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Abstract: Recent advances in laser technologies offer significant flexibility in the additive manu-
facturing domain. Extensive work was focused on material processing using laser-directed energy
deposition for repairing parts. This pilot study investigated the use of selective laser melting (SLM)
for depositing a superior material such as CoCr on an existing stainless steel base. The interface
between these dissimilar materials was analyzed. During fabrication, both metals were gradually
mixed in the liquid state as the first CoCr powder layer was melded on the steel base without obvious
defects. According to SEM and EDAX, the heat-affected zone has a limited depth (<20 µm). XRD
patterns recorded across the CoCr–304 interface show a homogenous mixture of γ(Fe) and α(Co)
solid solutions. The microporosity calculated by CT was under 0.5%. Microhardness was measured
at and near the interface region, showing that the intermixing zone has high hardness (470–480 HV1),
which may be related to the fine-grained microstructure. Mechanical testing reveals that the adhesion
strength at rupture is 35% higher compared with the ultimate tensile strength of 304 steel. This
adhesion strength can be attributed to the complete melting of CoCr particles after laser irradiation
and to the reduced thickness of the HAZ and the IZ.

Keywords: selective laser melting; CoCr; adhesion strength; microhardness; X-ray computed
tomography; scanning electron microscopy

1. Introduction

Laser additive repair (LAR) can restore and modify prebuilt components, creating
a metallurgical bond [1]. There are components conventional fabricated that suffer from
wear, distortion, and cracks during their life cycle. Repairing these items is sometimes
considered cost effective and time saving as opposed to replacing them [2–4]. To repair
complex components, traditional methods cannot be used [3,5]. Therefore, LAR is an
interesting approach to repair them.

Numerous LAR studies were focused on regeneration of damaged parts by multi-layer
build up using similar materials for substrate and laser deposition. For example, Liu et al.
used laser cladding to repair a rudder anti-rotation bracket and a landing gear shelf bracket
for multi-role fighters (McDonnell Douglas F/A-18 Hornet) [6]. Marazani et al. studied
the mechanical behavior and microstructure of a Ti6Al4V interface fabricated by LAR
on cast Ti6Al4V [7,8]. Perini et al. used steel (C40) as a substrate carbon and irradiated
316L stainless steel powder [9]. Constantinescu et al. studied the localization of plastic
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strain due to microstructure gradient on LAR structures, using a nickel alloy (Inconel
718) deposited on a wrought Inconel 718 substrate and 316 L stainless steel deposited on
316 substrates [10,11]. These LAR studies were developed using a laser cladding process,
also known as direct energy deposition (DED).

Selective laser melting (SLM) can provide better design freedom and the ability to
manufacture complex parts and control a wide range of parameters [5]. These benefits
would improve LAR. Compared with DED, SLM can increase geometric precision and
limit the heat-affected zone. Currently, SLM is used to fabricate functional parts made of
titanium [12,13], stainless steel [14–17], and cobalt–chrome (CoCr) alloys [18–21]. There is,
therefore, a need to investigate this alternative technology for LAR applications.

Moreover, to improve the physical-mechanical characteristics of a repaired component,
SLM offers the possibility of applying a superior material on the damaged area. The
interface between two dissimilar materials plays a prominent role in determining the
overall performance of the processed component [5]. On this subject, limited SLM work is
available. Some DED studies investigate the interface between two dissimilar materials,
such as tool steel and cobalt-based alloys [3,18]. Information about welding dissimilar
steels shows interesting findings on the behavior of weld interfaces. Literature sources
indicate potential problems with the formation of brittle intermetallic phases as well as
brittle solid solutions. Using Ni-based filler materials is a valid option to overcome these
issues [19,20]. Due to its higher specific strength, wear resistance, and corrosion resistance,
a CoCr alloy could be a viable solution to repair a stainless steel component. However,
extended SLM studies are required to examine the performance of CoCr–steel interfaces.

The present work investigates the mechanical response and microstructure of CoCr
laser melted on a stainless steel (AISI 304) substrate using SLM. The CoCr–304 interface
was analyzed by X-ray computer tomography (CT), scanning electron microscopy (SEM),
energy dispersive X-ray spectroscopy (EDAX), and X-ray diffractometry (XRD). The results
expose the adhesion strength and microhardness of the CoCr–304 interface. The novelty of
this study refers to the obtained adhesion strength value (838 MPa), and microstructure
outcomes focused on the two dissimilar alloys SLM-processed.

