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Abstract: The work in this paper concerns an analytical model for quantitatively describing the
bending behaviour of aluminium profiles produced in a novel extrusion process: the differential
velocity sideways extrusion (DVSE), in which two opposing rams with a velocity of v1 and v2 were
employed, respectively. The analytical model was built on the basis of the upper bound theorem
utilising a general streamline equation controlled by a shape factor n, and the curvature was calculated
using the material flow velocity gradient across the die exit orifice. The predicted material flow
velocity across the die exit orifice, and extrudate curvature agreed well with the finite element (FE)
modelling results, which were found to be irrespective of the shape factor n of the streamline equation.
For a given extrusion ratio, the minimum value of n = 2 leads to the minimum and closest theoretical
extrusion pressure, the n value for obtaining the best approximated mean effective strain of the
extruded profile increases with the increase of the velocity ratio v2/v1, and the value of n = 3.5 gives
the closest mean effective strain as a whole.

Keywords: profile curvature; lateral extrusion; streamline equation; shape factor; aluminium profiles;
upper bound method

1. Introduction

Aluminium alloy has found its extensive applications as a structural element in
the transport industry, due to its good combination of light weight and high strength.
When utilising lightweight aluminium components on aircraft, trains and cars, a reduced
consumption of energy and therefore a decreased emission of CO2 can be achieved, which
is becoming increasingly important in mitigating the potential supply shortage of non-
emitting electricity and achieving net-zero emissions by 2050 [1–4]. In industry, ultra-
light structures with highly complicated morphology have been mostly manufactured
by using curved aluminium alloy profiles with various cross-sections as constructional
elements [5–8]. Since little machining and welding efforts are needed when using curved
aluminium profiles to construct lightweight structures, greatly improved aerodynamic
properties and time and space savings can be achieved [9–12].

Current forming methods for curved profiles are mostly achieved by bending straight
extrusion profiles using conventional cold bending methods, such as roll bending, rotary
draw bending, stretch bending and press bending [5,13]. Much research has been done on
conventional cold bending methods, with an aim of minimising or avoiding defects such
as springback of profiles and cross-sectional distortion during the bending process [5,14].
One effective approach is the superposition of external stress with conventional bending
methods, such as compression superposed three-roll-bending and torque superposed
spatial bending [15–18]. It was reported that the springback and cross-section distortion of
curved profiles can be reduced due to the superposition of compressive stress or torsion
with external bending moment [16,19–22].
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Some extrusion-bending integrated techniques have been proposed to reduce the
procedures of manufacturing curved profiles. The first one is curved profile extrusion
(CPE) [23,24], during which a curved profile can be directly formed from a billet in one
extrusion procedure, thus greatly improving the production efficiency. CPE is developed
on the basis of the conventional forward extrusion method, and an external device is
utilised near the die orifice to deflect/bend the profile being extruded. The curvature
of the profile coming out of the die orifice is controlled by the external bending device.
Muller et al. [25,26] used a segmented regulating guiding device which is composed of
serially placed bending discs at the die exit, to achieve bending of the extruded profile.
Since the curvature is generated at the die exit where the material is still in the fully
plastic state, this forming process produces profiles/sections with no springback, reduced
residual stresses, minimal cross-sectional distortion and nearly no decrease in the forming
ability [27,28]. Another way of achieving extrusion-bending integration is by exploiting an
inclined rotary die for producing curved bars and tubes [29–31], where a billet is extruded
through a die aperture inclined towards the central axis of the container at a predetermined
angle. It was found that by adjusting the inclination angle of the die aperture, the curvature
of the extruded bars and tubes can be continuously varied, and the curvature increases
with the increase of inclination angle.

