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Abstract: Ti-6Al-4V (Ti64) alloy is one of the most widely used orthopedic implant materials due to
its mechanical properties, corrosion resistance, and biocompatibility nature. Porous Ti64 structures
are gaining more research interest as bone implants as they can help in reducing the stress-shielding
effect when compared to their solid counterpart. The literature shows that porous Ti64 implants
fabricated using different additive manufacturing (AM) process routes, such as laser powder bed
fusion (L-PBF) and electron beam melting (EBM) can be tailored to mimic the mechanical properties
of natural bone. This review paper categorizes porous implant designs into non-gradient (uniform)
and gradient (non-uniform) porous structures. Gradient porous design appears to be more promising
for orthopedic applications due to its closeness towards natural bone morphology and improved
mechanical properties. In addition, this paper outlines the details on bone structure and its properties,
mechanical properties, fatigue behavior, multifunctional porous implant designs, current challenges,
and literature gaps in the research studies on porous Ti64 bone implants.

Keywords: porous Ti64; bone implants; additive manufacturing; non-gradient (uniform) design;
gradient (non-uniform) design; fatigue behavior

1. Introduction

The history dates to the time of the late 1960s when the first use of porous metal
structures in orthopedics was reported, and ever since the use of these products has
continuously increased [1]. In the early 1970s, porous metal development experienced
several breakthroughs, setting the stage for future in-growth materials in orthopedic surgery.
Galante et al. [2] pioneered the development of fiber-metal leading to its clinical use as
a porous coating in hip and knee arthroplasty. Simultaneously, works on the sintering
process laid the foundation for the porous cobalt-chromium (CoCr) alloy coatings in use
today [3]. Most recently, a new series of highly porous metals has been developed and
released for use in orthopedic surgery, including porous tantalum, porous titanium (Ti),
and their alloys [3]. This increasing trend in reconstructive surgery is apparent as solid
metal implants have high stiffness and strength, however, porous implants are optimal for
this use as they allow bone in-growth through the open porosities and have an improved
fixation due to their high surface roughness. In addition, these porous implants have lower
stiffness and prevent stress-shielding [1,4].

According to the Agency for Healthcare Research and Quality [5], more than 450,000 total
hip replacements and just under 700,000 total knee replacements are performed annually
in the United States. The 60+ years-old group has a global population that is expected
to double from 2020 to 2050 due to both overall population growth and an expected
increase in life expectancy from 73 to 77 during this period [6]. This continued increase
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in the elderly age population demands an increase in the efficiency of the orthopedic
implant, which lowers implant failure and the need for revision surgery as they add
physical, financial, and psychological burden to the patient. Different implant materials
including polymers [7–9], ceramics [10–14], metals [15–20], and their composites [21–25] are
currently being tested for manufacturing orthopedic implants. Most metals fall under the
bio tolerant category, however, titanium and its alloys in certain conditions are bioinert in
nature [26]. Among these implant materials, titanium is the best base material for additive
manufacturing of orthopedic implants due to its excellent mechanical strength, natural
good corrosion resistance, Magnetic Resonance Imaging (MRI) compatibility, acceptable
in vivo biocompatibility, and bio-adhesion [27,28]. Despite these advantages, the presence
of a large metallic foreign body creates obstacles such as promotion of chronic inflammation,
leaching, infection and biofilm formation [29].

Titanium implants form protective layers of titania (TiO2) that are a few nanometers
thick when exposed to air/water [30,31]. Toxicological concerns such as yellow nail syn-
drome arise when any damage to this layer occurs as a result of aggravated leaching of
debris and nanoparticles from Ti implants [30,32]. These leached Ti particles in surrounding
tissues can range between 10 nm to 30–60 µm and the average concentration of locally
leached Ti ions are 205–210 ng per mg of the implant’s weight [30,33,34]. This phenomenon
is more severe in the sintering-based AM process where consolidation of powder occurs
below the melting point and results in disintegration/weakening of the implant structure
over time, along with the release of Ti particles [35]. The release of these Ti particles
has long term adverse effects such as allergic reactions, mutagenesis, carcinogenicity and
hypersensitivity reactions, which ultimately result in implant rejection [32,35,36].

Among Ti alloys, commercially pure titanium (CP-Ti) and Ti64 are the most preferred
Ti alloys for orthopedic implants [37–39]. However, due to the stress-shielding effect of the
solid Ti, the research focus has shifted towards the porous Ti alloys implants. Additive
manufacturing of porous Ti64 orthopedic and spinal implants with complex porous geome-
tries is often used to achieve their osseointegration properties [40]. The bone implants are
expected to have: 1. Good biocompatibility; 2. Appropriate pore sizes and porosity, which
are suitable for bone cell infiltration and growth; 3. Comparable mechanical properties with
adjacent bone tissue; 4. Osteoconductivity and osteoinductivity; and 5. Biodegradability,
such that no traces of the original prosthesis are found after bone healing without any side
effects of the degradation products on the human body [41].

The long-term clinical success of bone implants requires the fabrication of porous
structures with consideration of elastic modulus, compressive and fatigue strength, wear
hardness, and corrosion resistance properties together with biomaterials and biomedical
engineering aspects [42]. The research focus on implants is given to specific clinical chal-
lenges, such as stress-shielding and osseointegration [43]. Furthermore, for load-bearing
applications, the key focus is on maximizing osseointegration to minimize the risk of aseptic
loosening as around 20% of orthopedic revisions within two years are associated with
loosening. The market of these implants can be broadly divided into mass manufactured
and patient-specific implants. Mass-manufactured implants and their mid-term outcomes
are currently positive, however their long-term outcomes are still needed to illustrate addi-
tional clinical benefits. Patient-specific or “custom” implants are used where no alternative
implant exists, and its use is justified through the last resort where the benefits outweigh
the risks [43].

Studies on the effect of regular, irregular, fully random, and several types of unit cell
structures on mechanical properties of AM manufactured Ti64 implants are available [44–46].
The results from these studies show that specimens with higher porosity tend to buckle.
Strength and Young’s modulus were found to be decreased with increasing porosity and
pore size. Hanks et al. [46] developed a graphical user interface to provide Ashby-style plots
for unit cell selection of the AM lattice structure that helps to understand the relationship
of the unit cell topology and the lattice structure’s mechanical properties, with the intent
of guiding appropriate unit cell selection. Furthermore, research on the modification of
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porous structure unit cells, such as diamond-shaped (tetrahedral) lattice cells, for better
integrity of mechanical properties can also be found [47]. Similarly, the topological design
of lattice structures, which includes beam-based unit cells, sheet-based unit cells, and
functional gradients, can be rationally designed to achieve the desired properties including
mechanical, fatigue, mass transport, (e.g., permeability, diffusivity), surface area, and
geometrical features, while the rate of tissue regeneration, e.g., surface curvature, are
simultaneously optimized [48]. Furthermore, changing the type of unit cell in the porous
structure can result in very different mechanical properties for the same porosity level [49].
Comparing the normalized, i.e., the ratio of a property in the porous structure to that of
the bulk material, mechanical properties of porous non-gradient Co-Cr structures with
mechanical properties of non-gradient Ti64 and pure Ti with the same unit cell designs,
Hedayati et al. [50] found that topological design can cause up to a ten-fold difference
in mechanical properties of AM porous structure, while up to two-fold difference when
changing the material type. This indicates the usefulness of bulk material properties as
scale factors to convert normalized mechanical properties of porous non-gradient structures
to their absolute values.

In recognition of the benefits of utilizing AM for manufacturing orthopedic im-
plants, review articles on AM used for metallic implants [41,43,51,52], porous metallic
implants [48,49], biodegradable porous metallic implants [15], and common AM implants [26]
are also available. Among the metallic implants, a systematic review on titanium and its
alloys can be found [27,37,53,54]. However, review articles with focus areas only on the
AM manufactured Ti64 are rarely available. Besides, the review on the fatigue behavior
of the porous implants appears to be barely discussed in most of the orthopedic implants
review articles. Ti64 being the most preferred titanium alloy for orthopedic applications and
porous structures design is the prime focus of many recent orthopedic implants/scaffolds’
studies. An article by Aufa et al. [38] focused on the Ti64 biomedical implants manufac-
tured using only a laser powder bed fusion-selective laser melting (SLM) process. The
mechanical properties and the effects of surface treatment and surface modification of SLM
Ti64 implants were reviewed, however the review on the fatigue behavior of these porous
implants is completely missing. Even within the L-PBF process, selective laser sintering
(SLS) is also used for generating porous Ti64 implants. In addition to L-PBF, studies on
porous Ti64 implants manufactured using electron beam melting, direct write process and
Laser Engineered Net Shaping (LENSTM) are widely available. Therefore, there exists a
significant gap in the literature availability on porous Ti64 implants, which includes all the
AM processes that are used for biomedical applications. On the other hand, Spece et al. [40]
performed a systematic review on preclinical in vivo testing of 3D printed Ti64 porous
orthopedic implants. Although, this review provides decades of experience and lessons
learned with AM porous Ti64 implants, many novel research works have been performed
on AM porous Ti64 where no in vivo testing was carried out and thus there is a need for a
review that includes those in vitro, porous designs, mechanical, fatigue, multifunctionality
properties, etc., of AM porous Ti64 implants/scaffolds.

