilane
(SiH3N (C3H7)2, DIPAS), 0.8 s; N2 purge, 15 s; ozone (O3) 0.5 s; N2 purge, 15 s, with a total
of 40 cycles at a stage temperature of 450 ◦C. Finally, a 100-nm thick Pt top electrode was
deposited via e-beam evaporation with a shadow mask containing a pattern of circles with
a diameter of 100 µm. The chemical and material characteristics of the ALD-deposited SiOX
film were examined via X-ray photoelectron spectroscopy (XPS). The electrical character-
istics of the RRAM cells were measured and recorded using a semiconductor parameter
analyzer (Keithley 4200-SCS and 4225-PMU ultrafast module) in the voltage sweep and
pulse modes with the bottom electrode grounded and a bias applied to the top electrode.

3. Results and Discussion

A schematic diagram of the Pt/SiOX/TaN RRAM structure is presented in Figure 1a,
where multiple Pt electrodes are separated from each other to provide independent memory
cells while the insulating SiOX film covers the entire TaN surface. The TEM image in
Figure 1b reveals a thickness of ~6 nm for the amorphous SiOX layer. The interface of SiOx
on the TaN layer is rather rough even though SiOx was deposited by ALD. The XPS core
level Si 2p spectrum of the SiOX film is presented in Figure 2a. Here, the peak centered
at a binding energy of 103.7 eV corresponds to the non-stoichiometric Si–O bond [23].
Meanwhile, the O 1s spectrum in Figure 2b exhibits two peaks centered at 530.87 eV and
533.02 eV [23]. A further peak corresponding to the non-stoichiometric Si–O bond was also
observed at higher binding energy.
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Figure 1. A schematic diagram (a) and cross-sectional TEM image (b) of the Pt/SiOX/TaN RRAM device.

The resistive switching characteristics of the device in the DC sweep mode according to
operation polarity are presented in Figure 3. In the positive forming process (Figure 3a), the
I-V curve reveals reverse filament formation (RFF) during the first switching. This indicates
that conducting filaments with sufficient defects are initially formed in the SiOX, and these
can be ruptured upon application of a bias. The ruptured filament can reform with a
sudden rise in current during the set process, but the subsequent reset process does not
occur fluently because the Pt electrode does not contain enough oxygen. By contrast, stable
bipolar resistive switching is achieved by using a negative set and positive reset voltage, as
shown in Figure 3b. Here, the set process is accompanied by a sharp rise in current within
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a set voltage range of −0.61 V to −1.02 V, thus indicating the formation of conducting
filaments in the SiOX layer. Subsequently, the reset process begins at ~0.92 V, and the
current gradually decreases over a wide voltage range. This indicates that the filament is
only gradually ruptured, which is suitable for voltage-controlled MLC applications. The
detailed switching and conduction mechanisms of SiOx-based RRAM were explained by
previous literature [24,25].
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Figure 2. The XPS core level spectra of the ALD deposited SiOX film: (a) Si 2p; (b) O 1s.
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Figure 3. The I-V characteristics of the Pt/SiOX/TaN RRAM device under (a) positive set and
negative reset operation, and (b) negative set and positive reset operation.

The MLC characteristics of the Pt/SiOX/TaN RRAM device are implemented by
varying the compliance current and the reset stop voltage, as shown in Figure 4. Thus,
in Figure 4a, the compliance current is increased from 0.1 to 1.0 mA in increments of
0.1 mA, and the currents in both the low and high resistance states are seen to increase with
increasing compliance current. This demonstrates that the size of the conducting filament
can be successfully controlled by modulating the compliance current.

The bipolar resistive switching (set/reset) characteristics obtained by controlling the
compliance current only are presented in Figure 4b. Here, the low-resistance state is effec-
tively changed by changing the compliance current, but no obvious change is observed
in the high-resistance state. Meanwhile, the I-V curves obtained by varying only the reset
stop voltage for the same compliance current are presented in Figure 4c. Here a signifi-
cant variation in the high resistance state is observed according to the reset stop voltage.
The MLC characteristics are then further demonstrated for practical memory operation
by the application of multiple sets and reset pulses of −0.81 V and +1 V (Figure 4d). To
minimize the read disturbance, a read voltage of 0.2 V was used to obtain the conduc-
tance values. Thus, while there is some variability, the conductance exhibits an overall
increase with 50 negative pulses and an overall decrease with 50 positive pulses. Thus,
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it is possible to increase and decrease the conductance of the RRAM device by imitating
the potentiation and depression processes that strengthen and weaken the connections
between biological synapses. This MLC process is, therefore, suitable for hardware-based
neuromorphic systems.
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Figure 4. The MLC characteristics of the Pt/SiOX/TaN RRAM device: (a) plots of the low-resistance
current with various compliance currents; (b and c) controlling the bipolar resistive switching via
(b) the compliance current and (c) the reset stop voltage; (d) potentiation (black) and depression (red)
by the application of negative and positive pulses, respectively.

Finally, the stable endurance and retention characteristics of the Pt/SiOX/TaN RRAM
device for reliable non-volatile memory applications are demonstrated in Figure 5. The
conductance values of the high and low resistance states during cyclic application of the
set (−3 V) and reset (4 V) pulses, with a read voltage of −1 V, are presented in Figure 5a.
Here, good pulse endurance is demonstrated for up to 10,000 cycles with an on/off ratio of
about 4. The time-dependent data-retention properties are indicated in Figure 5b, where
the high and low resistance states were obtained by a DC sweep. Here, both resistance
states are maintained without significant degradation for 5000 s, thereby demonstrating
that the Pt/SiOX/TaN device has non-volatile memory properties.
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Figure 5. (a) Pulse endurance and (b) and retention properties of the Pt/SiOX/TaN RRAM device.
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4. Conclusions

Herein, the resistive switching of an atomic-layer-deposited (ALD) SiOX-based resis-
tive random-random access memory (RRAM) device was demonstrated for mutli-level cell
(MLC) storage. The thickness and chemical properties of the device were investigated by
transition electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respec-
tively. Bipolar resistive switching was shown to occur more easily under a negative set and
positive reset operation than in the opposite polarity due to oxygen exchange in the TiN
layer. For MLC, the compliance current and reset stop voltage were used to control the
low and high resistance values. In addition, for neuromorphic applications, potentiation
and depression were demonstrated by pulse application. Finally, the retentions of the high
and low resistance states were verified for 5000 s and 10,000 cycles of alternating current
(AC) endurance.
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