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Abstract: A multi-scale prediction method was proposed to investigate the scatter of fracture tough-
ness by combining the local approach (LA) to cleavage fracture and the crystal plasticity finite element
method (CPFEM). The parameters in the crystal plasticity constitutive model were firstly determined
by comparing the simulated stress-strain curves with tested curves for SA508-III steel. Then CT
samples were modeled using the CPFEM to calculate Weibull stress. Using the calibration process
of local approach, the relevant parameters of the Beremin model were obtained with m = 30 and
σu = 2590 MPa. The fracture toughness was analyzed including the scatter for a given temperature,
the master curve in a temperature range. The distribution of predicted fracture toughness shows
good agreement with the test results. All of the tested fracture toughness value are fall in the range of
5% to 95% that precited using the proposed combined approach.

Keywords: fracture toughness; crystal plastic finite element; Beremin local approach; master curve

1. Introduction

In nuclear power plants, reactor pressure vessels (RPVs) play an important significant
role in protecting reservation of reactor safety. It is necessary to be ensured the structural
integrity of RPVs for the safe operation of nuclear power plants. A major input parameter
for assessing the structural integrity of the RPV is the fracture toughness of ferritic steels
generally adopted for RPVs, which present significant scatter in the ductile-to-brittle
transition (DTB) region [1]. In addition, neutron irradiation during RPV operation will
produce an embrittlement effect, inducing the reduction of fracture toughness, which may
be related to the microstructure evolution of RPV steel, referring to the change of pores
and grain orientation [2–5]. The microstructure change will affect the fracture toughness
of materials, so it is very important to study the fracture toughness from the microscopic
point of view.

The theory of crystal plasticity with the consideration of microstructure has been
applied and researched in the study of fracture behavior of metals, which can be traced
back to Taylor’s crystal plasticity dislocation motion theory in 1938 [6]. Subsequently, Hill,
Rice, Peirce, and many other scholars continued to study and modify the crystal plasticity
theory with Voronoi technology combined, widely introducing the crystal plasticity theory
in various fields [7–9].

Wan [10] studied the fracture mechanism of SA508-III steel and found that the decrease
in fracture toughness is caused by material hardening, and indicated that dislocation ring
voids inside the material will affect dislocation slip. Li and Zhou [11,12] established a micro-
scopic finite element model by correlating the microstructure with the fracture toughness of
materials to analyze the effect of microstructure changes on fracture toughness, and showed
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that the fine microstructure size can effectively elevate the material’s fracture toughness.
Vincent [13] proposed a new crystal plasticity model to discuss the effect of temperature
and irradiation hardening on fracture toughness based on the stress heterogeneity. Liu [14]
simulated the three-point bending test process through crystal plastic finite element. They
studied the fracture toughness of SA508-III steel at different temperatures in combination
with the Beremin local approach. Chen [15] proposed a constitutive probability model of
fracture toughness associated with temperature depending on crystal plasticity theory and
explored the cleavage and competition between pores of ferrite or martensite at different
temperatures. Roy [16] studied the effect of microstructure orientation on the fracture
behavior of polycrystalline metal, and established a prediction method of the fracture
toughness of metal based on the microstructure properties.

For the scatter of fracture toughness, a commonly used method is the Beremin cleavage
fracture local approach (LA) [17], where the cleavage fracture of materials is predicted from
a micromechanics perspective using a Weibull distribution. Mathieu [18] took 16MND5
as the model material to study the application of the Beremin local approach in the brittle
fracture of low alloy steel. Qian [19,20] used two finite element models, namely ideal
elastic-plastic model and actual elastic-plastic model, to study the influence of temperature
on model parameters in the local method of induced fracture. The results showed the
model parameters were independent of temperature. Cao [21] investigated the fracture
toughness of 16MnDR by the master curve approach, as well as the effect of temperature
on Beremin model parameters, and the temperature dependency of critical parameters.
Chang [22] explored the relationship of Beremin parameters with temperature, loading
speed, and constraint, reporting that the related parameters can be considered material
constants independent from temperature, acceleration, and constraint.

In summary, the crystal plasticity finite element method and the local approach have
been widely applied to studies on material fracture toughness. However, it is necessary
to explain the effect of crystallographic feature on the fracture toughness, especially for
the temperature dependency and the randomness. The combination of CPFEM and LA is
proposed to investigate these effects for the typical RPV steel SA508-III.