2. Materials and Methods
2.1. Materials and Specimen Design

To explore the mechanical response of a laser-melted material on a conventional
substrate, their thermal properties, such as thermal expansion coefficient and conductivity,
should be closely evaluated. For this purpose, we examined different materials with good
corrosion resistance. This study included AISI 304 stainless steel (SS) and a CoCr alloy
because their thermal properties are similar (see Table 1).

Table 1. Thermal properties of 304 SS and CoCr.

Properties Wrought 304 SS [21] CoCr [22]

Density [g/cm3] 8 8.8 *
Thermal expansion coefficient [µm/m × ◦C] 17.2 14.3

Thermal Conductivity from 300 to 500 ◦C [W × m−1 × ◦C−1] 14–17 13–22
Melting Point 1400–1455 1305–1400

Specific Heat from 0 to 100 ◦C [J/kg × K] 490–530 450

* Density is expressed for SLM parts made of CoCr powder.

The most versatile and widely used SS available is AISI 304 [21,23,24]. It has good
forming and welding characteristics. This stainless steel is also known as UNS S30400
(North America) or EN 1.4301 (Europe). This austenitic steel contains both chromium
(18–18.79%) and nickel (8–8.5%). Using cold-rolled 304 bars, we manufactured two plates
adapted for SLM (Ø 100 mm and 30 mm thickness). These plates were used as substates,
where CoCr powder was irradiated.
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CoCr powder was purchased from Schefter (Germany) and Table 2 shows its chemical
composition according to the material data sheet. This powder is free of nickel, cadmium,
beryllium, and lead. The spherical CoCr particles have a diameter between 10 and 45 µm
and were obtained through a gas atomization process.

Table 2. Chemical composition of CoCr powder [22].

Chemical Element Co Cr W Mo Si Other Element
(C, Fe, Mn, N)

Maximum
weight percentage [%] 59.0 25.0 9.5 3.5 1 <1

The sample dimensions are detailed in Figure 1. To evaluate the adhesion strength
between CoCr and the 304 substrate, the specimens were built vertically as shown in
Figure 1. Practically, the CoCr part of the specimen represents half of a standard sample
designed in concordance with ISO 6892 [25]. The interface area is 25 mm2.
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Figure 1. Virtual model of CoCr–304 specimen for mechanical testing (unit: mm).

2.2. SLM Parameters

To fabricate the CoCr–304 specimens, a Sisma MySINT 100 (Piovene Rocchette, Italy)
was used. The system has two fiber laser sources up to 200 W. This technology allows lasers
to work simultaneously, but each one scans a different part of the powder bed (Figure 2a).
Taking into consideration the opto-mechanical calibration recommendations [26], the laser
spot size was 30 µm. Based on our experience in SLM and previous studies, the process
parameters were: 90 W laser power, 800 mm/s scanning speed, 60 µm space between two
adjacent laser tracks (hatch distance), and 20 µm layer thickness [17,27–30]. These laser
parameters were set up for both the outer boundary and hatch scanning. The density
energy (E) applied to irradiate CoCr powder was 93.75 J/mm3, calculated by Equation (1):

E =
P

v × h × t

(
J/mm3

)
(1)

where P is the laser power (W), v is the scan speed (mm/s), h is the hatch spacing (mm)
and t is the layer thickness (mm).
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Figure 2. (a) Sisma equipment used to manufacture the specimens (dual laser technology); (b) island
laser scanning applied on a slice.

For the scanning strategy, we selected “islands” (or chessboard). In Figure 2b, we
present a sketch of islands laser scanning, where square islands have an area of 3 × 3 mm2

and scan vector directions are angular. According to the “layer by layer” principle and
using the above mentioned SLM parameters, 12 CoCr specimens were melted directly on
the 304 substrate. For comparison purposes, the other 12 standard specimens were SLM
fabricated using CoCr powder (vertical build-up orientation). After SLM manufacturing,
the specimens were exposed to a typical stress-relieving treatment (880 ◦C for 1 h).

