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Abstract: Rare-earth is an efficient refiner for surface modification of steel material. This study
presents the synergistic influence of Y2O3 nanoparticles (YNPs) and Mn-oxide secondary phase on
the microstructure and mechanical properties of 14CrSiMnV coating fabricated by plasma transfer
arc cladding process. The results indicated that the residual Y accumulated with Mn, forming a
secondary phase oxide particle instead of inclusions or slags during rapid cooling solidification of
the coating. Due to enlarged equiaxed grains, declining long-range dendritic grains, and secondary
phase strengthening, steel coatings present hybrid-type fracture mechanism, less plastic deformation,
and third-body interaction. With an optimal addition of YNPs (0.4 wt.%), the mechanical properties
of the steel coating are improved, as indicated by the increase of 92.0% in the tensile strength, increase
of 55.6% in the elongation, increase of 11.3% in the microhardness, decrease of 22.2% in wear weight
loss, and increase of 28.3% in relative wear resistance.

Keywords: plasma transfer arc; steel coating; Y2O3 nanoparticles; Mn secondary phase

1. Introduction

In recent years, a great deal of study attention has been paid to rare-earth (RE) ma-
terials, such as La [1,2], Ce [3,4], or Y [5,6], owing to their applications in additive manu-
facturing and surface engineering for declining the formation of dendritic solidification
microstructure, non-equilibrium segregations, as well as pores and defects of alloy material
during the rapid solidification process. As a result, brittle fracture, cracks, and wear debris
under loading or dry friction conditions are decreased, whereas the wear resistance, hard-
ness, strength, and toughness of the steel material are improved with small amounts of RE
material [7–9].

However, due to the strong affinity with O and S, the excessive addition of RE leads
to enrichment of RE at grain boundaries to form inclusions, compromising the overall
performance of materials [10–12]. One the other hand, progressive fabrication technologies
and sufficient material performances of steel material are required to meet the rapid
development and complex service conditions in cylinder heads, automotive, and train
braking systems [13–16]. Therefore, an optimal addition strategy of RE is desired for
high stability and cost-effectiveness application in the field of refinement for commercial
surface modification, such as laser direct-deposited (LDD) and plasma-transferred arc
(PTA) technology.

It is reported that secondary phase act as preferential crack nucleation sites [17] and
Zener-pinning particles [18] in steel materials, providing a lower crack-free path to drop the
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absorbed energy and a dragging force to retard grain growth, thereby playing an effective
role in crack-free path and grain refinement, and resulting in better tensile properties and
strength. In this way, RE-based secondary phases decline the undercooling for heterogenous
nucleation and lead to significant grain refinement and microstructural homogeneity of
alloy [1,19], drawing an increasing attention in rapid solidification process. Meanwhile,
some studies have suggested that added RE material could form secondary phase oxide
with alloyed element (such as Si and Ti) instead of inclusions or slags [20–24], which
possess a positive influence on grain refinement, grain boundary improvement, structural
transformation, and microalloying, inhibiting the growth of columnar crystals and crack
reduction in alloy.

A small amount of Mn as beneficial element which leads to grain refinement, precipi-
tation hardening [25], and stacking fault [26], improving the eutectic morphology, strength
and strain of the steel materials. Furthermore, Mn is a potential candidate to form secondary
phase particles for the accumulation of Y during the fast solidification process, while the
Y (atomic radii is 0.180 nm, ionic radii is 0.09 nm) and Mn (atomic radii is 0.127 nm, ionic
radii is 0.058–0.0645 nm) are suitable to form a substitutional solid solution with Fe (atomic
radii is 0.172 nm, ionic radii is 0.055–0.0645 nm). However, the combined effect of Y and
Mn elements within high-strength steel has not been studied in detail.

The purpose of the work is to find the optimal surface modification method of PTA
to add Y2O3 material and alloying of the cast iron coating to improve its performance
properties. The synergistic influence of a small amounts of Y and Mn-based secondary
phase on the microstructure and mechanical performance were investigated. Moreover,
Y2O3 nanoparticles (YNPs) were adopted to improve the dispersity of Y element. Mean-
while, the optimal content of YNP addition is determined by microhardness, tensile, and
wear performance.