The authors have proposed a new extrusion-bending integrated method, differential
velocity sideways extrusion (DVSE) [32]. The basic principle of this method is that profiles
are extruded and bent simultaneously in an extrusion die orifice due to a velocity gradient
across the cross-section of the extrudate. The velocity gradient is achieved by controlling
the velocities of rams at each end of the billet (see Figure 1a). It has been shown that
by adjusting the extrusion velocity ratio of the two opposed rams, curved profiles with
adjustable curvatures can be formed in one extrusion-bending procedure, and the intense
deformation in DVSE results in a greatly refined microstructure and good mechanical
properties of the formed profiles [33,34]. The upper bound method has been widely
employed to analyse the deformation characteristics and predict the forming force/pressure
in various metal forming processes, including forging, ring rolling and extrusion of non-
symmetrical profiles with minimised curvature [35–41]. The simple shear model has been
utilised in the upper bound theorem for simplicity where a number of velocity discontinuity
surfaces are assumed; material flow velocity experiences abrupt variations when passing
through the velocity discontinuity surfaces [42–46]. However, in practice the material
does not suddenly change its velocity when passing through an infinitesimal surface.
An analytical model for analysing the DVSE process has been proposed based on the
simple shear model, in which the plastic deformation zone (PDZ) was divided into several
single shear planes and the deformation mode was considered as rigid blocks of material
separated by the velocity discontinuity planes [47]. Although velocity discontinuities are
allowable in the upper bound method, the actual material flow in the PDZ is continuous
without velocity discontinuity. For a better understanding of the forming characteristics of
the DVSE process, an analytical model utilising a more general form of continuous flow
line model is developed in this paper, which is able to be simplified to the simple shear
model and provide a more accurate prediction of the extrudate bending behaviour.

In this work, the bending behaviour of the AA1050 aluminium alloy profiles in the
DVSE process has been analysed using a general flow field model, in which any point of
the material in the PDZ is described by a continuous velocity filed. The effects of the shape
factor n of the flow field model on the distribution of the material flow velocity across
the die orifice, extrudate curvature, extrusion pressure and mean effective strain of the
extruded AA1050 profiles during the novel DVSE process were investigated in detail. Finite
element (FE) modelling was also conducted to validate the analytical model and facilitate
the understanding of fundamental properties of the DVSE process.
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Figure 1. (a) Schematic of the differential velocity sideways extrusion (DVSE) process, (b) defor-
mation model diagram of the DVSE process and (c) velocity hodograph of the developed flow line 
model for a point Q (x,y) on a flow line entering at an arbitrary location 𝑥 = 𝑥 . 

2. Materials and Methods 
2.1. Theoretical Model 

The schematic of the DVSE process is shown in Figure 1a, where a billet is extruded 
sideways through a die orifice by two opposing rams. The extrusion pressure and velocity 
of the ram are 𝑃 , 𝑣  and 𝑃 , 𝑣 , respectively. In this work, a plane strain configuration is 
considered where the container and die orifice have the same thickness (normal to the 
paper), and strain along the thickness direction is assumed to be zero [48]. Figure 1b illus-
trates the deformation model diagram, where the width of the billet (entrance channel) 
and the extruded profile (exit channel) is 𝑝 and 𝑐, respectively. The material in the chan-
nel intersection region is divided into three regions. Regions I and II are the plastic defor-
mation zone (PDZ) and region III is the dead metal zone (DMZ). Line BG passing through 
the vertex of the DMZ can be drawn, which divides the PDZ and extrudate into two parts 
coming from the two rams, respectively [32,47]. The location of line BG is represented by 
the eccentricity ratio 𝜉 = 𝐴𝐵/𝐴𝐶, which is affected by 𝑣 /𝑣  for a given extrusion ratio 𝜆 = 𝑝/𝑐. The velocity for the material flowing out of the die exit would be gradient where 
the upper side has the maximum velocity 𝑣 , and the lower side has the minimum veloc-
ity 𝑣 . The die bearing land in DVSE is sufficiently short to ensure that the differential 
velocities are not compromised [32,47]. 

The present theoretical model is built on the basis of the upper bound theorem, where 
for a rigid-plastic material, amongst all the kinematically admissible velocity fields, the 
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area where tension may occur, ∆𝑣 is the amount of velocity discontinuity on the frictional 

Figure 1. (a) Schematic of the differential velocity sideways extrusion (DVSE) process, (b) deformation
model diagram of the DVSE process and (c) velocity hodograph of the developed flow line model for
a point Q (x,y) on a flow line entering at an arbitrary location x = x0.

2. Materials and Methods
2.1. Theoretical Model

The schematic of the DVSE process is shown in Figure 1a, where a billet is extruded
sideways through a die orifice by two opposing rams. The extrusion pressure and velocity
of the ram are P1, v1 and P2, v2, respectively. In this work, a plane strain configuration
is considered where the container and die orifice have the same thickness (normal to the
paper), and strain along the thickness direction is assumed to be zero [48]. Figure 1b
illustrates the deformation model diagram, where the width of the billet (entrance channel)
and the extruded profile (exit channel) is p and c, respectively. The material in the channel
intersection region is divided into three regions. Regions I and II are the plastic deformation
zone (PDZ) and region III is the dead metal zone (DMZ). Line BG passing through the
vertex of the DMZ can be drawn, which divides the PDZ and extrudate into two parts
coming from the two rams, respectively [32,47]. The location of line BG is represented
by the eccentricity ratio ξ = AB/AC, which is affected by v2/v1 for a given extrusion
ratio λ = p/c. The velocity for the material flowing out of the die exit would be gradient
where the upper side has the maximum velocity v1e, and the lower side has the minimum
velocity v2e. The die bearing land in DVSE is sufficiently short to ensure that the differential
velocities are not compromised [32,47].