With the aim to fulfill the review literature gap, this paper aims to provide in-depth
knowledge and information on recent advancements of porous Ti64 implants from different
perspectives: design, mechanical properties, fatigue behavior, and multifunctionality. All
the processes utilized in the additive manufacturing of the porous Ti64 bone implants are
reviewed and are presented in a detailed fashion to provide proper guidance for future
research in the design and development of functionally porous Ti64 implants/scaffolds.
The orthopedic implant is regularly subjected to loading condition and the porous implant
design with its porous structure is more prone to fatigue failure as compared to its counter-
part. Thus, this paper has dedicated a sub-section for the fatigue behavior of the AM porous
Ti64 structures such that the existing review gaps on their fatigue behavior are addressed.
Moreover, the novelty of this review comes from the holistic overview of different AM pro-
cesses used in the design and development of porous Ti64 implants/scaffolds from design,
process, physical, mechanical, fatigue, biological and multifunctionality perspectives. In
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this article, porous implant designs are classified into non-gradient and gradient porous
structures. Due to its greater resemblance to natural bone morphology and improved
mechanical properties, gradient porous design appears more promising for orthopedic
applications. Furthermore, the human bone properties and structure, mechanical properties
of porous Ti64, as well as multifunctional porous implant designs, their limitations, current
challenges, and unresolved literature gaps are thoroughly discussed later in the paper.

2. Methodology

To find the literature related to this topic, keywords such as “additive manufacturing
of porous Ti6Al4V bone implants”, “porous bone implants”, “fatigue behavior of porous
Ti6Al4V bone implants”, “leaching of titanium implants” etc., were used in online searching
tools including web of science, google scholar, MDPI and ScienceDirect websites. The
papers were always listed based on the descending order from the recent published date.
For each section/sub-section, significant papers were selected and reviewed. More focus
was given to recently published papers, i.e., after 2015. Key findings from these reviewed
articles were analyzed and compiled to write this paper.

3. Bone Structure, Its Properties, and Bone Healing Mechanism
3.1. Bone Structure

Bones are categorized into two major groups, namely cortical bones, and cancellous
bones. Cortical bones are compact bones and are responsible for providing mechanical
strength, structural rigidity, and movement. They account for 80% of the mass of the bones
in the human body. Cancellous bones, also known as trabecular bones, are soft, spongy
bones and are responsible for providing structural support to the cortical bones, flexibility,
and reduction in weight. Most of the active functions including blood cell production and
ion exchange take place in the trabecular bones. They account for roughly 20% of the total
mass of the skeleton. From the porous structure perspective, cancellous bone has porosities
between 50% and 90%, whereas cortical bone has a porosity less than 10% [41].

The natural bone acts as a heterogeneous and anisotropic nanocomposite [55], of
which the principal components are organized hierarchically into several structural levels,
from macro to the nanometer scale as shown in Figure 1.
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Macroscale arrangements of the bone involve both compact/cortical bone at the
surface and spongy/trabecular bone (foam-like material with ~100 µm thick struts) in the
interior. Compact bone is composed of Osteons and Haversian canals, which surround
blood vessels. Osteons have a lamellar structure, with individual lamella consisting of
fibers arranged in geometrical patterns. The fibers comprise several mineralized collagen
fibrils, composed of collagen protein molecules (tropocollagen) formed from three chains
of amino acids and nanocrystals of hydroxyapatite (HA) and linked by organic phase to
form fibril arrays [55].

The cortical bone thickness and the density and pore structure of the trabecular bone
may vary significantly by location in the body and even within one bone, depending on the
local requirements. Near the joints the trabecular bone is denser due to varying mechanical
load requirements (strength and angles of loading), while in the central part of the bone
there is less dense and less isotropic trabecular bone, which is more directionally aligned as
shown in Figure 2a.
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Figure 2. (a) Variation in the trabecular bone structure by location, in this example from the human
femur of a 26-year-old male. Reprinted with permission from ref. [56]. 2019, Elsevier Inc. (b) Typical
stress-strain curves of compact (Cortical) and spongy (Trabecular) bones. Reprinted with permission
from ref. [57]. 2021, MDPI.

3.2. Mechanical Properties

Figure 2b shows a load-deformation curve for a specimen of hydrated bone loaded in
tension [58]. The bone follows the normal load-deformation trend for that of metals. First,
there is a rising part where the load is proportional to deformation. At the yield point, the
situation changes, and the curve becomes much flatter. With a slight increase in load, there
is a substantial increase in deformation. Then the specimen breaks. This load-deformation
curve can be normalized and turned into a stress-strain curve. The total area under the
curve is the amount of energy per unit volume that a material can absorb before rupturing,
also known as the material toughness.

Cortical Bone: The Modulus of Elasticity of cortical bone is about 15 GPa. At the
yield point, the stress is 120 MPa, and the strain is 0.008. Table 1 gives some representative
values of the mechanical properties of cortical bone loaded along the length of the bone.
This is an approximation table, but gives some guidance as to the properties and their
potential range.
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Table 1. Some values of mechanical properties of cortical bone. Reprinted with permission from
ref. [58]. 2008, Woodhead Publishing Limited.

Property Upper Limit Lower Limit Modal Value

Young’s Modulus of Elasticity (E) 45 GPa 6 GPa 15 GPa
Tensile Yield Stress N/A 10 MPa 120 MPa

Tensile Strength 300 MPa 15 MPa 150 MPa
Ultimate Tensile Strain 0.12 0.002 0.03
Compressive Strength N/A N/A 250 MPa

Bending Strength N/A N/A 250 MPa
Fatigue Life at 0–100 MPa Tension N/A 200 1000

Cancellous Bone: Cancellous bone is soft bone. The bone does not form closed cells,
so the bone, and the marrow, are always interconnected. The Young’s modulus of such
bone is as low as 1.9 GPa and can go up to 6 GPa [58].

3.3. Bone Healing Mechanism

Most of the fractured bone goes through the same healing process or recovery mech-
anism. This holds true for the bone whether it has been operated on during the surgical
procedure or fractured by being involved in an accident. Usually, the bone healing mecha-
nism experiences an overlap of three stages, namely inflammation, bone production, and
bone remodeling [59], as described below:

a. Inflammation is the first step of the healing mechanism, and this starts right after
the bone breaks. After the bone fractures, the blood vessels’ connections in the bone
are also ruptured and this results in bleeding into the fractured area. This process is
called inflammation where the blood starts to clot in the fractured site and swelling is
observed. Inflammation lasts for several days and thus provides the initial framework
and stability to the fractured bone for developing new bone;

b. The bone production step follows the inflammation step in the healing process. The
clotted blood from inflammation is gradually replaced by the growth of soft callus
cartilage and fibrous tissues. Eventually, when healing progresses, this soft callus car-
tilage is replaced with hard bone known as a hard callus. This bone is thus detectable
by x-rays afterward;

c. Bone remodeling is the final phase of the healing process and could last for weeks or
several months. The hard callus bone continues to form and becomes compact, returns
to its original shape and form, ruptured blood vessels grow, and blood circulation
improves in the area. Sufficient healing of the bone after several weeks gradually
remodels the bone for usual weight-bearing activities such as standing and walking,
and it provides necessary support to the structure [60]. More importantly, the loading
magnitude and loading frequency have significant effects on bone remodeling and
thus have a major impact on the bone healing process [41].

In addition, the implant-bone healing process can be briefly summarized in the fol-
lowing five stages: (1) primary implant fixation; (2) blood-implant contact; (3) platelet
activation and coagulation; (4) inflammation and angiogenesis; and (5) bone formation [61].

3.4. Hindrance for Bone Healing

A wide variety of factors can slow down the healing process of a fractured bone.
Movement of fractured bone fragments and weight-bearing too soon delays bone formation.
The implant must be securely fixed to the host bone such that osseointegration is not
inhibited. The interactions between the implant and the proteinous monolayer create
the basis for osseointegration and ossification (bone formation) and are crucial to the
proper healing of the wound, and ultimately, successful implantation [60,61]. In addition,
smoking, medical conditions, such as diabetes, hormone-related problems or vascular
disease, some medications, such as corticosteroids and other immunosuppressants, severe
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and complicated fractures, old age, poor nutrition or impaired metabolism, and low levels
of calcium and vitamin D all hinder bone healing.

3.5. Need for Porous Structure and Its Advantages

Implants are made from biomaterials and their alloys. These materials, compared
to bone, have a very high modulus of elasticity. It is well known that the stress transfer
between an implant and a bone is not homogeneous when Young’s moduli of the implant
and the bone are different; this is defined as stress shielding. In such conditions, bone
atrophy occurs and leads to the loosening of the implant and refracturing of the bone.
Therefore, it is desirable if the stiffness (Young’s modulus) value is as close as possible to
that of the bone [62].

Porosities in the bone implants have two (2) major advantages:

a. Provide space and 3D structure for bone ingrowth.
b. Mimic the mechanical properties of real bone [48,63].

Based on the literature reviewed in this study, the porosity ranging from 25% to 90%
and pore size ranging from 200 µm to 1500 µm were found to be mostly used in the design
of porous Ti64 implants. During the porous implant design, often there exists a trade-off
between the porosity percentage and mechanical strength. An increase in mechanical
interlock strength of a porous implant can be observed through osseointegration, however
a design with porosity greater than 80% results in a decrease in both strength and bone
ingrowth [64]. Proper tailoring of porosity percentage, porosity gradient and its direction,
and transition region height are required such that the biomimetic implant design can be
possible without compromising the mechanical properties requirements, especially porous
implant strength.

