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Abstract: The vacuum brazing of dissimilar Al 7075 and Al–25 Si alloy was investigated. The brazing
filler was copper foil with a thickness of 20 µm, and the brazing temperature was 560 ◦C held for
10 min. The average shear strength of the brazed joint of dissimilar Al 7075 and Al–25 Si alloy was
26.4 MPa. The copper layer was found to be dissolved completely, and the interface of the joint had
an irregular shape with a serrated border, indicating a good metallurgical bonding between the two
dissimilar alloys. However, factors which might cause deterioration of the shear strength were also
observed, including the formation of the intermetallic compounds such as MgZn2, Cu2Al and Mg2Si,
the existence of voids and microcracks, the coarsening of grains in Al 7075, and the coarsening of
primary Si in Al–25 Si alloy.

Keywords: vacuum brazing; shear strength; Al 7075; Al–25 Si alloy; microstructure

1. Introduction

Aluminium alloys are good candidates to replace heavier copper alloys or steels for
the purpose of weight reduction in automotive and many other applications [1–3]. Among
them, Al 7075 is used in body panels, brake housings, brake pistons, air deflector parts, and
seat slides of automotives because of its high specific strength, low quench sensitivity, wide
range of solution heat treatment temperatures and rapid natural aging characteristics [3,4].

SiC ceramic is one of the mainstream human body protection materials. It has the
characteristics of low density, high hardness, high bending strength, good bulletproof
comprehensive performance, and can maintain the fighter mobility of equipment personnel
to a large extent [5]. However, SiC ceramic is brittle and has poor resistance to impact.
Joining Al alloy to SiC ceramic would help to overcome this problem. Therefore, the
combination of SiC and aluminium alloys, such as Al 7075, has potential engineering
applications [5–7].

The challenges in dissimilar alloys welding are the differences of physical and chemical
properties between the materials and the formation of intermetallic brittle phases resulting
in the degradation of mechanical properties of welds. However, dissimilar materials
welding is increasingly demanded from the industry as it can effectively reduce material
costs and improve the design [8]. Specifically, the joining between SiC and Al alloys
has faced great technical challenges due to the inherent technical difficulty of achieving
good bonding between SiC and Al alloys [9]. Yang et al. [10] proposed a new strategy for
dissimilar material joining between SiC and Al Alloys by using high-Si Al alloys. Thus,
the good connection between high silicon aluminum alloys and 7075 is the key to finally
realize the connection between SiC and 7075 aluminum alloys.
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It should be noted that more engineering applications require the joining between high
silicon aluminum alloys and 7075. The Al-Si alloys are used to fabricate various automobile
parts of automobile engine [11] and air conditioning compressors [12], owing to their good
thermal conductivity, small coefficient of thermal expansion, light weight, high strength
and rigidity [13]. Dissimilar joining between Al-Si and Al 7075 alloys has been required
since they are both becoming more common in engineering applications.

The effects of brazing temperature and post weld heat treatment on 7075 alloy brazed
joints have been reported [14]. The highest shear strength was 42 MPa when brazed at
600 ◦C before post weld heat treatment, and then increased obviously when the retro-
gression temperature was 200 ◦C. Song et al. [15] investigated contact reactive brazing
of Al 7075 alloys using copper layer and the maximum shear strength of 38.7 MPa was
obtained when brazing temperature was 600 ◦C. Copper is chosen as the interlayer to join
aluminum alloys because copper and aluminum can have eutectic reaction so as to reduce
the brazing temperature and increase the joint strength.