The present theoretical model is built on the basis of the upper bound theorem, where
for a rigid-plastic material, amongst all the kinematically admissible velocity fields, the
actual one minimises the power required for material deformation:

.
Wi = 2

∫
V

k

√
1
2

.
εij

.
εij dV +

∫
Sv

k ∆v dSv +
∫

S f

mk ∆v dS f −
∫

St
Pivi dSt (1)

where k and k are the current and mean shear yield stresses of the material,
.
εij is the

strain rate tensor, m is the constant friction factor, V is the volume of the PDZ, Sv and S f
are the areas of velocity discontinuity and frictional surfaces, respectively, St is the area
where tension may occur, ∆v is the amount of velocity discontinuity on the frictional and
discontinuity surfaces, vi and Pi are the velocity and traction applied on St, respectively.
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The problem of upper bound analysis for this DVSE configuration is to find a continu-
ous flow line field, such as streamline MN, shown in Figure 1b. The material passing PDZ
will experience gradual and continuous variations in magnitude and orientation of velocity
from

→
v 1 (downward) at M to

→
v 3 (rightward) at N. A continuous general flow line model is

utilised here to avoid the discontinuity of the deformation process in the classical approach
as simple shear model and better approximate the material flow in the DVSE:

ψ =

(
x
p

)n
+

(
y
ξc

)n
=

(
x0

p

)n
(2)

where 0 ≤ x ≤ p, 0 ≤ y ≤ ξc, as shown in Figure 1c, and x0 defines the entering position of
the flow line. n is a shape factor of the flow line in the PDZ. The minimum value of n is
2 and the sharpness of the flow line increases with n. For the limiting case ( n→ ∞ ), the
flow line becomes two orthogonal lines connected at the ideal intersection plane EB (see
Figure 1b) of the two channels, as in the discontinuous simple shear model. The flow lines
in region II can be described similarly by substituting 1− ξ for ξ.

An admissible velocity field satisfying the continuity equation and velocity boundary
condition can be obtained from Equation (2) as:

vx = −
(

p
ξc

)n( y
x0

)n−1
v1 (3)

vy =

(
x
x0

)n−1
v1 (4)

The strain rate tensor can be derived from the velocity field, and then the effective
strain rate in the sense of the H-M-H (Huber-Mises-Hencky) criterion can be obtained as:

.
ε =

√
2
3

.
εij

.
εij =

1√
3
(n− 1)

x0

(
ξc
p

)n−2( y
x

)n−1
[(

ξc
p

)n
+
( y

x

)n
] 2

n−2( y
x
+

x
y

)
v1 (5)

As can be seen in Equation (5), the effective strain rate varies with locations. To
calculate the effective strain of the extrudate after passing the PDZ, a mean value of the
effective strain rate in the PDZ is defined as:

.
εm =

s
PDZ

.
ε(x, y)dxdy

s
PDZ dxdy

=

2π(n− 1)
[

1
p + p

(ξc)2

]
v1

√
3n sin π

n B
(

1
n , 1

n

) (6)

where B
(

1
n , 1

n

)
is Beta Function whose value is known for a given n. The effective strain of

the extrudate εm can be calculated by the product of
.
εm and the related deformation time

t, which is calculated by the time needed for replacing the material in the PDZ with the
material in the entrance channel. Hence, εm can be obtained as:

εm =
.
εmt =

π(n− 1)
(

ξc
p + p

ξc

)
√

3n2 sin π
n

(7)

The detailed derivation for Equations (3)–(7) can be seen in Appendix A.
The first integral term in Equation (1) is:

.
Wde f = 2

∫
V

k

√
1
2

.
εij

.
εij dV =

√
3
∫

VPDZ

k
.
εwdxdy =

kw
[

p2 + (ξc)2
]
π(n− 1)v1

ξcn2 sin π
n

(8)
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where w is the material thickness (normal to the paper) and dV = wdxdy is the differential
volume element in the PDZ.