The premise of bone ingrowth is that cells adhere to the surface of materials and
migrate to the inner space, thus porosities play a vital role in bone tissue engineering
as it facilitates the ingrowth of mineralized tissue into a porous network. It is also suit-
able for seeding cells, delivering drugs, capillary tissue action, and osteoprogenitor cell
migration [48,65].

In this study, we have focused on Titanium alloy, namely Ti64. This is an alpha-
beta titanium alloy, which has excellent corrosion resistance to chlorides, seawater, and
sour and oxidizing acid media, and acts as an ideal candidate for orthopedic and dental
implants [66]. The biocompatibility with living tissues and the high strength-to-weight
ratio of Ti64 alloy make it an ideal candidate for bone implants. Furthermore, Ti64 shows
good osseointegration property, which is defined as the functional bone adherence property
where a new bone is laid down directly on the implant surface and helps the implant to
exhibit mechanical stability [67,68]. More importantly, Ti64 alloy also has a low modulus of
elasticity, which is roughly half that of steel and nickel alloys, making it more similar to
bone in terms of mechanical properties [66]. Further, the bioinert and biocompatible nature
of Ti64 with spontaneous formation of oxide layer ensures its stability in the body after
implantation [69].

Titanium is generally non-magnetic in nature, generating insignificant forces in a
strong magnetic field, and is considered safe to be present in clinical MRI systems. However,
it has weak paramagnetic property and becomes magnetized within the MRI field resulting
in either a loss of signal or distortion in the MRI image (known as susceptibility effect) due
to changes in magnetic field from the presence of Ti64 implant [28,70]. This effect limits the
use of MRI to visualize the tissue surrounding implants hindering future investigations
in the region or diagnosis of post-operative complications. AM porous structures may
be an upstream method for reducing susceptibility artifacts in Ti64 implants, helping in
improving post-operative diagnosis capability [28].

4. Porosity Designs

Porous implant structures involve porosity, pore size, etc., as major morphological
design parameters [71]. The level of these factors has a significant impact on the mechanical
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and biological properties of the implants. The impact of these factors can be found in
the literature. Some of the papers on these studies are listed in Tables 2–4. Bone implant
porosity and stiffness/strength require optimized trade-off to improve long-term load
sharing while simultaneously promoting osseointegration [64]. Porous Ti64 implants have
been developed with a biomimetic design attempt towards natural bone morphology. The
porous Ti64 implants can be categorized into non-gradient and gradient porous implants.
Non-gradient implant design has uniform porosity throughout the implant structure,
whereas the gradient design may have porosity variation along x, y, and/or z-direction.
Details on these porosity design types are explained later in this section. During the
literature review, most of the studies on porous design were identified to be performed on
samples fabricated by Laser Powder Bed Fusion (L-PBF) and Electron Beam Melting (EBM).
Furthermore, some pieces of literature were found on porous Ti64 alloy implants fabricated
using direct ink writing (DIW) and Laser Engineered Net Shaping (LENSTM) processes. In
the powder bed fusion (PBF) process, the parts are fabricated by heating powder particles
at selective areas until they are sintered or melted. Based on the source of energy utilized,
PBF can be categorized into laser powder bed fusion or electron beam melting. In the DIW
process, two-dimensional or three-dimensional structures are created directly onto the flat
or conformal surfaces through jetting or dispensing, or extruding of material such as the
micro-dispensing of ink. LENSTM is an example of directed energy deposition (DED) AM
process. The DED process is mostly used for part repair where the material is deposited
mostly on the existing substrate to generate new surfaces by using powder feedstock or
wire feedstock. LENSTM, originally developed by Sandia National Labs in 1996, uses Nd:
YAG/fiber laser to melt co-axially delivered powder feedstock and deposits the material
into the substrate.

The evaluation of L-PBF and EBM AM process conditions are most commonly per-
formed using volumetric energy density, defined as [72]:

Ed =
P

vhd
(1)

where P is the laser/electron beam power, v is the scan speed, h is the hatch distance, and d
is the layer thickness. The PBF process takes place inside an enclosed chamber filled with
inert gas to minimize degradation and oxidation of powered material [73]. First, a layer
typically 0.1 mm thick of powder material is spread over the build platform. The powder is
then preheated and maintained at an elevated temperature below the melting point or glass
transition temperature of the powdered material. A focused heat source (laser or electron
beam) is then directed onto the powder bed and is moved using galvanometers in a way
that it thermally fuses the material to form the slice cross-section completing the first layer.
In this process, the energy beam is scanned over the powder surface (scan speed) often in a
hatched stripe pattern (hatch distance) using controlled mirrors until a layer is processed.
After completing this layer, the build platform is lowered by one layer thickness, and a new
layer of powder is spread over the build platform using a recoater blade mechanism. The
heat source again scans the subsequent slice cross-section. This process repeats until the
complete part is built. Finally, the part is removed from the powder bed, loose powders are
cleaned off the part, and further finishing operations, if necessary, are performed [73]. The
schematic of the PBF process is shown in Figure 3. A study of the effect of laser processing
parameters showed that mechanical properties increased with increases in either laser
power or exposure time [44]. Furthermore, the surface topography and roughness of
implants manufactured using L-PBF and EBM are affected by build orientation [74,75]. The
lowering of the build angle lowers surface roughness and hydrophobicity, and the number
of partially melted particles [75]. This reduction is reported to be directly correlated with
significantly lower biofilm coverage for a lower build angle without compromising cell
viability and attachment. Since the porous AM implants (both gradient and non-gradient)
have struts and walls oriented at different angles, they may require careful consideration
during the design for biofilm restriction. A review article by Aufa et al. [38] states that a
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rough surface (Ra values) of 3 µm–5 µm is favorable for osteoblasts attachment both in vivo
and in vitro, and an implant roughness between the 1 µm and 2 µm range is effective for
developing a titanium dioxide (TiO2) layer that is resistant to bacterial infection.
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4.1. Non-Gradient (Uniform) Porous Structure

One of the major design parameters of bone implants is porosity. Non-gradient or
uniform porosity is one of the porosity design parameters where the size of pores does not
change throughout the implant. This makes the implant density uniform along x, y, and/or
z-direction. Figures 4 and 5 represent some of the non-gradient porous structures found
in the literature [77–81]. The design optimization study on uniform Ti lattice structure
by El-Sayed et al. [82] identified the most significant design parameter to be strut length
where the porosity of unit cell increased with increasing length, but the effect reverses
on strength and elasticity. Goto et al. [83] studied two different designed implants: one
with a smooth surface without any porosity and the other with uniform pores of 800 µm
and 1400 µm. The characterization of these EBM fabricated porous implants showed av-
erage porosity of 57.5% from binary images of 30 slices. Balci et al. [84] obtained bone
samples from the femoral and vertebral regions of a sheep, scanned them using Micro-CT
and produced trabecular bone models with two different porosities with the purpose of
increasing biocompatibility by imitating bone. The vertebra model had a distribution
between 102 µm and 1719 µm, and the femur model had a distribution between 90 µm
and 1434 µm. Ødegaard et al. [77] manufactured scaffolds with 800 µm void spacing and
lattice thickness based on the Schwarz P triply periodic minimal surface-based unit cell and
had a designed porosity of 50%. Biomimetic porous Ti bone scaffolds with a high level of
interconnectivity between pores are beneficial for tissue growth and osseointegration [85].
Tsai et al. [86] used a highly interconnected pore network structure with a high-volume
porosity of 60% for better bone growth. Fluid permeability is a function of pore characteris-
tics (i.e., pore shape, size, and porosity) and shows a strong correlation with bone ingrowth
and thereby served as an indication of scaffold osteointegration capabilities [87,88]. Ac-
cordingly, Arjunan et al. [88] investigated the uniform porous L-PBF scaffold designs with
targeted porosity of 68.46%–90.69% considering permeability, stiffness, strength, and stress
concentration factor. The results showed the primary dependency of maximum stress on
pore shape rather than relative density. Required stiffness and strength of bone scaffold can
be achieved by tailoring the stress concentration factor, irrespective of the targeted porosity.
Therefore, in addition to porosity, pore shape and permeability, the stress concentration
should also be carefully considered during the design of functional porous scaffold.

The porous Ti64 cage was produced by the L-PBF (Selective Laser Melting, SLM)
process. Chen et al. [78] performed a study on three different shapes of Ti64 samples
with a porosity of 70% and a pore size of 600 µm as shown in Figure 5. In the study by
Hameed et al. [89], the decrease in mechanical strength with an increase in pore size was
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identified and a scaffold with a pore size of 250 µm showed the optimum combination of
overall mechanical and biological properties for practical applications. Zhang et al. [90]
studied the spacing of the laser scan lines (hatch spacing) on pore characteristics and set
the scan line spacing from 200 µm to 700 µm by a step size of 100 µm to produce the
porous implants. Ahmadi et al. [67] investigated the effects of two different heat treatment
regimens (below and above β-transus) on the mechanical properties and microstructure of
porous Ti64 specimens. Many similar studies on the uniform gradient porous Ti64 can be
found in the literature. Among them, some of the significant articles are listed in Table 2.
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Table 2. Mechanical Properties of Non-Gradient Porous Structure.