2.3. Mechanical Properties

To test the adhesion strength, tensile tests were performed. The mechanical behavior
of specimens was measured using the Zwick Z100 universal testing system (ZwickRoell,
Germany), in compliance with ISO 6892—Metallic materials—Tensile testing [25]. Working
parameters of the Zwick system were 50% humidity at 18 ◦C and a 2 mm/min load rate.
The fixing system was adapted for CoCr–304 samples as shown in Figure 3. The cross
section of CoCr–304 jointing was ~25 mm2 and the following mechanical characteristics
were measured: tensile adhesion strength at rupture, Young’s modulus, and elongation at
fracture. To compare the results, the CoCr samples were also considered. For statistics, we
calculated the standard deviation using Equation (2):

SD =

√
∑ (X − X)

2

N − 1
(2)

where SD is the standard deviation, X is the mechanical property measured, X the mean
of the mechanical property, and N is the number of trials. Twice the standard deviation
means approximately 95% of measurements are in the confidence interval, ranging between
the mean minus two times the standard deviation, and the mean plus two times the
standard deviation.

Microhardness measurements were performed using a Vickers hardness tester (Wilson
Tukon 1102; Buehler ITW Co, Lake Bluff, IL, USA). The surfaces were prepared using
wet silicon carbide disks and abrasive papers. Microindentation hardness evaluations
were developed by applying a force of 9.81 N across the CoCr–304 interface, according to
ASTM E384-17 [31]. Twenty lines were analyzed, with a 200 µm step. On each line, ten
measurements were collected.
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2.4. CT Scanning

Due to the ability of X-rays to penetrate different materials, X-ray computed tomog-
raphy (CT) is used in non-destructive evaluations and testing applications [32]. Typical
industrial CT can be used to investigate flaws, such as voids or cracks, in particle analysis
of materials, and to determine methodological aspects (nominal deviations or surface
quality) [33]. The main components of industrial CT are a X-ray source, a X-ray detector, a
kinematic systems for rotary table, reconstruction software, edge detection software and
analysis software (Figure 4a) [34]. The maximum material thickness that can be penetrated
by X-rays depends on the material attenuation coefficient and X-ray photon energy [33].
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In the present work, we used a CT system of the type Nikon XT H 225 (Figure 4b). The
scanning parameters for CT are detailed in Table 3. Based on preliminary investigation,
the authors found that these measurement settings offer the possibility to penetrate dense
metals such as CoCr with a maximum 5 mm thickness. In this CT system, the specimens
were rotated in the X-ray beam, while the X-ray source and the detector remained stationary.
The software used to reconstruct the model and to analyze the CT scans was Volume
Graphics myVGL 3.4 (Volume Graphics GmbH, Heidelberg, Germany).

Table 3. Measurement settings for the Nikon CT.

Parameter Value

Filter material Copper
Filter thickness 1.0 mm

Acceleration voltage 225 kV
Filament current 184 µA
Exposure time 1415 ms

Number of projections 1440 per 360◦ rotation
Voxel size 17.3 µm

Detector matrix (pixels) 1008 × 1008
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2.5. SEM, EDAX, and XRD

The metallographic preparation of the specimens includes standard grinding using
abrasive papers and a polishing step on diamond pastes with various grain sizes (down
to 1 µm). To analyze 3D print quality on a more significant area, the ZEISS LSM700 laser
scanning confocal microscope (LSCM, Carl Zeiss AG, Oberkochen, Germany) was operated
in the light microscopy mode. The interface area was investigated with a JEOL JSM 7600F
scanning electron microscope (SEM, Jeol Ltd., Tokyo, Japan) with a Schottky field emission
electron source, operating at 15 kV and 90 µA. Analysis of chemical elements was per-
formed using the Oxford Instruments X-Max silicon drift detector and an energy dispersive
X-ray spectrometer (EDAX, Oxford Instruments plc, Abingdon, UK). XRD was carried out
on polished surfaces of the samples by the PANalytical Empyrean X-ray diffractometer
(XRD) (Malvern Panalytical Ltd., Malvern, UK). The measurements were performed in
Bragg–Brentano geometry. The XRD source was set to 40 kV and 40 mA. Phase quality
was analyzed using PANalytical Xpert High Score program (HighScore Plus version 3.0.5)
with the ICSD FIZ Karlsruhe database. For the CoCr side, quantitative phase composition
was determined from XRD patterns, using the Rietveld refinement-based program MAUD
version 2.84 [35]. The program uses an asymmetric pseudo-Voight function to describe
experimental peaks. An isotropic size–strain model was applied and a minor discrepancy
between the nominal and measured peak intensities was corrected using the spherical
harmonic functions with fiber symmetry. The quality of the fit was below 5% Rwp.