The second integral term in Equation (1) is the power dissipated on surfaces of velocity
discontinuity. For the present continuous flow line model, the only velocity discontinuity
surface is the DMZ boundary, and the related power dissipation is:

.
WSv =

∫
SDMZ

k ∆v dSDMZ =
∫

SDMZ

k ∆v w · dl =
kw
[

p2 + (ξc)2
]

B
(

1
n , 2− 1

n

)
v1

ξcn
(9)

where dl =
√

dx2 + dy2 is the differential length element on the DMZ boundary and

∆v =
√

vx2 + vy2 is the amount of velocity discontinuity.
The third integral term in Equation (1) is the power dissipation on frictional surfaces

and is divided into three parts 1–3.
Part 1—The power dissipation on frictional surfaces of the PDZ:

.
WS f 1 =

∫
SPDZ

mk ∆v1 dSPDZ =
mkp(p + ξc)B

(
1
n , 1
)

v1

2n
(10)

where dSPDZ = dxdy is the same as the differential area element used in dV for the

calculation of deformation power
.

Wde f and ∆v1 =
√

vx2 + vy2 is the same as the one used

in
.

WSv.
Part 2—The power dissipation on frictional surfaces of the exit channel:

.
WS f 2 =

∫
S f 2

mk f ∆v2 dS f 2 =
mk f p(2ξc + w)lv1

ξc
(11)

where k f is the shear yield strength of the material after passing PDZ, ∆v2 = v3 = pv1
ξc is

velocity discontinuity, S f 2 = (2ξc + w)l is the related frictional surface area and l is the exit
channel length.

Part 3—The power dissipation on frictional surfaces of the entrance channel:

.
WS f 3 =

∫
S f 3

mk0 ∆v3 dS f 3 = 2mk0(p + w)l1v1 (12)

where k0 is the initial shear yield strength of the material, ∆v3 = v1 is velocity discontinuity,
S f 3 = 2(p + w)l1 is the related frictional surface area and l1 is the transient billet length
with velocity v1 in the entrance channel. The detailed derivation for the above integral
terms in Equation (1) can be seen in Appendix B.

The last integral term in Equation (1) is neglected as there is no external tension in the
DVSE process. The dissipative power on the other side (region II, etc.) can be calculated
by replacing ξ, v1, l1 in the above

.
Wde f ,

.
WSv,

.
WS f with 1− ξ, v2, l2, respectively. The total

dissipative power is calculated as:

.
Wi =

.
Wde f +

.
WSv +

.
WS f (13)

Equation (13) is a function of the eccentricity ratio ξ, in which material coefficients
(k0, k, k f ) are determined by experiments. According to the upper bound theorem, the

actual solution for ξ is found when
.

Wi reaches a minimum, i.e., differentiating
.

Wi with
respect to ξ and setting the derivative as zero:

∂
.

Wi
∂ξ

= 0 (14)
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The external supplied energy rate is:

.
We = (P1v1 + P2v2)pw (15)

According to the upper bound theorem, the upper bound solution for the extrusion
pressure is equal to or greater than the actually required pressure, i.e., the total dissipative
power is supplied by the upper bound of the external pressure:

.
Wi,min = (P1uv1 + P2uv2)pw (16)

where P1u and P2u are the upper bound solutions of P1 and P2, respectively.
To determine the extrudate curvature, linear velocity distribution is assumed across

the die orifice, which consists of two segments, ξc and (1− ξ)c (Figure 2). To facilitate
illustration, a local O-XYZ reference system was set up, and the material exiting these two
segments per unit time was considered to be two “prisms” whose centres of volume have
flow velocities v3 = pv1

ξc , v4 = pv2
(1−ξ)c , respectively, in the X direction. The bending radius

R and curvature κ of the extrudate can be determined as:

R =
Y4v3 −Y3v4

v3 − v4
(17)

κ =
1
R

(18)

where Y3, Y4 are the Y-coordinates of the centres of volume of the two prisms, respectively.
The detailed derivation for Equations (17) and (18) can be seen in Appendix C.
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2.2. Experimental and Numerical Methods