Author Process Porosity Design Strength
(Compressive/Tensile)

Young’s
Modulus Other Findings

Li et al. [65] EBM

Porous scaffolds with three pore
sizes (300~400, 400~500, and

500~700 µm) with porosity of 80%
Measured pores size: 315, 485, and

574 µm, respectively; Measured
Porosity: 33.8, 50.9, and

61.3%, respectively.

Compressive Strength:
115.2–33.1 MPa 3.7–1.7 MPa

In vivo study on Goats for 3, 6, and 12 months
identified that depth of bone ingrowth increased

over time and no implant dislocation was observed;
Porous Ti64 scaffold with an intended pore size of
300 to 400 µm are most suitable for cell adhesion

and proliferation.

Melancon et al.
[71] L-PBF

Tetrahedron and Octet -truss unit
cells were studied over the entire

design space, which includes
porosity, strut thickness, unit cell size,
pore size, height, width, and depth.

Depend on the unit cell
design parameter

Depend on the unit cell
design parameter

Proposed a systematic approach integrating
computed tomography, mechanical testing, and
statistical analysis of geometric imperfections to

generate statistical-based numerical models of high
strength additively manufactured porous

biomaterials; The proposed methodology reduced
the error between predicted and tested mechanical
properties from 49% to 11% (elastic modulus) and

41% to 7.6% (yield strength)

Ødegaard et al.
[77] EBM

P TPMS lattice at 35◦ angle
Lattice- and pore diameter: 800 µm

Designed porosity 50%
N/A N/A

qPCR analysis suggests that the BMSCs
differentiated into osteoblasts; Staining of alkaline

phosphatase at day 7 and calcium deposits at day 28
suggest bone matrix is mineralization.

Chen et al. [78] L-PBF

Bullet-shaped cage and Cylindrical
porous body with a designated pore
size of 600 µm and porosity of 70%.

In vivo Test Subject: Beagle dogs

Bullet-shaped cage:
Compressive

Strength = 94.7 MPa
at 0.29% strain

Bullet-shaped cage:
−0.51 GPa

Bullet-shaped cage showed mechanical properties
comparable to commercial PEEK cage; Cylindrical
porous Ti body and commercial tantalum implant
(casting Ta implant) with same porosity and pore

size exhibited similar bone ingrowth at 4 and
12 weeks; Great potential of L-PBF-fabricated

porous Ti64 cage as spinal fusion implant

Hudak et al. [79] L-PBF Pore size: 200, 400 and 600 µm
Structure: Cubic and Trabecular

Tensile: 302 ± 8.09 to
1631.08 ± 41.49 MPa

3.80 ± 0.42 to
10.50 ± 0.58 GPa

Yield: 198.45 ± 83.29 to 1055.03 ± 135.90 MPa;
200 µm and cubic structure
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Table 2. Cont.

Author Process Porosity Design Strength
(Compressive/Tensile)

Young’s
Modulus Other Findings

Wieding et al.
[80] L-PBF

3 different scaffold designs with
70% porosity

D1—struts with a rectangular
cross-section (CS), vertical
orientation, width: 400 µm,

height: 800 µm
D2—struts with rectangular CS,

vertical strut shifted half the strut
height in the x-z plane

D3—orientated diagonally to vertical
axis and exhibited circular CS

Compressive Strength
(MPa)

D1: 155 ± 7
D2: 145 ± 2
D3: 164 ± 6

(GPa)
D1: 5.1 ± 0.3
D2: 3.7 ± 0.2
D3: 6.7 ± 0.3

Ultimate Compressive Strain (%)
D1: 5.22 ± 0.34
D2: 6.70 ± 0.56
D3: 3.45 ± 0.50

Balci et al. [84] L-PBF
(Ti64 ELI)

Vertebra: Size—102 to 1719 µm
Average diameter—767 ± 264 µm

Femur: Size—90 to 1434 µm
Average diameter—624 ± 245 µm

N/A N/A Bone structure successfully imitated at 1:1 and
1:1.25 productional scales

Tsai et al. [86] L-PBF Pore size below 500 µm
Volume porosity 60% N/A N/A

Implants with Ti64 cages compared to Ti
and Ta implants—

- More pronounced volumes of new bone
- Higher crystallinity volumes

- High-quality bone formed

Coffiginez et al.
[91] DIW

Macro- and micro-interconnected
porosity network (42.7% total

porosity, which is made up of 34.5%
macropores and 8.2% of micropores)

Strut Size: 710 µm;
Pores Size: 1492 µm

Compressive Strength:
700 MPa 28–30 GPa

Yield Strength: 265 MPa
Implant printable using low-cost printers with
25 wt.% Pluronic F-127 hydrogel loaded with

50 vol. % Ti64 powder particles; Partial sintering at
1200 ◦C showed an interconnected network of

micronic pores within struts; Good proliferation of
osteoblast-like cells on scaffolds with loaded

Ti64 powder

Kan et al. [92] EBM

Custom-made augment based on 3D
reconstruction bone model

Human Test Subject
Mean Porosity: 61.3 ± 0.4%

N/A 1.7 ± 0.2 GPa

Thin-layer CT and 3D reconstruction bone models
are effective in evaluating periprosthetic bone loss

preoperatively; Effective reconstruction of
periprosthetic bone defect and restoration of knee

prostheses; Stable Protheses even after 3 years.
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Table 2. Cont.

Author Process Porosity Design Strength
(Compressive/Tensile)

Young’s
Modulus Other Findings

Umar et al. [93] L-PBF

Stochastic porous lattice structure
tested in uniaxial compression in

10 load orientations relative to
the structure

N/A N/A

Modified stochastic lattices have a similar stiffness
to cancellous bone and have controllable anisotropy.

Standard deviation of Young’s modulus:
52.5 MPa–95.9 MPa

Elsayed et al.
[94] DIW

Filament diameter—800 µm
Spanning a distance of 1200, 1600,
and 2400 µm in X-Y direction and

600 µm height in Z direction resulted
in different pore sizes and porosities

N/A N/A

Total porosity (vol%) of
800 × 400: 53.0 ± 4.7
800 × 800: 58.8 ± 4.2
800 × 1600: 68.1 ± 4.4

Soro et al. [95] L-PBF

Porous structure based on Schwartz
primitive unit-cell and three

designed porosity levels: 25%,
42%, and 64%.

Strut Size: 500 µm–700 µm Pore Size:
250 µm–700 µm

N/A 14.3–36.1 GPa

Yield Strength: 86 MPa–319 MPa; 25% wt.%
tantalum concentration reduces the weight, cost
and lowers the intrinsic elastic modulus of the

implants; Significantly higher ductility of implants,
which is desirable for surgical handling and

enhanced adaptability of implants
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4.2. Gradient (Non-Uniform) Porous Structure

Although non-gradient porous implant structure tends to mimic the natural bone in
terms of mechanical properties, the non-gradient designs do not structurally mimic the
natural bone morphology. Looking at an example of the human tibia bone, it consists of an
outer cortical bone with relatively higher density and inner cancellous bone with lower
density. This density variation implies higher mechanical strength at the outer cortical
when compared to inner cancellous bone [96]. The variation in bone structure is not only
in the radial direction but also along the longitudinal direction. Serious bone density
variation in bones such as mandible and vertebrae require the implant to meet these bones’
Young’s modulus to prevent stress shielding. Thus, in vivo implantation of non-gradient
porous structures can still be susceptible to serious stress shielding effects [97]. Therefore,
to account for these structural differences and inhomogeneity of the natural bone, gradient
porous structure designs can be achieved through average porosity % level variation
along the longitudinal direction (longitudinal gradient porous structure) and/or the radial
direction (radial gradient porous structure) [96,97], as shown in Figure 6. Spatial variation
in porosity of gradient lattice structures changes the stiffness and makes it comparable to
cortical or trabecular bone, however, the relationship between the mechanical properties
and biological properties of the gradient structure is not quite clear [98].
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Compared to longitudinal gradient structures, radial-gradient structures appear to
have a higher mechanical strength as the outer region with lower porosity protects the inner
region to avoid destructive localized deformation [96,97]. Furthermore, even within the
radial-gradient design, different unit cell structures (Figures 6c and 7) [99], region thickness,
and region volume fraction [96,97] can significantly impact the mechanical properties of the
gradient porous implant. For radial design, interestingly, mechanical properties of gradient
structures with the same thickness regions increase with an increase in the average poros-
ity percentage level variation, whereas mechanical properties remain approximately the
same for gradient porous structures with the same volume regions. Wu et al. [97] showed
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that the gradient porous structure with transition region is superior to those with a sharp
interface in terms of mechanical properties such as Young’s modulus, yield strength, and
maximum compressive strength. Furthermore, the failure of samples with transition region
occurs towards the higher porosity region as opposed to the interface in sharp interface
samples [96]. Another study conducted by Wu et al. [96] found that Young’s modulus,
Yield Stress, maximum compressive strength, and strain at failure values of radial gradient
samples were within the individual single porosity non-gradient samples values, however,
the elastic limit was significantly lowered as a downside. Studies with both radial and
longitudinal designs combined into a single porous structure will be an interesting topic
of study as these designs will better mimic the natural bone. Additionally, the topological
design of functionally graded porous structures exhibits superior comprehensive mechan-
ical properties to uniform porous structures by a combination of low density, moderate
Young’s modulus, high yield stress, high maximum stress, and favorable ductility [100].
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Studies in bone tissue engineering indicated that a range of mean pore sizes (96–150 µm)
facilitate optimal attachment, whereas large pores (300–800 µm) are necessary for suc-
cessful bone growth in scaffolds [101,102]. On the other hand, an in vitro study by Van
Bael et al. [103] showed that pore occlusion occurs on porous structures with the hexago-
nal pores of pore size 500 µm and such pore occlusion should be avoided in the design
of porous implants. The gradient design can take advantage of high porosity for fluid
permeability without compromising the mechanical strength, implying the superiority of
gradient porous implants, compared to uniform porosity implants.