2. Materials and Methods
2.1. Materials

As shown in Figure 1a,b, the particle size of 14CrSiMnV steel powder (GL PTA
Inc., Wuhan, China) is 80–120 µm. The composition of steel powder was 14.5 wt.% Cr,
1.2 wt.% Si, 0.5 wt.% Mn, 0.5 wt.% V, 0.3 wt.% C, 0.05 wt.% O, and Fe (bal.). Before the PTA
process, the powder was dried to remove the moisture by heating at 80 ◦C.
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Figure 1. (a) Macro view of 14CrSiMnV steel powder, (b) Morphology of 14CrSiMnV powder,
(c) Surface of 14CrSiMnV powder covered with Y2O3 nanoparticles, (d) Location of tensile specimens
extracted from the coatings, (e) schematic illustration of tensile specimens.

YNPs precursor was prepared by applying the reverse precipitation method within
2 h from Y(NO3)3 (analytic reagent) and NH4HCO3 (analytic reagent). Consequently, a
washing step and a freeze-drying process were enforced to obtain the low-impurity and
dispersed powder. To obtain yttrium oxide, the precursor was heated at the heating rate of
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5 ◦C/min and kept at 500 ◦C in the air atmosphere. The diameter of YNPs ranged from
30 to 50 nm (Figure 1c).

YNPs and 14CrSiMnV steel powder were mixed by a planetary grinding machine.
After mixing at 200 rpm for 40 min, the surface of steel powder was coated with different
amounts of YNPs (0 wt.%, 0.2 wt.%, 0.4 wt.%, 0.6 wt.%, and 0.8 wt.%), as shown in Figure 1c.
Then, the mixed powder was cladded into high-strength steel coating (abbreviated as HSC),
which are labeled as HSC0, HSC02, HSC04, HSC06, and HSC08, respectively.

2.2. PTA Coating Preparation

Q235 steel plate (200 × 100 × 10 mm3) was adopted as a substrate. The plates were
ground using 180 grinding wheels and degreased with anhydrous ethanol. The composition
of the Q235 was ≤0.17 wt.% C, ≤0.35 wt.% Si, ≤0.14 wt.% Mn, ≤0.035 wt.% P, ≤0.035 wt.%
S, and Fe (bal.). The coating sample (50 × 55 × 4 mm3) was manufactured by 7 channels of
the single-channel cladding layer (50 × 12 × 4 mm3) with a plasma-transferred arc machine
(PTA, PTA-BX-400b), as shown in Figure 1d. The 14CrSiMnV coating is metallurgically
bonded to the substrate. To achieve a relatively smooth surface of the coating and less
significant substrate deformation, the processing parameters are conducted as shown in
Table 1. Then, the coating specimens were cut from PTA coatings and ground using SiC
abrasive paper (180, 320, 500, and 800 grit). The metallographic samples were polished
with a diamond polishing paste (1 µm), followed by etching with an amygdalic acid
(1 g/100 mL) and hydrochloric acid (5 mL/100 mL) ethanol solution.

Table 1. Experimental process parameters.

EL Parameter

Arc length (mm) 10
Current (A) 170
Plasma gas Argon

Plasma gas flow (L/min) 5
Protective gas flow (L/min) 8
Feeding gas flow (L/min) 5

Powder feeding rate (mg/s) 400
Scanning velocity (mm/s) 1

Overlap rate (%) 40

2.3. Material Characterization

The surface morphology and microstructure of the powders and coatings were charac-
terized with field-emission scanning electron microscopy (FE-SEM, Zeiss-Sigma500) and
optical microscopy (OM, Zeiss Imager-A1m). In addition, the local phase structure was
identified with X-ray diffraction (XRD), using Cu Kα radiations (λ = 0.15406 nm) with
a scan rate of 5◦/min in the 2θ range of 20◦ to 80◦. Moreover, the oxygen and nitrogen
determinate (OND, HORIBA-EMGA820) was adopted to measure the oxygen content.
The method is high frequency heating combustion–infrared absorption. The area size
for analysis is 0.010~0.5%. The power is 8 kW and the temperature is 3500 ◦C. ICP mass
spectrometer (PerkinElmer-Nexion300Q) was used to measure the yttrium content. The
method is inductively coupled plasma mass spectrometry. The area size for analysis is
0.0005~0.10%.