The billet material used for tests was aluminium alloy AA1050, which was heat treated
at 450 ◦C for 1 h for annealing. Uniaxial compression tests at room temperature (23 ◦C)
were first conducted on cylindrical specimens (Ø8 × 12 mm) for a 50% reduction in height,
giving an initial shear yield strength of 20 MPa and a stress-strain curve of σ = 145.5ε0.296,
from which a mean shear flow stress of 74 MPa and a final shear yield strength of 91 MPa
were obtained [47]. The stress-strain curve was also imported in the finite element (FE)
modelling performed at room temperature using Deform-3D, a friction coefficient of 0.16
and the upper limit of m = 0.3 for H-M-H (Huber-Mises-Hencky) criterion was used [32,47].
The ram, extrusion container and die in the FE modelling were assumed to be rigid and
only the billet was deformable. The thicknesses of the ram and extrusion container wall
were simplified to be 1 mm, and the die land length was 2 mm. The initial billet length was
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130 mm and p = w = 25.6 mm. The velocity of the upper ram was fixed at v1 = 1 mm/s.
The adjustable parameters for the modelling were the width c (20 mm for λ = 1.28 and
15 mm for λ = 1.71) of the die orifice and velocity v2 of the lower ram. v2 was set at 0, 0.333,
0.5, 0.667 and 1 mm/s, respectively, enabling different velocity ratios v2/v1 (0, 1/3, 1/2,
2/3, 1) to be applied.

3. Results and Discussion
3.1. Prediction of the Extrudate Curvature

Figure 3 shows the simulated flow lines (~1.5 mm interval, at room temperature) of
the billet and extrudate at different extrusion ratios and velocity ratios, from which the
values of the eccentricity ratio variable ξ are extracted by manually drawing a line dividing
the PDZ. The obtained values of ξ are shown in Figure 4, and the results predicted by
the analytical model with different values of n are also plotted for comparison. As can
be seen in Figure 4, a reasonably good agreement between the analytical results and FE
modelling is achieved. It can also be seen that the eccentricity ratio variable ξ is hardly
affected by the value of n; therefore, the n value is expected to have very little effect on
the extrudate curvature, which will be discussed later. The asymmetrical patterns of the
flow lines in Figure 3a–c clearly reflect that asymmetrical material flow caused by the
differential extrusion velocities of upper and lower rams occurs at the die orifice. The
interval (dense extent) of the flow lines in the extrudate also suggests the level of effective
strain accumulated during the DVSE process. The quantitative comparison of the effective
strain is discussed in Section 3.3.

Figure 5 shows the simulated material flow velocity distribution at the die exit orifice,
which is compared with that obtained from the theoretical model in Figure 6a,b. As shown
in Figure 5, an obvious velocity gradient across the die orifice exists for profiles extruded
at a velocity ratio v2/v1 < 1. As a result, the profiles are bent towards the side which has
a relatively lower velocity v2. In addition, it can be seen that the higher the velocity ratio
v2/v1, the lower the extrudate curvature. The reason is that the velocity gradient across
the die orifice decreases as the velocity ratio v2/v1 increases. It is noted that the velocity
gradient for the cases of v2/v1 = 1, λ = 1.71 and v2/v1 = 1, λ = 1.28 are both negligible,
although they are not exactly zero, possibly due to numerical errors. The specific value
of the extrudate curvature obtained from FE modelling is shown in Figure 6c, which is
estimated following procedures in previous works [32]. The curvature predicted from the
theoretical model is also plotted for comparison.

We can see from Figure 6 that the predicted velocity and curvature by the theoretical
model are generally compatible with the FE modelling results, and the curvature obtained
from FE modelling is slightly smaller possibly due to the effect of friction at the die land
on the material flow velocity at the die exit orifice, which was not considered in the
theoretical model due to the very short die land length (2 mm). However, it might still have
a straightening effect, and this straightening effect increases with the increase of the die
land length [49]. As shown in Figure 6, FE modelling leads to a slightly reduced velocity
gradient and thus smaller curvature of the extrudate compared with that obtained from
theoretical analysis. It can also be seen that the n value has a negligible effect on the material
flow velocity over the die exit orifice since it hardly affects the eccentricity ratio variable ξ;
therefore, the n value has a negligible effect on the extrudate curvature.
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3.2. Prediction of the Extrusion Pressure