In vivo studies are desirable for the performance analysis of implants; however, these
in vivo studies are time-consuming and expensive. One of the approaches for the biological
and mechanical performance evaluation is Finite Element Analysis (FEA) simulation. Vee
San et al. [104] used FEA to simulate bone ingrowth and verified FEA results against
histology results for an ovine condylar critical-sized defect model. Furthermore, the FEA
analysis performed on longitudinal gradient implant predicted that higher bone ingrowth
can be expected on implants made from lower Young’s modulus, such as Titanium-tantalum
alloy. With the lower Young’s modulus of these implants, their performance and safety
may be improved. Another study by Davoodi et al. [99] compared deformation and
failure mechanisms of hip implants under compression with experimental results. Both
FE simulation and experimental results exhibited similar failure mechanisms with failure
more sensitive towards the unit cell shape. These studies indicate the feasibility of FEA
analysis in identifying the stress-concentration, implant failure mechanism, and expected
bone ingrowth if implanted in vivo. Some of the significant research articles on gradient
Ti64 implants identified during the literature review are listed in Table 3.
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Table 3. Mechanical Properties of Gradient Porous Structure.

Author Process Porosity Design Strength (Compressive/Tensile) Young’s Modulus Other Findings

Wu et al.
(2021)
[96]

L-PBF
(Ti64 ELI)

Tibia bone-inspired
radial-gradient porosity

Designed Three types of porosity
variations: 5% (77.5%–80%–82.5%),

10% (75 %–80%–85 %), and
20% (70%–80%–90%)

Designs: Same region thickness and
same region volume fraction

Compressive Strength (MPa):
Same Region Thickness:

5%–20%: 104.8–130.8
Same Region Volume fraction:

5%–20%: 95.3–98.7

Same Region Thickness (GPa):
5%–20%: 8.3–10.1

Same Region Volume
fraction (GPa):

5%–20%: 7.9–8.2

Same Region Thickness:
Actual Porosity:

5%: 78.2, 10%: 77.6, 20%: 76.1
Elastic Limit (%):

5%–20%: 1.18–1.20
Same Region Thickness:

Actual Porosity:
5%: 79.9, 10%: 79.4, 20%: 79.4

Elastic Limit (%):
5%–20%: 1.14–1.15

Wu et al.
(2018)
[97]

EBM
(Ti64 ELI)

1—Porosity of 90% on top and 70%
on bottom with the gradual

transition region of 4, 6 and 8 mm
2—Sharp transition with porosity

variation of 5% (77.5%–82.5%),
10% (75%–85%) and 20% (70%–90%)

Compression Stress (MPa)
Transition region
4 mm: 23.5 ± 0.9
6 mm: 25.3 ± 0.8
8 mm: 25.0 ± 1.0
Sharp interface
5%: 49.9 ± 0.1

10%: 17.6 ± 1.0
20%: 22.2 ± 0.7

(GPa)
Transition region
4 mm: 7.4 ± 0.4
6 mm: 7.0 ± 0.1
8 mm: 7.0 ± 0.3
Sharp interface
5%: 8.1 ± 0.6

10%: 5.0 ± 0.4
20%: 6.6 ± 0.2

Strain at failure (%)
Transition region
4 mm: 0.63 ± 0.04
6 mm: 0.65 ± 0.07
8 mm: 0.62 ± 0.01

Sharp interface
5%: 0.91 ± 0.03

10%: 0.85 ± 0.08
20%: 0.56 ± 0.05

Onal et al. [98] L-PBF

Continuous Gradient structure
generated by changing the strut
diameter of a body center cubic

(BCC) unit cell linearly across cell
layers for a smooth transition while

minimizing the effect of
stress discontinuity.

Two gradient designs: One with
thinner struts inside (Dense-Out)
and the other with thicker struts

inside (Dense-In). Gradient
structures designed porosity: 62%,

designed pore size:
0.94 mm–1.33 mm designed strut

diameter 0.40 mm–0.82 mm

Dense-In:
Compressive yield Stress: 114 MPa
Compressive Maximum Strength:

150 MPa
Dense-Out:

Compressive yield Stress: 86 MPa
Compressive Maximum Strength:

128 MPa

Between the stress of 20 MPa and
50 MPa Dense-In: 3.9 GPa

Dense-Out: 3.5 GPa

Optimal gradient structures should
have small pores in their core

(~900 µm) to increase mechanical
strength and large pores (~1100 µm) in

outer surface to enhance cell
penetration and proliferation while

avoiding pore occlusion; Static
mechanical properties of gradient

structure follow the rule of mixtures
and are in the range of their

uniform structures.
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Table 3. Cont.

Author Process Porosity Design Strength (Compressive/Tensile) Young’s Modulus Other Findings

Davoodi et al.
[99] L- PBF

TPMS -based scaffolds with P, G, and
D unit cell shapes

Porosity Gradient: 0.25–0.75 linearly
varying from center to surface

Figure 7 Figure 7

High improvement of fluid permeability
(about 140% for D unit cell structure and
277% for P unit cell structure); Significant

enhancement of strength and
deformability of bending–dominated

architectures when compared to stretching
dominated architectures; Majority of pores

are spherical keyhole voids

Vee San et al.
[104] L-PBF

Cylindrical implant with pores sizes
of 700 µm and 1500 µm to design

porosities of 75% and 53%,
respectively; Sharp interface between

two porosity design sections
Struts in 700 µm and 1500 µm

implant sections designed with Ø
300 µm and 700 µm height, and Ø

750 µm and 1500 µm height.
FEA analysis using

mechano-regulation algorithm

N/A N/A

Over prediction of the extent of
bone-to-implant contact by FEA

models when compared to histology
results; Bone remodeling reduced the

maximum Von Mises stress of Ti64
implants by more than 20%, but the
maximum implant stress is still not

within safety limits of additively
manufactured Ti64.

Xiong et al.
[105] L-PBF

Scaffold designed with a hollow
cylinder with inner diameters of
3.5 mm and three layers of local

porosities along the radial direction.
85% porosity for inner layer

(diameter of 3.5–10 mm), 65%
porosity for intermediate layer

(10–12 mm) and 45% porosity for
outer layer (12–15 mm). Diamond-lie

unit cell (DU) scaffold,
honeycomb-like unit cell (HU)

scaffold, and two additional types of
scaffolds (DS and HS) created with a

support structure made up of four
quasi-cuboid rods embedded to the
middle and outer scaffold layer of
DU and HU. Strut length = 500 µm

Compressive Strength (MPa):
D scaffold: 170.53
H Scaffold: 162.96
DS scaffold: 419.81
HS Scaffold: 536.90

(GPa):
D scaffold: 4.72
H Scaffold: 3.79

DS scaffold: 10.07
HS Scaffold: 10.99

Yield Strength (MPa): D scaffold:
126.81, H Scaffold: 110.85, DS scaffold:

350.09, HS Scaffold: 423.82
Toughness (MJ/m3): D scaffold: 86.88,
H Scaffold: 280.96, DS scaffold: 213.04,

HS Scaffold: 527.46
The addition of support structure in
functionally graded material scaffold
significantly improved strength and
toughness while maintaining elastic

modulus and slightly lowering
overall porosity
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4.3. Fatigue Behavior of Porous Ti64 Structures

The bone implants in the human body bear cyclic loading while walking, running,
and performing other physical activities over a long period of time [102,106]. The porous
Ti64 bone implants have a structural function and are expected to have a lifespan of several
decades [107]. Therefore, a fundamental understanding of the fatigue behavior of porous
Ti64 implants plays an important role in the design and implementation of porous Ti64
implants for orthopedic applications [102,106–108]. Similar to the features controlling
conventionally processed products, the fatigue performance of AM Ti64 implants is gov-
erned mostly by surface finish/roughness, residual stress, internal manufacturing defects,
microstructure, and loading conditions [109]. Several papers [107,110–112] listed in Table 4
show that the normalized fatigue strength in their study is lower than the fatigue strength
of the solid material of the same microstructure for porous Ti64 structures. This drop in the
fatigue strength is mainly associated with the inherent defects coming from the fabrication
process itself, namely, internal defects and poor surface roughness. Furthermore, pore
design/geometry and strut thickness were also found to have an influence on the fatigue
strength of these porous Ti64 samples [63,110].

Table 4. Fatigue Behavior of Porous Ti64 Structure.