The paper is organized as follows. In Section 2, the crystal plasticity constitutive model
and the slip system of SA508-III steel are described. In Section 3, a 2D crystal plasticity
finite element model is established based on crystal plasticity theory. In addition, the tensile
test is simulated to determine the material parameters at different temperatures. Then
compact tensile samples of different sizes are analyzed using the material parameters that
calibrated crystal plasticity model. In Section 4, fracture toughness experiments are carried
out from −100 ◦C to 20 ◦C. The Beremin local approach is introduced to describe the scatter
of fracture toughness values. In Section 5, the model parameters of the local approach are
calibrated on the test results using the stress field obtained by the CPFEM. The randomness
and the temperature dependency are discussed on the predicted fracture toughness. In
Section 6, some conclusions are drawn.

2. Crystal Plasticity Theory
2.1. Crystal Plastic Constitutive Model

In this research, the elastic plastic finite deformation analysis theory of Hill and Rice [7]
is used to explore the deformation behavior of SA508-III steel. The crystal deformation
under external force can be decomposed into elastic deformation and plastic deformation.
Then crystal deformation gradient F can be decomposed as [23]:

F = FeFp (1)
where Fe is the elastic deformation gradient generated during crystal deformation, Fp

is the plastic deformation gradient corresponding to uniform shear of crystal along the
slip direction. Therefore, through the influence of the above two deformation gradients,
the deformation of grains can be divided into three configurations: initial configuration,
intermediate configuration and current configuration. First, the material moves from the
initial configuration to the intermediate configuration through the deformation gradient
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Fp. This process only produces plastic shear deformation and crystal slip. Then the
intermediate configuration moves to the current configuration through the deformation
gradient Fe, and lattice distortion and rotation occur in this process. The grain deformation
process is shown in Figure 1 [7].
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Figure 1. Grain deformation process.

Similar to the deformation gradient, the velocity gradient can also be decomposed
into two parts corresponding to slip and lattice distortion plus rigid body rotation:

L = Le + LP (2)
where, L is the velocity gradient, Le is the velocity gradient caused by elastic deformation,
and LP is the velocity gradient caused by plastic deformation, which can be determined by
the sum of shear strain rates in all slip systems, following [7]:

LP =
N

∑
α=1

.
γ

αm(α) ⊗ n(α) (3)

where,
.
γ

α is the dislocation slip rate of the α slip system, m(α) is the unit vector of the slip
direction in the α slip system, n(α) is the unit normal vector of the slip surface on the α slip
system, and N is the total number of slip systems. m(α) ⊗ n(α) is the Schmid tensor.

The dislocation slip rate is the key to the realization of the crystal plastic constitutive
model. The relationship between the dislocation slip rate

.
γ

α and the shear stress τα can be
obtained through the hardening Equation [8].

.
γ

α
=

.
γ

0
∣∣∣∣ τα

ταc

∣∣∣∣nsgn(τα) (4)

where,
.
γ

0 is the reference dislocation slip rate. τα
c is the critical resolved shear stress of slip

system α.
.
γ

0 is a material constant for all slip systems when τα = τα
c . n is a rate sensitive

parameter of slip system α. The model reverts to a rate-independent plastic state with a
large value of n, and the material tends to be viscoelastic for n = 1. The shear stress τα, also
known as Schmid stress.

In general, the reference shear stress τα
c increases with the deformation and reference

shear stress rate
.
τ

α
c can be characterized by the hardness of the slip system [8], as follows:

.
τ

α
c =

n

∑
β=1

hαβ

∣∣∣ .
γ

β
∣∣∣ (5)

where, hαβ is the n × n hardening coefficient matrix, an instantaneous value that changes
continuously during the deformation process. The hardening coefficient can be determined
according to Peirce [8] as follows:

hαβ =
[
qαβ + (1 − qαβ)δαβ

]
h(γ) (6)
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where, δαβ is Kronecker matrix, if α = β, δαβ = 1, otherwise δαβ = 0. h(γ) is a self-hardening
coefficient, which indicates the change rate of critical shear stress with shear strain. ratio
qαβ of latent hardening rates to self-hardening rates was assumed to be 1.0, which will be
degenerated to the original work by Taylor [6]. Asaro [24] used the corresponding formula
for the self-hardening coefficient:

h(γ) = h0sech2
(

h0γ

τs − τ0

)
(7)

where, h0 is the initial hardening rate, τ0 is the deformation resistance of the slip system
at the initial yield of the material (the initial flow stress), τs is the saturation value of
the deformation resistance of the slip system (the saturated flow stress). All of the three
parameters are material constants.