The extrusion pressure versus stroke obtained from FE modelling at velocity ratio
v2/v1 = 0 and extrusion ratio λ = 1.28 is shown in Figure 7a. The theoretical results
obtained from different values of n are also plotted. It can be seen that the theoretically
predicted extrusion pressure is higher than that obtained from FE modelling. The difference
gradually decreases as the value of n decreases, and the minimum value of n = 2 gives the
closest result. This is within expectations of the upper bound theory. Since the theoretically
predicted value is always higher, the minimum value of the upper bound solution given by
n = 2 will result in the best approximated extrusion pressure. As extrusion proceeds, the
extrusion pressure gradually decreases as a result of decreased frictional surface area in
the container. Figure 7b compares the extrusion pressure vs. velocity ratio obtained from
theoretical analysis and FE modelling for velocity ratios v2/v1 = 0 ∼ 1 and an extrusion
ratio λ = 1.28. The stroke value used in the analytical model was the same as that in FE
modelling, which was the stroke when the simulated pressure P1 reaches peak value. The
extrusion pressure P2 of the lower ram was also extracted at this extrusion moment. Again,
it can be seen that the theoretically predicted value is always higher than that obtained
from FE modelling; the difference gradually decreases as the value of n decreases, and the
minimum value of n = 2 gives the closest result. When v1 > v2, the upper ram reaches the
peak extrusion pressure earlier than that of the lower ram, which is reflected in the figure
where the extrusion pressure P2 is lower than P1 for v2/v1 < 1. The pressure difference of
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the two rams gradually decreases as their velocity difference decreases, and the greatest
decrement in the extrusion pressure difference occurs at the very early stage of the velocity
ratio increment, since the extrusion pressure of the lower ram is much lower when it is still
than when it is moved, even at a very small velocity.
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3.3. Prediction of the Effective Strain

The effective strain of the extrudate obtained from FE modelling [50] at different
extrusion ratios and velocity ratios is shown in Figure 8. The average value of the effective
strain over the cross-section of the outside bending part (ξc) of the extrudate at the die
orifice is extracted from FE modelling and compared with that predicted by the theoretical
model with different values of n in Figure 9. It can be seen from Figure 9 that the predicted
effective strain by the theoretical model increases as the value of n increases, and the
limiting case ( n→ ∞ ) gives the upper limit value of the effective strain. For a given
extrusion ratio, the n value for best predicting the effective strain is slightly increased as
the velocity ratio v2/v1 increases. As discussed before, the eccentricity ratio variable ξ
decreases as the extrusion velocity ratio v2/v1 increases; thus, the effective width (ξc) of
the extrusion exit channel decreases, leading to an increased effective extrusion reduction
ratio (p/ξc) and thus effective strain.

Figure 9 also shows that the best approximated effective strain on the whole is obtained
for the case of n = 3.5. This value is slightly greater than the value of n = 2 for the
best approximated extrusion pressure. As explained before, due to the essence of the
upper bound theorem, the theoretically predicted extrusion pressure is always higher
and decreases as the value of n decreases; thus, the value of n = 2 is simply determined
because it gives the minimum theoretical result. The effective strain is inhomogeneous
across the cross-section of the extrudate, suggesting that the n value might change slightly
with positions for a given extrusion ratio and velocity ratio. In this work, the n value is
considered to be constant for flow lines at different positions to study the mean effective
strain; thus, a best fit value of n = 3.5 is obtained by comparing the theoretical and numerical
results for different velocity ratios. To enable the prediction of the inhomogeneous effective
strain distribution across the cross-section of the extrudate, the effect of the position on the
value of n will be considered in the future. It should be noted that to avoid the velocity
discontinuity, a fan-shaped flow line model in which any point of the material flows on
a specific streamline having a unique trajectory of an ellipse has been proposed before.
Although there is no velocity discontinuity in the PDZ where the material undergoes
gradual and continuous change in velocity, the effective strain in the unique ellipse-shaped
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flow line model is not easily available, which can only be obtained numerically [50]. Here a
more general form of the continuous flow line model is proposed, in which the flow line
is more flexible depending on the shape parameter n. In addition, an explicit analytical
expression of the effective strain can be derived (Equation (7)), which incorporates the
upper limit obtained by the traditional discontinuous simple shear model [42,47] and
provides a more easily available and accurate estimation. For n→ ∞ , Equation (7) results
in εm =

(
p
ξc +

ξc
p

)
/
√

3, which is the same as given by the simple shear model used before
to estimate the extrudate effective strain.
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Figure 8. Simulated effective strain distribution at different extrusion ratios and velocity ratios:
(a) v2/v1 = 0, λ = 1.71, (b) v2/v1 = 0, λ = 1.28, (c) v2/v1 = 0.5, λ = 1.71, (d) v2/v1 = 0.5, λ = 1.28,
(e) v2/v1 = 1, λ = 1.71 and (f) v2/v1 = 1, λ = 1.28.
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4. Conclusions