2.4. Mechanical Characterization

The microhardness of coating was recorded with a Vicker’s hardness tester (Everone
EM-4500 digital). To analyze the average microhardness value, three independent points
were recorded under a load of 100 g for 15 s, which was taken along the cross section
of coating.

Tensile properties of the coating were determined with a universal testing machine
(AG-Xplus, Shimadzu, guangzhou, china). The test sample was cut along the x-axis, using
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a non-proportional sample style of GB 228 (Chinese standard), as shown in Figure 1e. The
tensile sheet sample was selected on the upper surface of the 14CrSiMnV alloy coating
with a thickness of 1 mm (±0.05 mm). The sample was loaded with extension rate of
0.5 mm/min.

The reciprocating wear process is a reasonable simulation pattern to simulate the
actual working condition, while the sample needs to work continuously and stably for
a long time. A surface performance tester (MFT-4000, Lanzhou, china) was employed to
test the reciprocating friction of 14Cr2NiSiVMn coating. The surface performance tester
and the schematic diagram of the experimental sample are shown in Figure 2a. Coating
samples were polished before the experiment to avoid the influence of coating surface
roughness on experimental results. To obtain average value as a repeatability test result,
each sample was tested with three groups of wear. To avoid introducing new elements
and affecting wear results in this experiment, Si3N4 ceramic ball (Φ 3 mm, 2200 Hv) was
employed as the friction pairs. The reciprocating friction test parameters were set as Table 2.
Parallel tracks relative to the cladding direction were carried out for each specimen, as
shown in Figure 2b.
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Table 2. The wear test parameters.

EL The Reciprocating Friction Test The Wear Weight Loss Test

Wear load (N) 10 18
Wear speed (mm/min) 50 60

Length (mm) 5 30 × 12
Temperature (◦C) 25 25

Relative humidity (%) 17 17
Friction state Dry friction Dry friction
Contact form Point-surface Line-surface

Wear weight loss is the most important test method for wear-resistant alloy ma-
terials. To more intuitively show the influence of CNRs content on wear resistance of
14Cr2NiSiVMn alloy coating, the weight loss test of PTA alloy coating was carried out by
using a wear tester (NUS–ISO3, Hapoin, Shanghai, China). The wear tester and schematic
diagram of the experimental sample are shown in Figure 2c,d. To determine the weight-loss
change of samples, the weight of samples before and after wear were measured. In this
way, five wear points were recorded, then the difference was calculated. To obtain average
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value as a repeatability test result, each sample was tested with three groups of wear. The
specific formula is as follows:

Weight loss = W before wear − W after wear (1)

A specific standard sample is usually selected as a reference for the characterization of
the relative wear resistance (ε). The specific formula is as follows:

ε = W sample/W standard (2)

In this paper, W represents the wear weight loss. The samples are PTA alloy coating,
and the standard sample is Q235 steel.

Influence of errors was reduced by fine polishing of coating sample with 2500 mesh
sandpaper, surface clean with alcohol ultrasonic waves and surface dry with a blow-dryer
before weighing. An electronic balance (BSA224S, accuracy of 0.0001 g) was used for
weighing. To avoid the introduction of new elements, which would affect the wear results,
80 mesh SiC dry abrasive paper (2265.3 ± 224.5 Hv) was employed as the friction pairs. The
wear test parameters were set as Table 2, which conforms to Japanese Industrial Standards
(No. JIS H8503-1989). The wear wheel will carry out a new friction surface on the lower
side of the test sample for each scratch path by rotated 0.9◦ in the next scratch, preventing
the influence of SiC sandpaper surface on the test results.