The weldability of an Al 7075 (T6) sheet using the hybrid laser/GMA welding process
was examined and the results indicated that a hybrid laser/GMA welding process at the
optimized conditions can successfully fusion weld Al 7075 [16]. The Al 7075 alloy has also
been welded to join galvanized steel by the cold metal transfer (CMT) welding–brazing
process [17], to join titanium alloy (Ti6Al4V) by gas tungsten arc welding (GTAW) [18], and
to join a 6061 alloy by friction stir welding (FSW) [19]. Moreover, the interaction behaviors
at the interface between a liquid Al–12 Si and solid Ti6Al4V alloy in ultrasonic-assisted
brazing in air was investigated [20]. The work by Sekulic et al. [21] has provided empirical
evidence needed for an in-depth phenomenological study of dendrite growth phenomena
during the brazing of aluminum alloys in the form of composite brazing sheets. The
major characteristic of the phenomenon is a sensitivity of the dendrite pattern selection
and dendrite population on brazing process parameters, in particular on the temperature
during the dwell. The Al–Si alloy has also been welded to join a titanium dissimilar alloy
by FSW. In previous research [15], it was reported that the Al 7075 alloy connection was
realized by vacuum brazing. The present research work was carried out to study the
vacuum brazing of the dissimilar Al 7075 and Al–25Si alloy.

2. Materials and Methods

Table 1 shows the chemical compositions of the two metals to be joined (Al 7075
and Al–25 Si alloy). The hot-rolled Al 7075 and the spray formed Al–25 Si alloy were cut
into dimensions of 5 mm × 5 mm × 5 mm and 10 mm × 6 mm × 5 mm, respectively.
The specimens were cut from original substrates Al 7075 and Al–25 Si alloy for checking
their original microstructures under the optical microscope (OM). The interlayer used was
Cu foil of 20 µm in thickness, as shown schematically in Figure 1a. Before brazing, the
surfaces of the substrates were polished to eliminate the oxide film. The brazing process
was performed using a vacuum aluminum brazing furnace (WZB—10, Zhongshan Kaixuan
Vacuum Science & Technology Co., Ltd., Zhongshan, China). The system was capable of
maintaining a vacuum of 4.0 × 10−4 Pa at brazing temperature. The heating power was
21 kW and the air cooling pressure was less than 1 bar. At the beginning of the brazing
process, the brazing couples were heated to the brazing temperature 560 ◦C at heating rate
of 10 ◦C/min. Subsequently, the brazing samples were held at 560 ◦C for 10 min, followed
by a furnace cooling.

Table 1. Chemical compositions of the base metals (wt. %).

Alloy Mg Zn Cu Fe Si Mn Ti Cr Al

Al 7075 2.10–2.90 5.10–6.10 1.20–2.00 0.50 0.40 0.30 0.20 0.18–0.28 Bal.
Al–25 Si alloy 1.00 - 4.00 - 25.00 - - - Bal.
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Figure 1. (a) Schematic diagram of assembling brazing parts; (b) Schematic diagram of shear test.

The specimens were cut from the cross section of the brazed joints, polished and
etched with the Keller’s reagent for 10 s. The microstructure and composition distribution
of base metals and brazed joints were characterized by OM, scanning electron microscopy
(SEM) and energy dispersive spectrometer (EDS).

The schematic diagram of shear test is shown in Figure 1b. The shear tests were
performed at a displacement rate of 0.5 mm/min by a microcomputer controlled electronic
universal testing machine (CMT4303, MTS Systems (China) Co., Ltd., Shanghai, China).
For each set of experimental data, three specimens were tested to obtain the average shear
strength of brazed joints. After shear test, the fracture path and fracture surfaces were
characterized under the SEM.

3. Results and Discussion
3.1. Microstructures of Al 7075 and Al–25 Si Alloy before Brazing

Figure 2 shows the microstructures of the Al 7075 and Al–25 Si alloy before (Figure 2a,b)
and after (Figure 2c,d) brazing. Figure 3 shows the XRD patterns of the two alloys. The
microstructure of Al 7075 consists of Al matrix and MgZn2 precipitates. However, the
intensity peak of MgZn2 is small for Al 7075. XRD analysis was also conducted for
Al–25 Si alloy and the results indicate the formation of fine Al2Cu and Mg2Si precipitates
in all the peaks in addition to the existence of Si phase and Al matrix.

Figure 2c,d show the microstructures of the Al 7075 and Al–Si alloy after the brazing
process. The sizes of Al grains were found to grow considerably as compared with the
original Al 7075 alloy (Figure 2a,b). Moreover, the sizes of primary Si in the Al–25 Si alloy
became bigger.