2.2. Determination of Crystal Slip System

The slip systems vary with different crystal types. The main research object of this
paper is SA508-III steel, which is ferritic steel with a body-centered cubic (bcc) structure, as
shown in Figure 2. A bcc crystal has three slip planes, {110}, {112} and {123}, with the initial
slip direction of <111>. The slip usually occurs on the slip planes {110} and {112}, so the
slip systems located on {110} or {112} slip planes are defined as potential slip systems. The
slip plane will change with the influence of temperature, which is generally {112} at low
temperature and {110} at medium temperature [25]. Therefore, this work focused on the
two slip systems, {110} <111> and {112} <111>, as listed in Tables 1 and 2.
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Table 1. {110} <111> slip system.

.
Slip Direction 1 1

-
1 1

-
1

-
1 1

-
1 1

-
11 1

.
Slip plane

.
011

.
101 1

−
10 01

−
1 1

.
01 1

.
10

.
0

.
11 10

−
1 1

.
10 01

−
1 10

−
1 1

−
10

Table 2. {112} <111> slip system.

.
Slip Direction 1 1

-
1 1

-
1

-
1 1

-
1 1

.
1 1 1

.
Slip plane 2

−
11

−
121

−
1
−
1
−
2

.
211

−
1
−
21

−
11

−
2 21

−
1

−
1
−
2
−
1

−
112 2

−
1
−
1

−
12

−
1

−
1
−
12

3. Determination of Model Parameters
3.1. Voronoi Model

Most of the metals are polycrystalline materials with metal grains of various sizes
and shapes, where the grain orientations of some polycrystalline materials have a certain
orientation tendency, while others belong to random orientations [25]. To simulate the
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grains, the Voronoi method is adopted to construct the polycrystalline model, which was
proposed by Voronoi [9]. A typical 2D Voronoi is shown in Figure 3.
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3.2. Tension Simulation

Firstly, the uniaxial tensile test is simulated using a 2D plane model. Compared
with the test results, the material parameters in the crystal plastic constitutive model
can be determined depending on the trials with tension simulations [26]. According to
Zhang [25] and He [27], the grain size of SA508-III steel is about 20~30 µm. A 2D Voronoi
tensile model was established as shown in Figure 3. The Voronoi model of the stretch
simulation with boundary conditions and mesh is depicted in Figure 4. A local square
model with 0.15 × 0.15 mm2 is adopted containing 35 grains with random orientation. The
tensile test was conducted according to American Society of Testing Materials E8/E8M-
16ae1 [28], (ASTM E8/E8M-16ae1) [28], with the strain rate of 4 × 10−4/s, and the maximum
displacement deformation of 20% of the overall size. The simulation was run in the
ABAQUS finite element software (Le Groupe Dassault, Vaucresson, France), applying the
UMAT subroutine designed by Huang [29].
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The UMAT subroutine requires material parameters as described in Section 2, include
three independent elastic constants C11, C12, and C44 that define the elastic stiffness matrix,
and material constants that describe the rate-dependent hardening criterion:

.
γ

0, τs, τ0, h0,
n. Referencing Liu and Raabe’s simulation process [14,30], these material parameters at
different temperatures are determined through trial and error.
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Using several trials of these parameters, the stress-strain curves can be simulated as
shown in Figure 5. The rate sensitive parameter n affects the yield strength of the material.
During the tensile process, the smaller n is, the more stress is required to reach the yield
state. The reference shear rate

.
γ

0 affects the plastic hardening process of the crystal. With
the decrease of

.
γ

0, the material shows much more obvious hardening behaviors. The
hardening modulus h0 does not affect the ultimate strength, but the strength becomes more
stable easily with a large modulus. The initial slip system strength τ0 and the saturated
critical partial shear stress τs affect the hardening process. The strength increases with the
shear stress of the critical part τs, while the initial flow stress τ0 shows an opposite feature.
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The trial-and-error method obtained the simulation results and compared them with
the test results [14], as shown in Figure 6. The test stress in the figure is compared with
Cauchy stress. It can be seen from the figure that the tensile simulation results are consistent
with the experimental results within the strain range of 5%, which indicates that the CPFEM
can better simulate the uniaxial tensile process of SA508-III steel. The material parameters
of the crystal plasticity model are finally determined in Table 3. The simulated stress field
is shown in Figure 7. It can be obviously found that the concentrated stress presents near
the grain boundary.
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4. Fracture Tests and Simulation
4.1. Material