A general flow line model controlled by the shape factor n has been presented on the
basis of the upper bound theorem to better analytically describe the room temperature
bending behaviour of AA1050 aluminium alloy profiles in a novel extrusion process: the
differential velocity sideways extrusion (DVSE). It was concluded that the n value has a
negligible effect on the material flow eccentricity ratio variable ξ of the AA1050 profiles in
DVSE, and the minimum value of n = 2 gives the minimum and closest theoretical extrusion
pressure. Additionally, the n value has a negligible effect on the material flow velocity
over the die exit orifice and extrudate curvature since it hardly affects the eccentricity
ratio variable ξ. The theoretically predicted velocity gradient is slightly greater than that
obtained from FE modelling due to the straightening effect of the die bearing land being
not considered; thus, the theoretically predicted curvature is slightly greater. For a given
extrusion ratio, the n value for obtaining the best match average effective strain of the
extrudate increases as the velocity ratio v2/v1 increases, and the value of n = 3.5 results in
the closest average effective strain as a whole.
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Appendix A. Determination of the Velocity Field, Strain Rate and Effective Strain

An admissible velocity field satisfying the continuity equation can be defined as follows:

vx = q
∂ψ

∂y
=

yn−1

(ξc)n nq (A1)
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vy = −q
∂ψ

∂x
=
−xn−1

pn nq (A2)

where q is a parameter determined by the incoming velocity v1(v1 > 0) assumed to be the
same at the incoming flow position x0, i.e., at the plane defined by y = 0. When x = x0,
vy = v1 then one obtains:

q = − x0
1−n pnv1

n
(A3)

When substituting Equation (A3) into Equations (A1) and (A2), the velocity field is
then given by Equations (3) and (4).

The strain rate tensor can be obtained as:

.
εxx =

∂vx

∂x
= (n− 1)

(
p
ξc

)n
x0

1−2n(xy)n−1v1 (A4)

.
εyy =

∂vy

∂y
= (1− n)

(
p
ξc

)n
x0

1−2n(xy)n−1v1 (A5)

.
εxy =

1
2

(
∂vx

∂y
+

∂vy

∂x

)
=

1
2
(n− 1)x0

1−2n pn
[

xn−2
(

y
ξc

)n
− yn−2

(
x
ξc

)n]
v1 (A6)

When substituting Equations (A4)–(A6) into Equation (5), the effective strain rate can
be obtained.

To obtain the effective strain, the following variable substitutions are made:(
x
p

)n
= rncos2β (A7)

(
y
ξc

)n
= rnsin2β (A8)(

x0

p

)n
= rn (A9)

where 0 ≤ β ≤ π
2 , 0 ≤ r ≤ 1, then:

x = prcos
2
n β (A10)

y = ξcrsin
2
n β (A11)

vx = − p
ξc

sin2− 2
n βv1 (A12)

vy = cos2− 2
n βv1 (A13)

When substituting Equations (A10) and (A11) into Equation (5), the effective strain
rate is expressed as:

.
ε(r, β) =

(n− 1)(sinβcosβ)2− 4
n

√
3r

[
1
p

sin
4
n β +

p

(ξc)2 cos
4
n β

]
v1 (A14)

The differential area element dxdy is:

dxdy = |J(r, β)|drdβ (A15)

where |J(r, β)| is the Jacobian determinant given by:

|J(r, β)| =
∣∣∣∣∣

∂x
∂r

∂x
∂β

∂y
∂r

∂y
∂β

∣∣∣∣∣ (A16)
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Substituting Equations (A10) and (A11) into Equation (A16) yields:

|J(r, β)| = 2ξcpr
n

(sinβcosβ)
2
n−1 (A17)

Thus:

s
PDZ

.
ε(x, y)dxdy =

∫ π
2

0
∫ 1

0
.
ε(r, β)J(r, β)drdβ =

∫ π
2

0
2(n−1)v1√

3n
(ξcsin1+ 2

n βcos1− 2
n β + p2

ξc sin1− 2
n βcos1+ 2

n β)dβ

=
π(n−1)

(
ξc+ p2

ξc

)
v1

√
3n2 sin π

n

(A18)

x

PDZ
dxdy =

∫ π
2

0

∫ 1

0
J(r, β)drdβ =

∫ π
2

0

ξcp
n

(sinβcosβ)
2
n−1dβ =

ξcpB
(

1
n , 1

n

)
2n

(A19)

.
εm =

s
PDZ

.
ε(x, y)dxdy

s
PDZ dxdy

=

2π(n− 1)
[

1
p + p

(ξc)2

]
v1

√
3nsin π

n B
(

1
n , 1

n

) (A20)

Based on the volume constancy, to replace the material in the PDZ with the material
in the entrance channel, a ram stroke needed is:

∆l1 =

s
PDZ dxdy

p
=

ξcB
(

1
n , 1

n

)
2n

(A21)

The deformation time t is calculated by the time needed for producing the stroke ∆l1:

t =
∆l1
v1

=
ξcB

(
1
n , 1

n

)
2nv1

(A22)

When substituting Equations (A20) and (A22) into Equation (7), the effective strain
can be obtained.