3.2. Microstructures of Brazed Joints of Dissimilar Al 7075 and Al–25 Si Alloy

Figure 4 shows the microstructures of the joint brazed at 560 ◦C for 10 min. The
interface of the joint had an irregular shape with a serrated border, as marked in Figure 4b,
which indicates a good metallurgical bonding between the Al 7075 and Al–25 Si alloy. XRD
study of the brazed joints shows formation of intermetallic compounds MgZn2, Cu2Al
and Mg2Si, as shown in Figure 5. While Cu was dissolved in aluminium at the brazing
temperature, as the temperature cooled down Al2Cu was formed, since the solubility of
copper in Al was low at room temperature.
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Figure 2. Optical micrographs showing microstructures of Al 7075 and Al–25 Si alloy before and 
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Figure 2. Optical micrographs showing microstructures of Al 7075 and Al–25 Si alloy before and
after brazing: (a) Al 7075 before brazing; (b) Al–25 Si alloy before brazing; (c) Al 7075 after brazing;
(d) Al–25 Si alloy after brazing.
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Figure 3. The XRD patterns of Al–7075 and Al–Si alloy: (a) Al 7075; (b) Al–25 Si alloy.
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Figure 4. Optical micrographs showing microstructures of the brazed joint at (a) low and (b) higher
magnifications.
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Figure 6 shows the typical distributions of the elements Al, Si, Cu, Zn and Mg in the
microstructure. The results show that at the side of the Al 7075 alloy, the microstructure
was mainly enriched in Al. In addition, Zn, Cu, and Mg were all detected in the matrix. At
the side of the Al–25 Si alloy, the primary precipitates were enriched in Si, and the matrix
was enriched in Al. Severe Mg and Cu also existed in the matrix. At the interface between
the Al 7075 and Al–25 Si alloy, the Cu foil was not observed. However, there was a very
narrow discontinuous region (of about 10–20 µm) where the mapping for Cu was at its
most intense. In fact, the presence of Cu extended further. The EDS line-scan analysis, as
shown in Figure 7, indicates a similar distribution of elements.
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zone shown in (a) for different alloying elements (Al, Si, Cu, Zn and Mg).
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Figure 7. (a) SEM micrograph showing microstructures of brazed joint of dissimilar Al 7075 and
Al–25 Si alloy; (b) EDS line-scan showing distribution of Cu, Al, Si and Mg across the brazed joint.

Figure 8 shows that there were few cracks and voids in the middle of the brazed joint.
Referring to the relevant literature [22], it may be inferred that Al2O3 existed in the voids.
The oxide film on the surface of the matrix remained in the brazed joint, which led to the
generation of void defects. In order to further clarify the element distribution in the void of
the brazed joint, EDS map scanning analysis was carried out for a void inside the brazed
joint shown in Figure 8c, and distribution of O elements is shown in Figure 8d. The EDS
results show that the hole contained O elements, indicating that the oxide film led to the
formation of void.

The shear strength of three brazed joints of the dissimilar Al 7075 and Al–25 Si alloy
was calculated as the ratio of the maximum shear force to the area of the shear plane and
found to be 23.9 MPa, 34.7 MPa, and 20.6 MPa, respectively. Thus, the average shear
strength of the brazed joint was 26.4 MPa. All the brazed joints fractured at the joint
interface, indicating an adhesive failure mode.

Figure 9 shows the micrographs of fractures at the Al 7075 alloy side of the brazed
joints. The fracture analyses for three samples were performed to study the fracture mode
of the joint. From Figure 9a, a small number of shallow dimples were observed on the
fracture surface. The average dimple depth was approximately 200 µm. The similar results
were observed in Figure 9b,c. The micrographs of fracture surfaces of brazed joints (see
Figure 9) and the lower hardness values indicated the brittle fracture characteristics and
the low toughness of brazing joints of the dissimilar Al 7075 and Al–25 Si alloy.
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4. Discussion

According to the Al–Cu binary diagram, at a brazing temperature higher than that of
Al–Cu eutectic reaction (TE: 548.2 ◦C), the eutectic liquid phase will be formed by Al–Cu
eutectic reaction, to realize the joining of an aluminum alloy. Therefore, the Cu was utilized
to react with the alloy constituents to form an interlayer to join the Al 7075 and Al–25 Si
alloy and the brazing temperature (TB) was determined as 560 ◦C.