In this research, the fracture toughness of SA508-III steel was tested, and other elements
in the material except Fe are shown in Table 4. The material is utilized after normalizing,
quenching, high temperature tempering, and other heat treatment process, which was
transformed into austenite at 880 ◦C and held for 10.5 h. Then the material was quenched
by water spray, tempered at 660 ◦C for 10 h, and finally cooled to room temperature in
air [31].

Table 4. SA508-III steel composition. (wt%, mass fraction).

Element C Si Mn Ni Cr Mo P S Cu V

Content 0.240 0.081 1.350 0.820 0.160 0.510 0.008 ≤0.001 0.017 0.003

4.2. Fracture Tests

The fracture toughness tests of 1-inch standard compact tensile samples (1T-CT)
were conducted according to American Society of Testing Materials E1820-17 (ASME
E1820-17) [32]. The design parameters and physical figure of 1T-CT sample are shown in
Figure 8. The side grooves were processed on both sides. The depth of the side grooves
is 20% of the thickness (10% of each thickness on both sides), adopting the recommended
value of ASTM E1820-17.
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The fracture toughness test was carried out on an Instron 8850 test machine (Instron
Corporation, Canton, OH, USA) with a cryostat cooled by liquid nitrogen, as shown in
Figure 9. The test temperature ranges from −100 ◦C to 20 ◦C, with one temperature point
set every 20 ◦C. Before the experiment, the sample was cooled for 30 min, so that the sample
was fully cooled. The test results at different temperatures are shown in Figure 10.



Metals 2022, 12, 872 9 of 17Metals 2022, 12, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 9. Experimental equipment. 

 
Figure 10. Test results. 

4.3. Crack Tip Stress Distribution 
Using the material parameters of crystal plasticity constitutive model calibrated in 

Section 2, the crack models were established to obtain the stress field. The Voronoi model 
is also utilized to create a crystal plasticity finite element model when creating a crack 
model of CT specimen. A 2D half CT model was established with assuming the plane 
strain condition. To simulate the effect of grain, a crack tip fracture zone with 1 × 0.5 mm2 
was considered with real grain characterize. The other part outside the zone was coarse-
grained for reducing the process of calculation. According to Liu [14], modeling with large 
grains outside the crack tip has little influence on the calculation of the whole model. The 
grains in the zone at the crack tip were refined and simulated. The symmetry restrictions 
in the Voronoi model of the CT samples were imposed. The configuration and load of the 
0.5-inch CT (0.5T-CT) model and the 1-inch CT (1T-CT) model were similar. 

The Voronoi model and boundary conditions of a 1T-CT sample are described in Fig-
ure 11. A symmetry constraint was applied on the crack line with the Y direction. To en-
sure the displacement in Y direction during loading, a displacement constraint in the X 
direction at the center of the hole which coupled the node on the hole line. A force was 
applied to the center of the circular hole. The crack tip region contained 38 grains with 
elements of 2480. 

Figure 9. Experimental equipment.

Metals 2022, 12, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 9. Experimental equipment. 

 
Figure 10. Test results. 

4.3. Crack Tip Stress Distribution 
Using the material parameters of crystal plasticity constitutive model calibrated in 

Section 2, the crack models were established to obtain the stress field. The Voronoi model 
is also utilized to create a crystal plasticity finite element model when creating a crack 
model of CT specimen. A 2D half CT model was established with assuming the plane 
strain condition. To simulate the effect of grain, a crack tip fracture zone with 1 × 0.5 mm2 
was considered with real grain characterize. The other part outside the zone was coarse-
grained for reducing the process of calculation. According to Liu [14], modeling with large 
grains outside the crack tip has little influence on the calculation of the whole model. The 
grains in the zone at the crack tip were refined and simulated. The symmetry restrictions 
in the Voronoi model of the CT samples were imposed. The configuration and load of the 
0.5-inch CT (0.5T-CT) model and the 1-inch CT (1T-CT) model were similar. 