Appendix B. Determination of the Internal Power Dissipation

Using Equation (A17), the differential volume element in the PDZ can be obtained as:

dV = wdxdy = wJ(r, β)drdβ =
2wξcpr

n
(sinβcosβ)

2
n−1drdβ (A23)

Thus:
.

Wde f =
√

3
∫ π

2
0
∫ 1

0 k
.
ε(r, β)wJ(r, β)drdβ

= 2
∫ π

2
0

kw(n−1)v1
n (ξcsin1+ 2

n βcos1− 2
n β + p2

ξc sin1− 2
n βcos1+ 2

n β)dβ

=
kw[p2+(ξc)2]π(n−1)v1

ξcn2 sin π
n

(A24)
dl in Equation (9) is the differential length element on the DMZ boundary and can be

obtained when Equations (A10) and (A11) are applied with r = 1:

dl =
√

dx2 + dy2 =
2
n

√
p2sin2βcos

4
n−2β + (ξc)2sin

4
n−2βcos2βdβ (A25)



Metals 2022, 12, 877 16 of 18

Taking into account Equations (A12) and (A13), the related velocity discontinuity
variable is:

∆v =
√

vx2 + vy2 =

√
p2

(ξc)2 sin4− 4
n β + cos4− 4

n βv1 (A26)

Thus:

.
WSv = 2

∫ π
2

0

kwv1

n

(
p2

ξc
sin3− 2

n βcos
2
n−1β + ξcsin

2
n−1βcos3− 2

n β

)
dβ =

kw
[

p2 + (ξc)2
]

B
(

1
n , 2− 1

n

)
v1

ξcn
(A27)

Appendix C. Determination of the Extrudate Curvature

As shown in Figure 2, assume the material at points O3, O4 moves ∆X3, ∆X4, respec-
tively, after a finite time element ∆t. As ∆X3 > ∆X4, the extrudate will have a bending
radius R, and the kinematic relations are:

∆X3 = v3∆t (A28)

∆X4 = v4∆t (A29)

The following geometrical relations exist:

∆X3

∆X4
=

R−Y3

R−Y4
(A30)

where Y3, Y4 are the Y-coordinates of the centres of volume of the two prisms, respectively:

Y3 =

∫
V YdV3

V3
=

∫
S3

YvXdS3

S3v3
(A31)

Y4 =

∫
V YdV4

V4
=

∫
S4

YvXdS4

S4v4
(A32)

where V3, V4 are the volumes of the two prisms and dS3, dS4 are the related differential sur-
face elements. When substituting Equations (A28) and (A29) into Equation (A30), the bend-
ing radius R and curvature κ of the extrudate can be determined as Equations (17) and (18).

According to the principle of mass conservation:

vo =
p
c
(v1 + v2) = λ(v1 + v2) (A33)

vX is expressed in terms of Y3 as:

vX =
v3 − vo

Y3
Y + vo (A34)

When substituting Equations (A33) and (A34) into Equation (A31), Y3 can be calcu-
lated as:

Y3 =

∫
S3

YvXdS3

S3v3
=

∫ (ξ− 1
2 )c

− c
2

Y
(

v3−vo
Y3

Y + vo

)
wdY

ξcwv3
=

[(
ξ − 1

2

)3
+

1
8

]
c2(v3 − vo)

3ξY3v3
−
(
ξ − ξ2)cvo

2ξv3
(A35)

Equation (A35) is a quadratic equation of Y3 where the negative root is the value
needed for Y3:

Y3
2 +

(
ξ − ξ2)cvo

2ξv3
Y3 −

[(
ξ − 1

2

)3
+

1
8

]
c2(v3 − vo)

3ξv3
= 0 (A36)
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Y4 can be calculated similarly. Then v1e and v2e can be obtained by substituting
Y = − 1

2 c and 1
2 c into Equation (A34), respectively.
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