3. Results and Discussion
3.1. Subsection Microstructural Characterization

Figure 3 presents the metallographic morphology along the cross-section of HSC
specimens. In the unmodified coating, the long-range dendritic solidification microstructure
growing along certain angles can be clearly observed, as well as several larger defect points,
as shown in Figure 3a,b [27]. However, long-term dendritic solidifications are reduced
and equiaxed grains are enlarged in the specimen modified with 0.4 wt.% YNPs, while
the concentration of internal defects is significantly reduced, as shown in Figure 3c,d. The
RE element can improve the undercooling point during the solidification of alloy system,
thereby reducing the metastable eutectic transition temperature [22,28]. During the rapid
heating process, dispersed Y-ions partially dissolve from part of YNPs with low solubility,
segregating at the front of primary dendrites with low electronegativity, reducing the
undercooling degree of the steel system, and providing an enhanced nucleation rate [29]. In
addition, YNPs improve the fluidity of melt in the molten pool, resulting in multi-directional
heat flow at all locations in the molten pool. The dendrite phase is reduced as dendrites
dissociated into smaller species by undercooling effect, resulting in grain refinement and
multi-directional crystallization. Consequently, long-term dendritic solidifications are
transformed into equiaxed grains and short-term columnar crystals, resulting in a dense
microstructure and less defects within the modified coating. However, large pores or
defects are formed in coating with 0.8 wt.% YNPs, compromising the coating performance,
as shown in Figure 3e,f. In the PTA process, due to the technical characteristics of rapid
heating and cooling, large columnar crystals grow vertically from the bottom of the molten
pool to the center of the coating, while the addition of YNPs will induce the dismember of
dendritic crystals, so as to refine the grains and enhance the properties of the coating [23].

The XRD patterns of alloy powder and coating sample are shown in Figure 4. Figure 4a
shows that the main phases of all alloy powders are α-Fe phase (PDF#34-0529), Fe-Cr
phase (PDF#85-1410), and Taenite phase (PDF#47-1417). The decrease in γ-Fe peak was
due to the rapid cooling process during solidification [20,30]. Figure 4b shows that the
main phases of all coatings are α-Fe phase (PDF#34-0529), Fe-Cr phase (PDF#85-1410),
and Cr phase (PDF#88-2323), corresponding to the diffraction peaks at 44.5◦, 64.5◦, and
43.5◦, respectively. Notably, for Cr, it exhibits an obvious enrichment in the HSC0 coating
samples [31]. However, the Cr phase in HSC02, HSC04, HSC06, and HSC08 samples
decreased significantly with the addition of Y2O3. The addition of Y2O3 nanoparticles
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provides sufficient undercooling [29] for PTA coating in the rapid solidification process,
which promotes the diffusion rate of Cr and reduces non-equilibrium segregations [22,31].
Several weak XRD peaks are shown in HSC08 specimens, corresponding to the Y2O3 phase
(PDF#65-3178) with a crystal plane of (222), (125), and (440), which peaked at 29.2◦, 46.9,
and 48.5◦. It suggested that the extra Y2O3 nanoparticles will exist in the steel matrix to
form inclusion, and its melting point is higher than that of the steel matrix.
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To further understand the influence of the Y element on 14CrSiMnV alloy coating,
the EDS maps are measured to analyze the elemental composition of the secondary phase
particles. Sphere-like secondary phase particles in HSC0 sample (Figure 5a) mainly consist
of Si and O element. However, Figure 5b,c shows the secondary phase particles in the
specimens modified with 0.4 wt.% and 0.8 wt.% YNPs, confirming the presence of Y, Mn, Si,
and O. Hence, Y element segregated into Mn-oxides, followed by Y element playing a role
in purifying grains and grain boundaries, which is consistent with XRD data. Furthermore,
with the addition of YNPs, 18.9–23.0 wt.% of Y, 2.4–5.4 wt.% of Mn, and 18.2–24.5 wt.% of
O, EDS was detected in the secondary phase particles, as shown in Table 3. This is due to
the active chemical properties of the Y element, which has a strong affinity with O, Si, and
Mn. The ICP mass spectrometer and OND determinate are measured to analyze the Y and
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O content of the 14CrSiMnV alloy coating, and it was found that the Y and O contents in
the coating increased with the increase of YNP content (Table 4).
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EL Fe/at.% Cr/at.% C/at.% Al/at.% Mn/at.% Y/at.% Si/at.% O/at.%

HSC0 28.86 6.01 28.53 0.12 2.93 - 9.12 24.43
HSC02 3.43 1.08 52.42 0.30 2.06 5.33 3.48 31.90
HSC04 5.96 1.50 59.07 0.79 0.89 4.34 1.99 25.46
HSC06 12.19 3.69 35.18 1.12 1.97 7.07 3.95 34.83
HSC08 18.40 3.99 28.70 0.64 2.61 6.30 4.50 34.86



Metals 2022, 12, 942 8 of 16

Table 4. O and Y element distribution of the coating samples.