The Voronoi model and boundary conditions of a 1T-CT sample are described in Fig-
ure 11. A symmetry constraint was applied on the crack line with the Y direction. To en-
sure the displacement in Y direction during loading, a displacement constraint in the X 
direction at the center of the hole which coupled the node on the hole line. A force was 
applied to the center of the circular hole. The crack tip region contained 38 grains with 
elements of 2480. 

Figure 10. Test results.

4.3. Crack Tip Stress Distribution

Using the material parameters of crystal plasticity constitutive model calibrated in
Section 2, the crack models were established to obtain the stress field. The Voronoi model
is also utilized to create a crystal plasticity finite element model when creating a crack
model of CT specimen. A 2D half CT model was established with assuming the plane strain
condition. To simulate the effect of grain, a crack tip fracture zone with 1 × 0.5 mm2 was
considered with real grain characterize. The other part outside the zone was coarse-grained
for reducing the process of calculation. According to Liu [14], modeling with large grains
outside the crack tip has little influence on the calculation of the whole model. The grains
in the zone at the crack tip were refined and simulated. The symmetry restrictions in the
Voronoi model of the CT samples were imposed. The configuration and load of the 0.5-inch
CT (0.5T-CT) model and the 1-inch CT (1T-CT) model were similar.

The Voronoi model and boundary conditions of a 1T-CT sample are described in
Figure 11. A symmetry constraint was applied on the crack line with the Y direction. To
ensure the displacement in Y direction during loading, a displacement constraint in the X
direction at the center of the hole which coupled the node on the hole line. A force was
applied to the center of the circular hole. The crack tip region contained 38 grains with
elements of 2480.
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Figure 11. Voronoi model and boundary conditions of CT model.

The computed stress distribution of the CT model was shown in Figure 12, exhibiting
the overall model and the stress field at the crack tip. Moreover, the image of the crack tip
area is enlarged to observe of the grain deformation after deformation. It can be obviously
found that the stress concentration occurred on the grain boundary.
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4.4. Beremin Local Approach to Cleavage Fracture

The CPFEM simulates the mechanical behavior of materials from a microscopic point
of view, and the Beremin local approach to cleavage fracture is a microscopic mathematical
model method of fracture toughness based on stress field. Therefore, this study introduced
the Beremin local approach to cleavage fracture combined with the CPFEM to study the
fracture toughness of SA508-III steel at different temperatures.

The formula of Beremin’s [17] cleavage fracture probability is expressed by the following:

Pf = 1 − exp
{
(−σW

σu
)

m
}

(8)

where σW is Weibull stress which can be determined by the stress field and is the driving
force of cleavage fracture. σu and m are the characteristic parameters of the local cleavage
fracture method, and they are both boundary or load independent material constants. m is
Weibull slope, which is related to the size distribution of microcracks in ferritic steel. σu
is the quantity reflecting the microscopic toughness of the material, which is equal to the
value of σW when Pf = 0.63.

Weibull stress can be calculated using the maximum principal stress by the following:

σW =

{
∑ne

i=1 (σ1,i)
m Vi

V0

} 1
m

(9)

where Vi is the volume of the ith element in the crack tip, and σ1,i is the maximum principal
stress on Vi; ne is the total number of mesh elements in the crack tip; V0 is the reference
volume used to reflect the microstructure of materials, and the reference value of this
research is 0.000125 mm3.



Metals 2022, 12, 872 11 of 17

There are many parameter calibration methods for the Beremin model [17], such as
the Minami calibration method, the TSM calibration method, etc. The above methods all
have certain shortcomings and deficiencies. This work applied the m-σu curve intersection
calibration method to calibrate the Beremin parameters proposed by Cao [21]. This method
is a simplification of the above method. It only needs to intersect the m-σu curves of samples
with different restraint degrees, and the intersection of the curves is the calibrated m and
σu values. According to the integrity assessment standard R6 [33] of defective structures,
the cleavage local fracture characteristic parameter m of most nuclear steels is between 10
and 60.