3. Results
3.1. Mechanical Response of the CoCr–304 Interface

In Figure 5, we show the SLM-fabricated specimens. To prepare the CoCr–304 spec-
imens, the substrate was milled to obtain the required design. Mechanical testing was
carried out on the CoCr–304 specimens and on standard CoCr samples. Representative
stress–strain curves are plotted in Figure 6, and the determined properties are detailed
in Table 4. Mechanical testing showed the anisotropic behavior of specimens due to the
generative production principle also observed in other SLM studies [17,36,37].
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Table 4. Adhesion strength between CoCr and 304 SS (mean ± standard deviation).

Characteristic CoCr–304 CoCr *

Adhesion strength at rupture [MPa] 838 (±16.9) 1152 (±36.7)
Young’s modulus [Gpa] 157 (±18.4) 174 (±15.1)

Elongation at fracture [%] 4.6 (±1.3) 5.2 (±0.8)
* Mechanical properties of SLM-fabricated CoCr specimens in this study.

From our findings, the CoCr–304 specimens have a tensile adhesion strength at rupture
of approximately 838 Mpa, Young’s modulus of approximately 157 Gpa, and elongation
at fracture of 4.6% (Table 4). The standard SLM-fabricated CoCr samples had an ultimate
tensile strength of 1150 Mpa (vertical build-up orientation). Other studies using SLM
determined a similar mechanical resistance or lower for CoCr alloys, ranging from 923 Ma
to 1220 Mpa [36,37,41]. According to the material data sheet, the 304 SS substrate has the
following mechanical properties: an ultimate tensile strength of 500 Mpa and an elastic
modulus of 193 Gpa.

The results of the elastic modulus are interesting, since the elastic modulus for SLM-
fabricated CoCr is higher (174–180 Gpa). The observed anisotropy primarily influenced duc-
tility and secondly the elastic modulus, reducing it to 157 Gpa for the CoCr–304 specimens.
Considering CT and SEM of internal porosities, the lower elastic modulus can be attributed
to SLM. Such results require further studies for a better understanding of the underlying
phenomenon, as well as exploitation for special applications that may require a lower
elastic modulus.

3.2. CT

Common materials that can be penetrated by X-rays are steel, ceramic, plastic, alu-
minum, and titanium alloy [32,42]. Due to the high density (8–8.8 g/cm3) of the materials
used, the CT parameters allow X-rays to penetrate to a maximum 5 mm depth in the CoCr
and 304 steel alloy. Before mechanical testing, the CoCr–304 specimens were examined
using CT. As mentioned before, even when SLM parameters are optimized, internal defects
may emerge. This non-destructive method can show different forms of porosity that may
be present in SLM-fabricated parts and at the CoCr–304 interface, identify the root cause of
porosity and be used for parameter optimization and validation [43]. Pore distribution is
random in the specimens and an example is shown in Figure 7. The determined microp-
orosity was minimal (under 0.5%) with mean pore sizes of 30–70 µm (Figure 7). The largest
pore identified was in a CoCr part at 18 mm from the interface and 120 µm in size. In
addition to the total porosity, the largest pore, and pore distribution, another specification
in LAR applications is the distance between pores relative to their size [44]. Figure 7b
shows the presence of a total of 31 pores with an average volumetric porosity of 0.3%. All
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the pores were analyzed automatically and the distance between each pore was larger than
the diameter of the largest pore of the two under consideration.
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the pores are marked with red to show their location (size is lower than 0.10 mm). (b) Virtual
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Typical “as-built” surface roughness of a SLM part is shown in Figure 8a, where peaks
and valleys with irregular steps can be seen. The voxel size is 17.3 µm and CT enabled us
to detect undercuts and hidden irregularities at the CoCr–304 interface. In this study, these
types of defects were not observed.
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Figure 8. (a) Representative image of surface quality archived by laser melting of CoCr powder
(SLM parameters are detailed in Section 2.2); (b) 3D reconstructions developed using CT images after
mechanical testing.