Sample HSC0 HSC02 HSC04 HSC06 HSC08

O(wt.%) 0.016 0.018 0.020 0.026 0.026
Y(wt.%) 0 0.014 0.016 0.019 0.023

In the conventional Y2O3 addition mechanism, the compounds formed with dissolved
Y ions as a slag float on the melt surface of PTA coating, playing the role of slag removal,
tissue purification, porosity, and crack elimination [11,12,32]. On the other hand, abundant
Y2O3 can provide conditions for the formation of Y oxides and impurity compounds to
aggregate and grow up, leading to a decrease in the number of effective crystal nuclei,
resulting in coarsening of the tissue and an increase in the number of inclusions. However,
instead of the slag in modified coating, dissolved Y forms compound with Mn, Si, and O as
secondary phase particles, while Y (0.180 nm), Mn (0.127 nm), and Si (0.146 nm) are suited
to generate a substitutional solid solution during the rapid solidification process, which
is relatively similar to the solid solution of Fe phase (0.172 nm), and provides abundant
nucleation sites [33,34].

3.2. Mechanical Characterization

Figure 6 exhibits the tensile performance of HSC specimens. It is revealed that all
test specimens display linear elastic strain curves. The tensile strength of the alloy coating
specimen is 667 MPa (HSC0), 810 MPa (HSC02), 1281 MPa (HSC04), 1066 MPa (HSC06),
and 946 MPa (HSC08), respectively. The elongation of the alloy coating specimens is 2.1%
(HSC0), 2.8% (HSC02), 3.2% (HSC04), 3.0% (HSC06), and 2.9% (HSC08), respectively, as
shown in Table 5. The tensile strength of the modified specimen (HSC04) increased by
92.0%, and the toughness of the coating increased by 55.6%. The YNP-modified alloy
coating possesses higher tensile strength and elongation than the unmodified coating. One
should note that grain refinement improves the tensile strength and ductility of the alloy
coatings. During the PTA forming process, the Y element is combined with Mn, Si, and
O elements to form new Y-Mn-Si-O compounds. These compounds are dispersed in the
coating and become hetero-nucleation sites for grain nucleation, promoting grain nucleation
and resulting in increased concentration equiaxed grains and short-term columnar crystals.
The dispersion of the secondary phase particles in the coating results in a stress field, which
hinders the deformation and enhances the mechanical properties of the modified coating.

Metals 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 6. The stress–strain curve of the coating samples. 

Table 5. Tensile performance parameters of the coating samples. 
Samples Modulus of Elasticity (Gpa) Tensile Strength (Mpa) Yield Strength (Mpa) Elongation (%) 

HSC0 292.5 667.3 113.3 2.1 
HSC02 263.8 810.0 82.7 2.8 
HSC04 367.3 1281.0 148.3 3.2 
HSC06 342.3 1066.9 99.1 3.0 
HSC08 297.5 946.6 108.8 2.9 

Figure 7 shows the fracture morphology of the tensile specimens. Figure 7a displays 
a long-range river-like pattern and fan-sliding morphology in the cross-section of HSC0 
fracture sample. On the other hand, a mass of cleavage planes and step features, with 
secondary micro-cracks and pores, are observed on the surface of HSC0 sample (Figure 
7b), confirming the occurrence of cleavage and brittle fracture. It is revealed that the cleav-
age fracture occurred along the growth direction of long-range dendritic solidification mi-
crostructures, because cleavage and slip easily occur in microstructurally uneven regions 
of BCC-phase steel under loading, leading to linear elastic strain curves and cleavage frac-
ture with low tensile properties [22]. 

Figure 6. The stress–strain curve of the coating samples.

Figure 7 shows the fracture morphology of the tensile specimens. Figure 7a displays
a long-range river-like pattern and fan-sliding morphology in the cross-section of HSC0
fracture sample. On the other hand, a mass of cleavage planes and step features, with
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secondary micro-cracks and pores, are observed on the surface of HSC0 sample (Figure 7b),
confirming the occurrence of cleavage and brittle fracture. It is revealed that the cleavage
fracture occurred along the growth direction of long-range dendritic solidification mi-
crostructures, because cleavage and slip easily occur in microstructurally uneven regions of
BCC-phase steel under loading, leading to linear elastic strain curves and cleavage fracture
with low tensile properties [22].