To study the fracture toughness of SA508-III steel, the sample size used in this research
with 1T-CT sample and 0.5T-CT sample to calibrate the parameters. In order to obtain the
m-σu characteristic curve, the corresponding parameter calibration calculation process has
the following steps:

(1) Create CT specimen models with difference constraints, using CPFEM;
(2) Obtain the fracture toughness scale parameter K0 of 1T-CT and 0.5T-CT, K0

1T−CT

and K0.5T−CT
0 , based on the existing fracture toughness experimental data with two

different restraints;
(3) Assuming multiple values of m, the force F can be determined when the corrected test

results KID equal to K0
1T−CT or K0.5T−CT

0 . Then substituting it into the CPFEM model,
Weibull stress σW can be calculated. One can get σu = σW, while KID = K0. two m-σu
characteristic curves can be obtained, and the intersection of the characteristic curves
is the m value and σu obtained.

According to the research [34], the fracture toughness scale parameter K0 of 1T-CT and
0.5T-CT at T = −60 ◦C can be calculated by:

K0 =

[
N

∑
i=1

(KIC − Kmin)
4

N

]1/4

+ Kmin (10)

where N is the number of existing experimental data; KIC is the fracture toughness
value obtained in the experiment; Kmin is the minimum value of fracture toughness,
Kmin = 20 MPa·m0.5. Through calculation: K0

1T−CT = 100.67 MPa·m0.5, K0.5T−CT
0 = 118.39

MPa·m0.5.
According to the standard ASME E1820-17, the relationship between the fracture

toughness KI and the load F of the CT sample can be obtained.

KI =


(
2 + a

W
)[

0.886 + 4.46 a
W − 13.32

( a
W
)2

+ 14.72
( a

W
)3 − 5.6

( a
W
)4
]

(
1 − a

W
)1.5

× F
BW1.5 (11)

Due to the elastic plastic behavior of SA508-III, the fracture toughness should be
corrected by fracture surface energy. The study of Mathieu [17,35] shows that the fracture
surface energy is related to temperature, so the temperature variable is introduced to correct
the fracture toughness based on the study of Griffth [36]. According to the definition of
stress intensity factor KI , the conversion relationship between stress intensity factor KI
and fracture toughness KID with temperature T as a variable is obtained, as shown in
Equation (12).

KID = KI ·
√

0.14 · e0.013(T+273.15) (12)

5. Discussions
5.1. Parameter Calibration

The relation between Weibull stress σW and m can be obtained according to the
above modified formula. The calculation of Weibull stress σW is completed by a Python
program [37]. The results of fracture toughness KID and Weibull stress varying with m are
shown in Figure 13. It can be seen from the figure that the Weibull stress decreases as the
increase of m value under the same load.
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Figure 13. KID-σW curve of CT sample (a) 1T-CT sample and (b) 0.5T-CT sample.

Meanwhile, the corresponding force F of the 1T-CT sample and the 0.5T-CT sample at
−60 ◦C can be obtained by the Equation (11), F1T−CT = 48.75 kN, F0.5T−CT = 9.36 kN. Then,
we can calculate the stress and strain field under these loads for the CT models with the
CPFEM. With the assumption of a series values of m, Weibull stress is evaluated and plotted
in Figure 14. The intersection of the two curves in the figure is the required m, indicating
that the fracture toughness of the 1T-CT sample and the fracture toughness of the 0.5T-CT
sample can be better converted at this value. Rounding and correcting the values of m and
σu, the final related parameters are determined as m = 30, σu = 2590 MPa. Moreover, there
is little difference between this study and the results obtained by Zhou [38] with m = 31
and σu = 2520 MPa. Therefore, the fracture probability model of SA508-III steel obtained by
Beremin local approach model can be written as:

Pf = 1 − exp

[(
− σW

25, 900

)30
]

(13)
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5.2. Prediction of Fracture Toughness