Author Process Porosity Design Fatigue Studies Key Findings

Kelly et al.
[63]

L-PBF
(TI64 ELI)

Porous structure with repeating diamond unit
cell with a designed pore size of 300–400 µm.
Resulted in an average porosity of 45.4% and

an average strut size of 174 µm.
Post-processing of samples included Hot

Isostatic pressing (HIP), surface treatment,
and anodization treatment

Tensile fatigue test at
a frequency of 5Hz

with R = 0.1

Reduced surface roughness
after surface treatment but
no improvement of fatigue

strength. Fatigue behavior at
2 × 106 cycles: Max. Stress

applied = 40 MPa and Stress
Amplitude = 18 MPa

Xiong et al.
[69] L-PBF

Porous scaffold (Ø 4 mm, height 8 mm) with
dense cores of varying diameters (1.2 mm,

1.8 mm, and 2.4 mm). Diamond unit cells with
a pore size of 400 µm and strut size of 200 µm
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Compression–
compression loading

tests at a constant
loading frequency of
15 Hz and constant
load ratio (R) = 0.1

Inserting a dense core into a
porous scaffold is an effective

way of strengthening the
mechanical properties and

fatigue strength; High
normalized fatigue strength

at 106 cycles of
approximately 0.5 and high
effective fatigue strength of
approximately 165.46 MPa
was observed for porous

structure with 1.8 mm core;
Debris dropping from the

tested samples observed at
loading cycle far short of

fatigue failure

Wu et al.
[106] L-PBF

Cylindrical specimens with a sandwiched
architecture such that 49 vol.% porosity lattice

was built in between top and bottom solid
Ti64. Height of top and bottom solids = 5 mm

each. Medium porous structure
height = 15 mm. Diameter of

specimen = 13 mm. New unit cells were
designed with 12 planes, 4 struts inclined at
45◦, and 3 straight struts along three main

axes (x, y, and z). The length of the unit cell in
x, y, and z-direction were 2 mm, 2 mm, and

1.44 mm, respectively. Strut Width = 250 µm.
Samples HIPed at 1000 ◦C/150 MPa for 1 h

followed by furnace cooling

Compression fatigue
test at a frequency of

10 Hz and R = 0.1

The HIP process improved
fatigue endurance ratio and
fatigue strength at 106 cycles
from 0.3 to 0.55 and 43 MPa
to 55 MPa mostly due to the
phase transformation from

brittle α’- martensite to
tough α + β mixed phases

after HIP.
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Table 4. Cont.

Author Process Porosity Design Fatigue Studies Key Findings

Lietaert
et al. [107]

L-PBF
(Ti64 ELI)

Gradient porous design with the highest
porosity at the middle. 20% structural density
at middle and linearly increasing structural

density towards the end (20% to 100%).
Diamond unit cell type used.

Sample total height 105 mm and
diameter 10 mm

Low frequency cyclic
test at stress

amplitudes: 10,
30 and 50 MPa
Compression–

compression tests at
stress ratio (R) of 10,

tension-tension test at
R = 0.1 and

tension-compression
test at
R = −1

Most fracture sites are
located close to the nodes
due to the high stresses at

these locations;
Compression–compression
and tension–tension fatigue

regimes lead to a shorter
fatigue life than

tension–compression loading
due to the presence of a

mean local tensile stress for
the first two load conditions

Mahmoud
et al. [110] L-PBF

Three gyroid designs:
G4 with uniform porosity and

strut size 400 µm
G2 with uniform porosity and

strut size 200 µm
G24 with functionally graded porosity and

strut size 400 µm

Compression-
compression fatigue
testing at a frequency

of 15 Hz and load
ratio of R = −1

G2 had the highest
normalized fatigue

properties (approximately
twice) compared to G4 and
G24, as G2 designs higher

ductility, lower internal
defects, and small surface

area per strut; Compressive
strength of G24 was higher

than G4 and G2, thus can be
more beneficial for

load-bearing implants

S. Zhao
et al.

(2016)
[112]

EBM
Three reticulated meshes: cubic, G7, and the

rhombic dodecahedron with porosity of
63.2%, 64.5%, and 62.1%, respectively

High-cycle
compression fatigue
test with R = 0.1 and

frequency of
10 Hz in air

Normalized fatigue strength
ranges from 0.10–0.25 at

106 cycles; Cyclic ratcheting was
dominating mechanism that
determined the compressive

fatigue of meshes;
Optimization of buckling
and bending deformation
through cell shape design,
cellular solids with high
fatigue strength and low

modulus can be fabricated

Hrabe
et al. [113] EBM

Regular periodic porous structure with the
diamond unit cell, relative densities ranging
from 0.17–0.40 and pore sizes ranging from

approximately 500 µm to 1500 µm

Compression-
compression fatigue
test at a frequency of
15Hz and load ratio

R = 0.1

Normalized fatigue strengths
of 0.15 to 0.25 for 106 cycles.
Lower fatigue lifetime than
solid material due to stress
concentrations from strut

surface features, stress
concentrations from closed
porosity within struts, and

microstructure with less than
optimal high-cycle
fatigue resistance.

Wu et al.
(2020)
[114]

L-PBF

Porous specimen design with new
cuboctahedron unit cell same as previous

study by Wu et al. [107]
Strut width adjusted to build three types of

specimens with three different porosities
(33 vol.%, 50%, and 84 vol.%) between the

solid top and bottom sections
Samples HIPed at 1000 ◦C/150 MPa for 1 h

followed by furnace cooling

Compression fatigue
test at a frequency of

10 Hz and R = 0.1

Fatigue endurance ratio at
106 cycles for L-PBF

specimen decreased from
0.5 to 0.15 with an increase in

porosity from 33 vol.% to
84 vol.%. However, for the

HIPed samples with
different porosities, the

fatigue endurance ratio was
higher than 0.45 at 106 cycles
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Table 4. Cont.

Author Process Porosity Design Fatigue Studies Key Findings

M.
Dallago

et al. [115]
L-PBF

Six different cellular structures:
regular cubic cells CUB-NS

single staggered cubic cells CUB-S
double staggered cubic cells CUB-2S

regular cylindrical cells CYL-R
single staggered cylindrical cells CYL-S

double staggered cylindrical cells CYL-2S

Axial fatigue test
with 1 kN load cell
operating at 120 Hz
frequency with zero

mean stress and
R = −1

HIPing treatment
considerably reduces

internal porosity but doesn’t
have a clear effect on fatigue

resistance; Cellular
structures designed with less

fine geometrical details
appeared to be less affected

by internal porosity

S. Zhao
et al.

(2018)
[116]

EBM

Three designs with rhombic
dodecahedron structures:
G1 with strut angle of 42◦

G2 with strut angle of 39◦

G3 with strut angle of 36◦

High-cycle
compression fatigue
test with R = 0.1 and

frequency of
10 Hz in air

Designed graded cellular
structures exhibited a

combination of low density,
high fatigue strength, and

energy absorption, which in
turn are significantly superior
to cellular metallic structures
with uniform density; Cracks
initiated and propagated in
the constituent meshes from

high to low strength
progressively until the graded
cellular structure failed with

increased fatigue cycles

Pérez-
Sánchez

et al. [117]
EBM

Two types of single struts: 1 mm and
0.6 mm diameter manufactured at 45◦ and

90◦ build inclination

Fatigue 3-point
bending test at a

frequency of 15 Hz
and load ratio of

R = 0.1

Mechanical properties from
static testing and fatigue

behavior of 45◦ build
orientation struts were better

than that of 90◦ vertical
struts; Abrupt decrease in the
fatigue curve was observed
in low cycles, obtaining the

fatigue strength for
106 cycles between 15% and
25% of the flexural strength

Günther
et al. [118] L-PBF Figure 8

Resonant testing
machine with
symmetrical

push-pull loading at
R = −1 and 105 Hz

Figure 9

Razavi et al. [108] developed non-porous and induced microporous samples with inter-
nal voids and defects across each layer of parts using LENS technology. When comparing
non-porous and porous specimens under uniaxial tensile loading fatigue test with a stress
ratio of R = 0.01 (stress or load ratio (R) is the ratio between the minimum compressive
fatigue stress (σmin) and the maximum fatigue stress (σmax)), porous samples showed
75% reduction in stress range at one million cycles. This implies porosity to be the main
contributor to a significant reduction in fatigue life. Studies by Li et al. [102,119] used
vacuum diffusion bonding of alloy meshed to develop a non-gradient porous Ti64 structure
with a designed porosity of 50%, 60%, and 70% and found the normalized fatigue strength
at 106 cycles to be in the range of 0.50–0.60 under compression-compression fatigue test at
a load ratio of 0.1. The normalized fatigue strength was higher than the normalized fatigue
strength of other porous Ti64 alloys developed using powder sintering and L-PBF.

Furthermore, the fabrication and post-processing conditions also highly influence the
Ti64 porous implant material, its mechanical properties, and even its microstructure. In
L-PBF, inherent heating and cooling speeds induce directionally dependent grain growth,
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internal porosity, and anisotropic microstructure [63]. Typically, additional post-processing
heat treatment such as stress-relieving or hot isostatic pressing (HIP) are utilized to reduce
internal porosity, to control the microstructure such that it improves mechanical properties,
particularly ductility [63]. With HIP treatment, Wu et al. [114] reported that the strut poros-
ity of L-PBF specimens were reduced to less than 0.001 vol.%. Regarding the microstructure,
the α’- martensite phase, which is a common phase on the L-PBF specimens, can be trans-
formed into the tougher α + β mixture phases by using the HIP process [106,114]. This
phase transformation helps in resisting the propagation of fatigue cracks by crack blunting
and thereby improving fatigue performance [106,114,120]. Furthermore, the fatigue life
of porous Ti64 structures can also be improved using a sandblasting process as it induces
compressive stress on the strut’s surface and removes partially melted particles [121].