Table 5. Tensile performance parameters of the coating samples.

Samples Modulus of Elasticity (Gpa) Tensile Strength (Mpa) Yield Strength (Mpa) Elongation (%)

HSC0 292.5 667.3 113.3 2.1
HSC02 263.8 810.0 82.7 2.8
HSC04 367.3 1281.0 148.3 3.2
HSC06 342.3 1066.9 99.1 3.0
HSC08 297.5 946.6 108.8 2.9Metals 2022, 12, x FOR PEER REVIEW 10 of 17 
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Moreover, short-range river patterns, small cleavage steps, and dimples in the sliding
direction were observed in the modified coating, as shown in the fracture morphology of
HSC04 (Figure 7c,d) and HSC08 (Figure 7e,f) specimens, confirming the failure mecha-
nism was based on hybrid-type with quasi-cleavage, brittle fracture, and granular ductile
fracture [35]. On the one hand, extension sliding cracks were disassembled and blocked
by short-range dendritic solidification and enlarged equiaxed grain zone. It is relatively
easy to hinder the extension of cleavage steps during the tensile process due to the dif-
ference between secondary phase particles and coating in the elastic–plastic region and
bonding ability, resulting in small cleavage steps under the influence of tensile stress. As a
result, the brittle capacity of modified specimens is significantly improved. The addition
of YNPs improves the internal grain structure of the coating, which plays a role in fine
grain strengthening and second phase strengthening, while the dispersion distribution
of the second phase particles hinders the expansion of slip dislocation and improves the
strength of the coating [36]. However, excessive amounts of YNPs increase O content
within the Fe phase (Table 4), resulting in large pores and micro-cracks (Figure 7d), and
thereby decreasing the tensile strength of HSC08.

Figure 8 shows the longitudinal section morphology of the tensile specimens. The
crystallographic facets with the size of a few microns at longitudinal section of the tensile
specimens can be observed, as shown in Figure 8b–f. During the tensile process, the crack
expands along the grain boundary and forms the crystallographic facets on the fracture
surfaces [29]. Thus, the larger the grain size, the longer the crystallographic facets. The
addition of YNPs will refine the grains, hinder the slip dislocation, and enhance the tensile
property of the coating [23]. As a result, the crystallographic facets of HSC04 and HSC08 is
smaller than that of HSC0.
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Figure 9 shows the microhardness along the cross-section of coatings. The aver-
age microhardness of the coating specimen is 627 HV0.1(HSC0), 658 HV0.1(HSC02),
698 HV0.1(HSC04), 669 HV0.1(HSC06), and 642 HV0.1(HSC08). Moreover, the micro-
hardness of the modified coating increased with the YNPs content. When 0.4 wt.% YNPs
are added, the modified coating exhibited the highest microhardness distribution, which is
11.3% higher than the unmodified coating. During the solidification process, the Y-Mn-Si-O
compound disperses in the grains of coating and produces a pinning effect, inhibiting the
grain growth and playing a role in grain strengthening and secondary phase strengthening.
However, with the increase of YNPs content, excessive Y increases the viscosity of molten
metal in the cladding pool and deteriorates the fluidity of molten metal, forming a large
number of inclusions at grain boundaries, weakening the binding force between grains,
thereby reducing the mechanical strength of the coating, including Vickers microhardness.
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Figure 9. The microhardness distribution of the coating samples.