Figure 10 shows schematically the mechanism of vacuum brazing between the dissimi-
lar Al 7075 and Al–25 Si alloy. When the temperature was less than TE in the heating process,
there is only the mutual diffusion between Al and Cu atoms, as shown in Figure 10a. Due to
the fact that diffusion rate of a Cu atom in Al is higher than that of an Al atom in Cu, a large
number of Cu atoms preferentially diffused to the aluminum alloy matrix and produced
diffusion gradient, leading to the formation of different diffusion transition layers.
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When the temperature ≥TE (548.2 ◦C), Cu diffused into the aluminum alloy matrix
to form a solid solution, leading to the gradual decrease of α–Al melting point. Thus, the
eutectic liquid phase was formed at the interface of the aluminum alloy matrix with the
increasing of temperature. The dissolution of Al and Cu was accelerated to the liquid phase,
and then the width of eutectic liquid phase increased gradually until the intermediate Cu
middle layer completely reacted and dissolved (Figure 10b).

When the temperature was increased up to TB (560 ◦C) and then held for 10 min at
TB temperature, the Cu atoms in the liquid phase continued to diffuse to both sides of
matrix, and the Al continued to be dissolved to the liquid phase, resulting in the continuous
increase of the liquid phase width. At the same time, the composition of the liquid phase
was homogenized by atomic diffusion to reduce the inhomogeneous composition and
concentration gradient of the eutectic liquid phase (Figure 10c).
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In the subsequent slow cooling process, the composition of Cu in the liquid phase
side of the interface gradually decreased because of the diffusion of Cu atoms into the
matrix, resulting in the increase of the melting point of the liquid phase and the isothermal
solidification of the liquid phase at the interface and the formation of α–Al solid solution. At
this stage, the width of the liquid phase gradually decreased until the complete isothermal
solidification of the liquid phase.

However, the holding time used in this paper was not enough to complete the isother-
mal solidification process of the liquid phase. Thus, it had entered the cooling stage before
the isothermal solidification of the eutectic liquid phase was completed. The residual liquid
phase undergoes cooling solidification and reacts to form intermetallic compounds Al2Cu
(Figure 10d). In the whole brazing process, both Al grains in Al 7075 and primary Si in
Al–25 Si alloy grew drastically in size owing to the cumulative heating effects, as shown in
Figure 2.

Figure 10 shows schematically a broad picture of the brazing process with the major
features only and there is room for further improvement when better understanding is
obtained through further research in the future.

From the microstructural investigation, there was a good bonding between the Al 7075
and Al–25 Si alloy (Figures 4, 6 and 7). However, the shear strength was about 26.4 MPa,
which was less than that of the base metal Al 7075 or Al–25 Si alloy. Several reasons for the
degradation of the shear strength could be listed. First, the precipitation of the intermetallic
compound such as MgZn2, Cu2Al and Mg2Si, contributed to the brittleness of brazing
joints of the dissimilar Al 7075 and Al–25 Si alloy. Secondly, the existence of voids and
cracks reduced the shear strength. Thirdly, the coarsening of the size of an Al grain of Al
7075 and the size of the primary Si of Al–25 Si alloy led to the reduction of the mechanical
properties of the joints.

5. Conclusions

(1) The vacuum brazing of the dissimilar Al 7075 and Al–25 Si alloy was performed for
the first time. The brazing filler was copper foil with a thickness of 20 µm, and the
brazing temperature was 560 ◦C held for 10 min. The average shear strength of the
brazed joint of the dissimilar Al 7075 and Al–25 Si alloy was 26.4 MPa.

(2) The copper layer was dissolved completely, and the interface of the joint had an
irregular shape with a serrated border, indicating a good metallurgical bonding
between the Al 7075 and Al–25 Si alloy.

(3) The precipitation of the intermetallic compounds such as MgZn2, Cu2Al and Mg2Si,
the existence of voids and cracks, and the coarsening of the sizes of Al grains in Al
7075 and the sizes of primary Si in Al–25 Si alloy, contributed to a deteriorated shear
strength of the brazed joint of dissimilar Al 7075 and Al–25 Si alloy.
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