In many load-bearing applications, compression is the primary loading mechanism,
however, implants can sometimes experience tensile loads due to the stochastic nature of
forces on the human body [63]. Pure compression loading does not usually result in fatigue
failure in most continuous materials as compressive loads may suppress crack growth and
prevent fatigue failure from happening [49]. When compressive fatigue loads are applied
to porous structures at a macro-scale, tensile stress may be developed in the individual
struts. Depending on the porous design, some unit cells can result in much more tensile
stress than others [49]. However, a few literature studies focused on fatigue behavior at
tensile loading are available. The detailed fatigue behavior of porous Ti64 implants under
different testing conditions is presented in Table 4.
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Reprinted with permission from ref. [118]. 2018, Elsevier Ltd.



Metals 2022, 12, 687 22 of 34

5. Multifunctional Implant Design and Development

Innovative multifunctional porous implant design and development can be a possible
approach towards better implant life and a reduced number of revision surgeries. As indi-
cated in Figure 10, with additive manufacturing and tissue engineering, porous titanium
implants can be custom fabricated to match patients’ anatomical structure with desirable
porous geometry and multifunctionality for osseointegration. Poor implant integration
with native bone at the implant interface is one of the major causes of implant failure [99].
Table 5 shows that depending on the objectives of studies, multifunctional porous implants
have been developed for the improvement of mechanical properties, bonding on the bone-
implant interface, bone volume fraction, bioactivity, osteointegration, antibacterial implant
design, etc.
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Figure 10. Schematic of an iterative optimization process for hybrid additively manufacture (AM)
patient-specific Ti implant fabrication including (A) critical-size bone defect data collection by
CT scanning followed by (B) modeling through rational design, which is (C) additive manufac-
tured with precisely controlled architectures. After necessary surface modification, implants can be
(D) bio-functionalized through cell/growth factor incorporation with the assistance of bio-fabrication
strategies and subsequent transplantation to repair the defect or (E) incubated for in vitro maturation
in a bioreactor and then transplanted, leading to (F) rapid bone and vasculature formation. Reprinted
with permission from ref. [54]. 2020, Elsevier Ltd.

Ti-alloys have poor tribological behavior owing to their high friction coefficient and
can cause significant adhesive wear generating debris resulting in inflammation and bone
resorption [53]. In addition, the performance of ‘as-built’ Ti-alloy implants by AM processes
are limited due to their low surface quality, surface imperfections, and defects introduced
due to layer-by-layer deposition processes [53]. To resolve such issues, surface treatment
can be used to enhance the resistance to tribology or corrosion of the as-fabricated AM
parts [53]. Surface treatment alters surface roughness and modifies implant topography
to improve biological response before implantation [38,125]. Studies show that surface
treatment can be performed by sandblasting (S), electropolishing, acid-etching (E), anodiza-
tion oxidation (AO), anode spark oxidation (ASO), heat treatment, and laser treatment
(laser polishing, laser shock peening, laser remelting) [38,53,125]. Surface modification
technique adds material of various thicknesses superficially on the implant surface to
reduce roughness, mask cracks, improve surface strength, and improve tribological and/or
corrosion resistance. Surface modification can be conducted by adding silver nanoparticles
(AgNPs), silver nitrate (AgNO3), antibiotic mesoporous bioactive glass (MBG), calcium
carbonate (CaCO3), and hydroxyapatite [38,53,125].
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Multifunctional porous implant designs are mostly found to be subjected to sur-
face modification treatments for property enhancement. The majority of the surface
modification studies focus on coating Hydroxyapatite (HA) or other calcium phosphate
compounds such as Tri-calcium phosphate (TCP) for improving bioactivity, biocom-
patibility, and cellular activities, such as cell adhesion, proliferation, differentiation,
osteointegration, etc. [38,53]. Chudinova et al. [126] performed electrophoretic deposi-
tion of near-spherical calcium phosphate nanoparticles (CaPNPs) on the surface of AM
Ti64 scaffolds and found homogeneous deposition of CaPNPs on Ti64 scaffolds surface
with an improvement of both cell adhesion and growth. Besides HA surface modifica-
tion, Jia et al. [127] developed a novel porous Ti64 implant with antibacterial properties
via Electron Beam Melting combined with micro-arc oxidation (MAO). The release of
silver nanoparticles (AgNPs) after implantation within the body acts as an antibacterial
agent, which prevents biofilm formation at the bone-implant interface, thus enhancing
the implant success rate. Another study by Fazel et al. [39] developed a multifunctional
layer on Ti64 implants, a hierarchically structured surface including an interconnected
microporous TiO2 layer containing silver nanoparticles and hydroxyapatite nanocrys-
tals through plasma electrolytic oxidation (PEO) followed by hydrothermal treatment
(HT), where they found that HT and spindle-like HA nanocrystals showed sustained
antibacterial activity, a higher level of pre-osteoblasts metabolic activity, and a higher
level of alkaline phosphate activity as compared to PEO-treated implants without HT.
Hengel et al. [128] designed a novel functionality-packed implant using a surface biofunc-
tionalization technique to prevent aseptic loosening through stimulation of the osteogenic
differentiation of stem cells, as well as septic loosening through the short-and long-term
delivery of antibacterial agents from the entire volume of porous structure (detailed
multifunctionality design listed in Table 5). The multiple active agents were incorporated
into the micro- and nano-topographical structure uniformly throughout the entire surface.
In addition to the surface modification, Li et al. [129] mixed Ti64 powder with β- TCP to
create interconnected porous structures and evaluated implants’ in vivo tissue reaction
and osteoinductive potential. Detailed information on the functionalization of additively
manufactured Ti alloys for orthopedic implants can be found in the review paper by
Jing et al. [27].

The use of Mg alloys in implants helps in reducing the relative elastic modulus, makes
implant bioresorbable, and more importantly, helps in creating bioactive systems [15,130].
Perets et al. [130] designed biodegradable Titanium-Magnesium (Ti-Mg) non-gradient
porous implants. Even though the utilization of bioresorbable material with Ti64 has high
potential in future implant materials, detailed studies on the in vivo corrosion rate of these
novel porous implants are required, otherwise, the multifunctional porous implants may
end up losing their mechanical integrity before bone healing, demanding for revision
surgery. Furthermore, the potential of the NiTi–Ti64 multi-material cellular structured
hip implant has been studied by Bartolomeu et al. [131] with a broader objective of creat-
ing implants with customized stiffness, superior wear resistance, and a controlled NiTi
outer region volume change. Multifunctional porous implant studies are mostly found
to be focused on evaluating the performance (mechanical and biological) of as-prepared
porous implants.
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Table 5. Multifunctional Porous Implants.

Author Process Multifunctionality Design Test Subject Study Duration Key Findings

Rahmani et al.
[68] L-PBF

99.9% purity wollastonite (CaSiO3) with
a particle size of 1–5 µm filled and

sintered (frittage) inside an
argon-atomized Ti64 cellular lattice
structure via an SPS machine; Five
different TPMS scaffold structures

N/A N/A

L-PBF-manufactured Ti64 lattice can be sintered via SPS
along with CaSiO3 for load-bearing bone replacements;

Rectangular and honeycomb were identified to be
novel cellular scaffolds for high compressive

load-bearing and biological application respectively;
Rectangular scaffold suitable for oxygen transport and
fluid permeability, whereas honeycomb is best for the

growth of cells.

Goto et al. [83] EBM ACaHW treatment
(NaOH, CaCl2, heat, and water) Rabbits 4, 8, and 12 weeks

Treated implants showed direct bonding of bone to the
metal surface without the interposition of fibrous tissue

(higher affinity to the bone than the untreated one)

Jia et al. [127] EBM-MAO Silver nanoparticles (AgNPs) deposition
onto the micro-roughened surface In-vitro 5 days

Micro-nanoporous MAO layer stimulated cell adhesion
and considerably increased the cell number and

improved cell morphology while subsequent
nano-silver immobilization, inspired by the mussel’s

adhesive versatility, yielded potential
antibacterial surfaces

Hengel et al.
[128]

L-PBF
(Ti64-ELI)

Miniaturized implant geometry
optimized for murine femora

implantation; Hexagonal unit cell, Total
Length 4 cm and diameter 0.5 mm. A

surface-to-volume ratio of 35.6
Biofunctionalized using plasma

electrolytic oxidation to locally release
both osteogenic (i.e., strontium) and
anti-bacterial (i.e., silver ions) agents,

along with the incorporation of
hydroxyapatite into the surface of the

implant in a same single-step

In vitro and Ex vivo
(mouse)

In-vitro: 1, 3, 7 and
11 days

Ex-vivo: 24 h

Tremendous potential use of synergistic antibacterial
behavior between silver ions and strontium allowing

for simultaneously reduced required dose of silver ions
by 4–32 folds while inducing osteogenic behavior
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Table 5. Cont.