Representative fractographs obtained after mechanical testing are detailed in
Figures 9 and 10. The fractures were investigated using CT (sections and 3D reconstruc-
tions). The fractures have two dissimilar areas, a brittle zone, and a dumpling region. The
brittle behavior is shown in Figure 9 where the CoCr part is analyzed. Considering this
result and the EDAX maps (Section 3.3), we presume that the percent of Fe was high in
the areas and this reduces the adhesion strength of the interface. Figure 9a indicates crack
initiation between layers because the load direction is perpendicular to layer formation.
The dumpling area of fracture is illustrated in Figure 10 and is a predominant region.
During the adhesion rupture, shallow dimples are formed on quasi-cleavage facets with
peaks between 0.06 and 0.30 mm (Figure 10a). As reported by several authors, the size
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of the dimples reflects the typical cell dimensions of the solidification microstructure of
SLM parts [37,45].
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Figure 10. Fracture obtained in dumpling area after mechanical testing (CoCr part): (a) CT section;
(b) virtual reconstruction.

3.3. Microstructure of the CoCr–304 Interface

SEM was focused on the interface between the CoCr alloy and AISI 304 steel
(Figures 11–14). SEM images enable a clear distinction between the Co- and Fe-based
areas (CoCr alloy and AISI 304 steel). Figure 11 shows the mixture of metals on their mu-
tual interface. Even upon closer inspection (Figure 11b), no defects and/or sharp interfaces
were detected. During SLM, both metals were gradually combined in the liquid state, as
the first CoCr powder layers were melded on steel substrate. This was also confirmed
by EDAX maps (Figure 12). Colors of the EDAX maps represent element concentrations
in wt.%.
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Figure 12. CoCr–304 interface maps based on main chemical elements (in wt.%) and their distribution:
(a) SEM image; (b) EDAX maps for W, Ni, Cr, Fe, Mo, and Co.

Table 5. EDAX point measurement data for sites indicated in Figure 13. Red color indicates CoCr
alloy composition; blue color indicates 304 stainless steel composition.

Site No./Chemical Elements (wt.%) Si Cr Mn Fe Co Ni Mo W

Spectrum 1 0.97 24.42 0.95 2.93 55.72 0.00 6.70 8.31
Spectrum 2 0.77 21.26 1.11 37.67 27.52 4.44 3.22 4.01
Spectrum 3 0.71 20.58 1.26 43.55 22.68 5.18 2.59 3.45
Spectrum 4 1.13 24.75 0.97 0.71 57.27 0.00 6.72 8.45
Spectrum 5 0.85 21.78 1.18 30.75 33.04 4.06 3.67 4.67
Spectrum 6 0.46 18.66 1.82 69.83 0.62 8.28 0.00 0.33
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Figure 14. Chemical analysis at the CoCr–304 interface; chemical elements detected—tungsten (W),
molybdenum (Mo), nickel (Ni), cobalt (Co), iron (Fe), magnesium (Mg), and chrome (Cr).

For a better understanding of the chemical composition, point measurements were
performed on the indicated sites (Figure 13) and the results are listed in Table 5. Within
the limitations of EDAX, we found Fe at 50–60 µm up from the 304 SS substrate, in the
intermixing zone (Spectrum 1, Table 5). At approximately 150 µm from the 304 SS substrate,
we detect only CoCr alloy composition. On the other hand, the composition of austenitic
steel was recorded containing 18.6% chromium and 8.3% nickel (Spectrum 6, Table 5),
which comply with the AISI 304 stainless steel standard [21].

Figure 14 shows the data acquired plotted in a chart with chemical analysis at the
CoCr–304 interface, marking the main chemical elements—W, Mo, Ni, Co, Fe, Mg, and
Cr. According to SEM and EDAX, the interface has two regions—a heat-affected zone
(HAZ) and an intermixing zone (IZ). The HAZ has limited depth in the 304 substrate (lower
than 20 µm; see Figures 11–14). The IZ has a thickness of approximately 70 µm. In total,
the HAZ and the IZ range between 80 and 110 µm thickness in the CoCr–304 specimens
(Figures 11–14).

3.4. XRD

The phase constitution of the Co-Cr alloy, AISI 304 steel and their common interface
was studied by X-ray diffraction (XRD). The XRD patterns of all these areas are shown in
Figure 15. Two phases were identified in the AISI 304 steel as shown in Figure 15a. The
major phase was identified as γ(Fe), as we deal with an austenitic type of steel, and minor
peaks were identified as α(Fe). The next XRD pattern was recorded across the CoCr–304
steel interface (Figure 15b). In this XRD pattern, the two main peaks correspond to two
phases, namely γ(Fe) and α(Co). These two phases have very similar XRD patterns and
are completely overlapping. No other phases were detected using XRD. The last pattern
corresponds to the SLM-fabricated CoCr alloy (Figure 15c). The 3D printed part is formed
mainly by the α(Co) solid solution, and the minor peaks indicate the presence of a ε(Co)
solid solution.