After obtaining m = 30, the fracture toughness values of the 1T-CT sample and the
0.5T-CT sample were converted, and the conversion results are shown in Figure 15. It can
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be seen from the figure that the transformation curve can be approximately regarded as a
straight line, indicating that the conversion relationship between the 1T-CT sample and
0.5T-CT sample is linear. The fracture toughness value of the 0.5T-CT sample is usually
larger than that of the 1T-CT sample.
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The m and σu obtained through calibration can be used to calculate the cumulative
failure probability as shown in Figure 16. The prediction curve is consistent with test results.
Therefore, it can be concluded that the relevant parameters of the Beremin model m = 30,
σu = 2590 MPa can well meet the differences of fracture toughness caused by different
constraints. It can be seen from the Figure 15 that when the temperature is −60 ◦C, the
fracture toughness value KID of the 1T-CT sample is 111.3 MPa·m0.5, and the fracture
toughness value KID of the 0.5T-CT sample is 129.7 MPa·m0.5. The fracture toughness
of −20 ◦C and −100 ◦C was predicted by the same method after −60 ◦C. The fracture
toughness of −20 ◦C was 175.9 MPa·m0.5, and that of −100 ◦C was 65.0 MPa·m0.5.
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For the temperature dependence of fracture toughness, the master curve method
is used in this work. According to the above test, simulation results, and the fracture
toughness test data of SA508-III steel obtained by Lee [34], the reference temperature
T0 = −63.1 ◦C is determined, and the master curve can be written as,

KIC = 30 + 70 × exp[0.019(T − (−63.1))] (14)

The curve with a cumulative failure probability of 50% was obtained based on the
calibrated local approach, which was represented by PBf, as shown in Figure 17. The curves
with a cumulative failure probability of 5%, 50%, and 95% in the master curve method are
also included in Figure 17, which is represented by PMf. In addition, the scatter interval
between 5% and 95% is also reduced with temperature. At the same time, the fracture
toughness obtained by experiment and simulation in this study is located in the range of
5% curve and 95% curve, but higher than the 50% curve, especially the simulation results
of the 0.5T-CT model. The curve with the 50% cumulative failure probability obtained by
LA is slightly larger than that obtained by the master curve method, which may be related
to the test data used.
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Figure 18 shows the stress results in the crack tip at −20 ◦C and −100 ◦C under a
load of 43 kN. It can be seen that the stress mainly concentrates on the boundary due to
the different orientations of grain. At the same time, the maximum stress at −100 ◦C is
larger than that at −20 ◦C under the same load, indicating that the material is more prone
to fracture at −100 ◦C than −20 ◦C under the same load. Meanwhile, it can be seen from
the overall stress distribution that the stress distribution at −20 ◦C is more uniform.
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As a material property, the fracture toughness presents scatter, especially under the
ductile brittle transition temperature, which is related to the internal grain structure of
the material. In order to further illustrate the relationship between fracture toughness
and grain orientation, the internal grain information of SA508-III steel at 20 ◦C, −20 ◦C,
−60 ◦C, and −100 ◦C was obtained by electron backscatter diffraction technique, as shown
in Figure 19. It can be seen that the grain configuration is not uniform, and the grain
orientation distribution is also not consistent at different temperatures. The distribution
of colors in the figure indicates the orientation trend of the modified particles. It can be
seen that the grains at 20 ◦C tend to concentrate in the <101> direction, and the grains at
−100 ◦C tend to concentrate in the <111> direction. However, it is still a phenomenon
of random distribution as a whole. However, a −20 ◦C grain orientation and −60 ◦C
grain orientation has no obvious orientation tendency. Combined with the research of
Roy [15], it can be concluded that there are certain differences in the changes of different
grain orientations and grain shapes of the same material during loading, and the specific
orientation of the grains will affect the fracture toughness of the material. The change in the
random orientation distribution will influence the material’s fracture toughness. Therefore,
the fracture toughness values in the ductile-brittle transition zone are more dispersed.
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6. Conclusions

In this research, the fracture toughness of SA508-III steel at different temperatures
was studied by using a combination of crystal-plastic finite element and Beremin cleavage
fracture local approach model. The following conclusions are drawn:

(a) In order to determine the material parameters in CPFEM, the simulated stress-strain
curves are compared with the test results. The calibrated material parameters can agree
well with the tensile properties of SA508-III steel at the corresponding temperature.

(b) Several fracture toughness tests were performed at −100 ◦C to room temperature.
The fracture toughness values obtained from the experiment and CPFEM were used
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to calibrate the relevant parameters of the local method model. Finally, m = 30 and
σu = 2590 MPa were obtained, and the fracture toughness conversion between the
0.5T-CT sample and 1T-CT sample was realized.

(c) The cumulative failure probability of fracture toughness was analyzed, and the pre-
dicted values of fracture toughness at −20 ◦C, −60 ◦C, and −100 ◦C were obtained
when the cumulative failure probability was 0.63. The results show that the predicted
fracture toughness values are valid and conform to the Weibull probability distribution.
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