Figure 10 shows reciprocating sliding wear surface morphology of the coatings under
a low-speed dry friction sliding. It displays a fish-scale pattern on the wear surface of
all coatings, indicating the plastic deformation and adhesive wear characteristics due to
delamination [37,38]. As shown in Figure 10a, both compact particles and deep grooves
can be observed on uneven worn surfaces of the HSC0 specimen, whereas micro-plowing
is the main feature of abrasive wear [37] due to third-body interactions. Owing to the
dendritic solidification along the z-axis during the fast solidification and cooling process,
a fine well-aligned structure is formed with a high-temperature gradient, leading to a
large friction coefficient gap between the build direction (z-axis) and cladding direction
(x-axis) of the PTA coating [3]. During the initial stage of sliding wear process, abundant
debris is produced along the x-axis of coating due to brittle fracture and micro-cutting,
promoting the adhesion and abrasive wear friction of unmodified coatings. On the other
hand, HSC02 (Figure 10b), HSC04 (Figure 10c), and HSC06 (Figure 10d) exhibited abrasive
wear, originating from the uniform microstructure and low amounts of debris. It is worth
noting that the dendritic crystals inside the coating transform into equiaxed crystals after
the addition of an optimal amount of YNPs, resulting in a lower friction coefficient and
similar sliding wear resistance in different directions and less debris [39,40]. This is due to
the addition of YNPs, improving the grain structure, hindering the growth of columnar
grains, making the inner structure of the coating close, and improving the wear resistance
of the coating. However, excessive YNPs will lead to superfluous O content and inclusion
enrichment at grain boundaries in the coating, and the uneven internal composition will
lead to reduce wear resistance. The EDS maps were measured to analyze the elemental
composition of the reciprocating wear surface, as shown in Table 6. The results display
that no new element (such as N) was introduced into the coating surface during the
reciprocating friction process, while the wear resistance of the coating is improved by
added small amount of YNPs.
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Figure 11 plots the weight loss–wear cycle curves and relative wear resistance coeffi-
cient of different coatings. During the initial stage of friction process, amounts of abrasive
and debris particles are peeled off by brittle fracture from the coating surface, resulting
in cracks or scars. Then, such particles are brought into the grooves to promote micro-
cutting between surrounding matrix and eutectic structure during third-body interactions,
resulting in a plastic deformation phenomenon and wear loss. The wear weight loss of spec-
imens is found to be 0.1345 g (Q235), 0.0755 g (HSC0), 0.0752 g (HSC02), 0.0587 g (HSC04),
0.0693 g (HSC06), and 0.0732 (HSC08). The wear loss of HSC04 coating is the lowest, which
is 56.3% and 22.2% less than the Q235 and unmodified coating, respectively.
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Meanwhile, the relative wear resistance coefficient (RWSc) of Q235 steel was set at
1, while the RWSc of modified coating was found to be 1.7788 (HSC0), 1.7859 (HSC02),
2.2827 (HSC04), 1.9380 (HSC06), and 1.8347 (HSC08). The RWSc of the HSC04 specimen is
increased by 28.3%. Figure 12a displays a worn surface with deep and coarse scratches,
as well as large irregular spalling pits for unmodified coatings. In contrast, shallower
friction scratches and smoother slender furrows were exhibited in the modified coating
due to lesser amounts of brittle fracture and debris. It can be ascribed to a decrease of
dendritic grains and enlarged equiaxed grains in the modified coatings, resulting in the
transformation of the wear mechanism from plastic deformation to slight peeling.
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4. Conclusions

This work fabricated 14CrSiMnV steel coatings with small addition of YNP by PTA
and explored the synergistic influence of YNPs addition and Y-Mn-oxide secondary phase
on microstructure, tensile properties, and wear resistance. The results revealed that the
presence of YNPs declined the dendritic solidification structure and enlarged the equiaxed
grains. Moreover, part of Y combined with Mn, Si, and O elements to form Y-Mn-Si-O
compound as a secondary phase reinforcer, resulting in grain strengthening and secondary
phase strengthening, and leading to smaller cleavage plane, less third-body interactions and
plastic deformation of the coating. As a result, the tensile properties, microhardness, and
wear resistance of the modified steel coating have been obviously improved. The optimal
amount of YNPs (0.4 wt.%) resulted in an increase of 92.0% in tensile strength, an increase
of 55.6% in elongation, an increase of 11.3% in microhardness, a reduction of 22.2% in wear
weight loss, and an increase of 28.3% in relative wear resistance. However, excessive YNPs
will introduced superfluous O content, oxide slag, and defect in the coating, resulting in
decline of the mechanical and wear properties. Overall, the proposed strategy of combining
Y, Mn, Si, and O elements to form secondary phase compounds effectively solved the
problems of nonequilibrium segregations at dendritic boundaries (in the interaxial space)
and properties degradation.
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