3.5. Hardness Measurements

Twenty-one indentations were made across the substrate, interface, and CoCr region,
with the first ten lines made on the steel substrate and the eleventh made in the HAZ. The
twelfth indent was made near the intermixing zone and another nine on the CoCr side.
Within the limitations of precise detection of the HAZ and intermixing lines, a graph of
the microhardness measurements is presented in Figure 16. The Vickers hardness of the
CoCr–304 interface was determined considering the HAZ and the IZ. The substrate of
specimens made of 304 SS have a hardness of 216 HV with limited standard deviations
(±38 HV). CoCr powder laser melted on this substate has a hardness of 453 HV with
a standard deviation of ±58 HV. Near the IZ, the highest hardness is 483 HV and was
recorded due to a substitutional solid solution strengthening in the intermixing zone. The
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hardness obtained in the HAZ is approximately 451 HV with a high standard deviation
(±87 HV). Statistically significant differences were observed among the groups (p < 0.05)
for microhardness.
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4. Discussion

A vertical orientation is the most common build-up strategy in SLM production
because it allows for the placement of multiple parts on the machine platform, providing
reduced surface roughness on vertical walls. On the other hand, it is well known that if
the load direction is normal to layer formation, the mechanical resistance is lower. For
this reason, the tensile adhesion strength of the CoCr–304 specimen is limited to 838 MPa
(see Table 4). The building direction of the CoCr–304 specimens was chosen to be vertical
because we aim to determine the minimum adhesion strength between these two metals.
Improved adhesion strength can be obtained if the build-up direction is parallel to the layer
structure (horizontal orientation of SLM part on 304 steel substate). Future work should
investigate the impact of building orientation on adhesion strength. Our mechanical testing
showed that the adhesion strength at rupture is 35% higher compared to the ultimate
tensile strength of 304 steel (see Figure 6). Moreover, fracture surfaces observed after
mechanical testing have a predominant dimple structure and a brittle area propagated by
crack initiation in the CoCr layer structure (Figures 11–14).

The ability to detect porosity and internal voids in SLM parts was investigated in
detail and similar results were reported previously [33,43].
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The CoCr alloy was chosen as its primary solid solution was indicated to be compatible
with the currently investigated steel (AISI 304) [3,18]. Based on SEM images, the interface
shows a homogenous mixture of the two main alloys in the melted area. Both SEM and
XRD show that no brittle intermetallic phases were observed. The primary phase in the
AISI 304 steel is a γ(Fe) solid solution with a FCC crystal structure that has a crystal lattice
parameter of 3.618 Å, while the main phase of the CoCr alloy is very similar. The α(Co)
solid solution also has a FCC crystal structure with a lattice parameter of 3.566 Å, which
was confirmed by the significantly overlapping XRD patterns (Figure 15b). The similar
crystal lattices enables perfect mixing of these two alloys. SEM demonstrates that the
interface area has a limited thickness, which is between 80 and 110 µm. Compared with
other DED studies, the HAZ thickness obtained in this study is lower [3,9,11,18,46,47]. A
similar interface thickness was reported between a SLM-fabricated nickel alloy and a cast
iron substrate [5].

Table 6 summarizes some reported efforts focused on the adhesion strength and
hardness of the interface between base materials such as steels and deposition materials
such as CoCr, Inconel, and 316L SS. Two different technologies were considered to repair
steel components: SLM and DED. As we argued above, the published studies are mainly
used DED. To the best of our knowledge, this is the first SLM study which analyzes the
adhesion strength and interface between these two dissimilar alloys.

Table 6. Comparison of the adhesion strength and hardness obtained using different manufacturing
methods to repair steel components.

Method Substrate Material Deposition
Material

Laser
Power [W]

Scanning
Speed
[mm/s]

Powder
Thickness

[mm]

Vickers
Hardness

[HV] *

Adhesion
Strength

[MPa]
Ref./Year

SLM 304 SS CoCr 90 800 0.02 451–483 838 This study

SLM Cast iron Inconel 625 200 N/A 0.06 330–400 N/A [5]/2018

DED

H13 tool steel CoCr 350 3.7 0.60 520–650 618–624 [3]/2019
304L SS Inconel 625 910 N/A N/A 210–250 N/A [47]/2016
316L SS Inconel 718 450–750 4.0 0.55–0.80 140–180 530–595 [46]/2014

Carbon steel C40 316L SS N/A N/A N/A 220–510 N/A [9]/2019
316L SS 316L SS 225 33.3 0.12 180–225 430 [11]/2020

Cast iron EuTroLoy 16006
(Co-based alloy) 634–1671 2–6.67 N/A 490–600 N/A [18]/2007

* Vickers hardness measured on interface: heat-affected zone (HAZ) and intermixing zone (IZ); DED—direct
energy deposition; SLM—selective laser melting; SS—stainless steel; Inconel is an austenitic nickel-chromium-
based superalloy; N/A indicates that the value is not available.

Depending on the deposition material, processing technology and parameters used,
the adhesion strength varied from 430 to 624 MPa (Table 6). For example, Zhang et al.
investigated the feasibility of DED using a H13 hot work tool with steel as a base and a
CoCr alloy (Wallex 50) as deposition material for repairing molds to assure longer wear
and corrosive life [3]. The laser power for this work was 350 W and the scanning speed
3.7 mm/s, obtaining an adhesion strength of 624 MPa and a microhardness at interface
ranging from 520 to 650 HV1. SLM and the proposed processing parameters resulted in a
higher adhesion strength compared to other research (see Table 6). Regarding the hardness
of the interface region, the hardness determined is in accordance with other reports where
SLM and DED were used [5,9,18].

The study results demonstrated that the advantages of CoCr deposition using SLM
on 304 SS base are as follows: minimal distortion, a reduced heat-affected zone, low
porosity, few microcracks in the interface structure, and superior adhesion strength. This
information on the mechanical response between CoCr and 304 steel is relevant for future
LAR applications.

Recent developments in digital fabrication technologies have made LAR possible and
economically profitable [48,49]. Existing SLM machines can implement LAR to restore and
modify prebuilt components creating a suitable metallurgical bond between an existing
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304 stainless steel part and a CoCr deposition material. Due to its benefits, this technology
has tremendous potential to be adopted by companies and to generate advanced laser
additive reparations, improving the life cycle of metal reconstructed components [50–55].
Technology can also be used to fabricate functionally graded materials or to develop smart
structures [56].

We believe that the proposed LAR approach paves the way to reducing the need to
maintain a large inventory of 304 steel spare components, which would result in a reduction
in cost and waste. Because CoCr alloys possess improved tensile strength and corrosion
resistance compared with 304 stainless steel, with an adhesion strength of 830 MPa, the
repaired parts may have an increased lifetime. Future studies should analyze the fatigue
life and wear resistance of 304 steel parts repaired using LAR and a CoCr alloy.

5. Conclusions

The feasibility of SLM for depositing a superior material such as CoCr on an existing
304 stainless steel base was investigated. This pilot study analyzed the microstructure and
chemical composition of the interface formed between these dissimilar materials. According
to SEM and EDAX, the interface has a reduced thickness and the HAZ is limited (<20 µm).
The IZ has a thickness of approximately 70 µm and has high hardness (470–480 HV1).
Compared to in welding processes or DED, the HAZ thickness is lower. XRD patterns
recorded across the CoCr–304 interface show a homogenous mixture of γ(Fe) and α(Co)
solid solutions. Perfect mixing of the CoCr alloy and AISI 304 steel was achieved in the
melted area using the proposed SLM parameters. The similar crystal structures of the
two main solid solutions predicts the formation of coherent interfaces between these two
materials. No intermetallic-phase particles were observed by SEM, nor XRD, which could
negatively influence the mechanical properties. CT determined the total porosity, the
largest pore, and pore distribution.

The study results show that the stated configuration of the SLM parameters lead to
limited microporosity in the CoCr–304 interface and a higher adhesion strength when
compared to other reports. Mechanical testing reveals that the adhesion strength at rupture
is 830 MPa and the fractures contain predominant dumpling regions. This notable adhesion
strength can be attributed to the complete melting of CoCr particles after laser irradiation
and to the reduced thickness of the HAZ and the IZ.
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