Author Process Multifunctionality Design Test Subject Study Duration Key Findings

Li et al. [129] 3DF 1 Ti64-β-TCP hybrid scaffold with
interconnected porous network Dogs 12 weeks

Hierarchical porous structure and mechanical
properties between cancellous and cortical bone.

Enhanced bioactivity of hybrid scaffolds with 10 wt.%
TCP ceramic as compared to the scaffold without and

with a lower concentration of TCP

Perets et al.
[130] L-PBF

Permanent matrix of Ti lattice infiltrated
with biodegradable Mg-based alloy

(Mg-2.4%Nd-0.6%Y-0.3%Zr)
In-vitro 24 h and 48 h

Stable stress–strain curve and higher Ultimate
Compressive Strength and Yield point compared to Ti-
lattice; positive cell viability response compliant to the

ISO-10990-5 requirements

Bartolomeu et al.
[131] L-PBF

Dense Ti64 and/or Ti64 cellular
structure fabricated on top of NiTi

cellular structure to create multi-material
implant design

N/A N/A

Effective mechanical interlocking (shear strength of
≈33.2 MPa) between NiTi and Ti64 material in the

transition region; the austenite phase on the NiTi region
indicated the need for further investigations regarding

thermal treatments for the martensite
shape-memory phase

Lei et al. [132] L-PBF
Surface bio-activation by alkaline-heat

treatment (5 mol L−1 NaOH, 98% wt. for
1 h at 60 ◦C)

In-vitro 1, 3, and 7 days

The overall distribution of cells on regular porous
scaffolds was similar to the orderly arrangement of
cultivated crops in the field, and the microporous

structure of scaffolds with an aperture close to cell size
was more suitable for cell proliferation and adhesion

Kayacan et al.
[133] L-PBF

Transitive porous implants of
semispherical and elliptical pores of

500 µm at outer region and cell
development channels of 200 µm at the

inner region

Sheep 12 weeks

Semispherical porous structure resulted in the
formation of a strong and durable bond between tissues

and implant
Due to the transitive porous structure, a strong and

durable tissue bond could be formed at the
bone–implant interface
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Table 5. Cont.

Author Process Multifunctionality Design Test Subject Study Duration Key Findings

Zhang et al.
(2018) [134] L-PBF

Porous scaffolds with 5 strut sizes—0.2,
0.25, 0.3, 0.35, and 0.4 µm

Hydroxyapatite layer coated at the
surface to promote osteoconductivity

Beagle Dogs 1, 4, and 6 months

No infection of the surgical sites, implants dislocation,
or adverse reactions, such as inflammation or foreign
body reaction around the implantation sites; Beagles

limp on their right legs in the first two weeks, but they
can walk freely after one-month implantation. After
four months, the implants had little effect on their

movement. After six months, new bone tissues
gradually grow into porous implants. The damaged

legs were completely repaired, and it was hard to detect
the initial injury from the beagle’s gait walking.

Li et al. (2019)
[135]

L-PBF
(Ti64 ELI)

Alkali–acid-heat (AH) treatment on the
porous Ti64 scaffold (AH-porous Ti64)
followed by hydrothermal treatment to
enable HA coating with nanopillar-like

morphology (HT/AH-porous Ti64)

In-vitro ALP activity: 7,
14, and 21 days

HT/AH-porous Ti64 exhibited the highest apatite
formation ability and best affinity to fibronectin and

vitronectin; In vitro studies indicated improved adhesion
and differentiation on the HT/AH-porous Ti64 as

compared with the porous Ti64 and AH-porous Ti64

San Cheong et al.
[136] L-PBF

Hydroxyapatite (HA) Coating on the
porous scaffolds with pore sizes of 700
and 1500 µm; FEA and in vivo analysis

Sheep 6 weeks

Novel Finite Element algorithms to simulate bone
ingrowth to improve implant design; FEA models results

showed that reduction in implant stiffness increases
bone ingrowth; Osteoconductive HA coating improved

osteointegration—bone volume increases by >10%.

Bandyopadhyaya
et al. [137]

LENSTM

(Ta and Ti64)

30 vol.% porous Ti64 (30Ti64)
30 vol.% porous Ti64 with titania (TiO2)

nanotube modified surface (30TNT)
30 vol.% with porous Ta (30Ta)

Rat 5 and 12 weeks

30TNT showed comparable osteoid formation to 30Ta
around the implant, which is significantly higher than
30Ti64 controls at 5 weeks; 30Ta outperform 30TNT and

30Ti64 at 12 weeks

MacBarb et al.
[138]

EBM
(Ti64 ELI)

AM discs with a 1.25 mm thick- solid
base and a 0.75 mm thick- porous

surface layer; Layer of nanocrystalline
HA (~20 nm thick) coated to the disc

surface using a dip, spin, and heat
treatment technique; Target Pore

size—300 µm and porosity 60–70%
porosity; Measured mean Pore size

290.6 µm and mean porosity of 60.0%

In-vitro 2, 7, 14, and 21 days

Cells on AM discs exhibited expedited proliferative
activity when compared to titanium plasma spray (TPS)
coated samples; 48% higher calcium production on AM
discs than on TPS discs; No significant enhancement of

cellular activities with HA-coating; Additive
manufactured porous titanium surfaces can be

alternative to TPS-coating for orthopedic
spinal implants

1 Three-dimensional fiber deposition (3-DF).
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6. Current Challenges and Literature Gaps

New bone formation is normally facilitated by spaces in pores for bone growth and
larger porosity of over 75% as they improve the bodily fluid permeability [99]. The higher
the porosity of implants, the weaker the mechanical strength it would be. A higher degree
of control over the macro-level-porosity pore sizes and strut thickness can be achieved
through lattice/unit cell designs, however, control over the microlevel porous design can
be challenging, especially for processes such as L-PBF. The use of additive manufacturing
for the fabrication of medical devices has two major advantages of ‘batch-size-indifference’
and ‘complexity-for-free’ [48]. Batch-size-indifference provides the feasibility of producing
patient-specific biomaterials, implants, and surgical instruments that exactly match the
complex and highly variable anatomy of individual patients. Whereas, complexity-for-
free provides freedom to designers to use complex geometries that give rise to favorable
properties and advanced functionalities [48]. Implants made of Ti64 alloy are biocompatible
in nature, however, the bioactivity of Ti64 implants can be enhanced both in vitro and
in vivo by surface coating them with bone-like apatite for better bone ingrowth performance
and success rate of the implants [139]. Orthopedic implants can be patient-specific and the
need for additional surface coating/surface activation adds to the manufacturing costs of
the implants [41,53].

In addition to the mechanical properties and porous structure, permeability, fatigue
behavior, surface area and many other properties of additively manufactured porous
implant structures can be adjusted through the application of geometrical designs [39].
Even with the optimum geometrical design, it is difficult to address all the challenges
associated with the orthopedic implants and there exists a tradeoff between porosity and
stiffness/strength while simultaneously promoting osseointegration and avoiding pore
occlusion [39,64,103]. Muthaiah et al. [53] suggested that a new functionally graded porosity
implant with bioceramic coating should be developed to mimic natural bone and provide a
good interfacial bond between bone tissue and metallic implants. Currently, the primary
challenges in the clinical use of AM porous implant structures are in guaranteeing the
consistency of material produced and its optimum performance [43].

It is especially challenging to evaluate periprosthetic bone loss prior to an operation
based on the X-rays and computed tomography (CT) and makes it difficult to design the
implant accurately [92]. Furthermore, the proneness of porous implants towards fatigue
failure as compared to their solid counterparts can be a challenging factor that requires
careful consideration, but limited studies have been conducted on the fatigue behavior of
porous structures. In addition, the orthopedic implants are often subjected to cyclic tensile
load as discussed in Section 4.3, which demands more studies on fatigue tensile behavior
of these porous structures.

Many researchers lack the resources and manpower for in vivo testing, although these
in vivo studies form an essential part of novel implant performance studies. Furthermore,
the in vivo studies are performed for a limited time duration. Extensive and rigorous
animal studies for longer durations is required for novel and innovative multifunctional
porous implant designs, as the porous implants’ strength/performance may deteriorate
differently than what was observed in shorter duration studies, such as for Ti64 implant
infiltrated with biodegradable material. Despite the closeness of gradient designs to bone
morphology, compared to non-gradient designs, most of the articles in the literature were
found to be focused on non-gradient Ti64 structures. More comprehensive studies on
gradient porosity design are required so that the findings of varying research approaches in
AM implant development converge into addressing current challenges, such as insufficient
bone, vascularization, contiguous infection, and implant longevity [54]. Furthermore, as
most of the additive manufacturing processes demand post-processing, studies on the
effect of post-processing treatments on internal porosity, surface roughness, mechanical
properties, fatigue behaviors, and biocompatibility properties can be of particular interest.

The application of conventional surface finishing techniques to AM porous implants
is insignificant mainly due to porous structures, partial adhesion of powder feedstock and
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variable roughness with the orientation of the AM implants and possible needs for variable
finishes across implants, and therefore demands the need of new advanced surface finishing
techniques [43]. Although there has been huge progress in the field of surface engineering
on AM manufactured Ti-implants, there is still significant scope for continued research such
that a thorough understanding of the process involved in each surface treatment, systematic
experimental studies, advanced analytical solutions, and computational simulations can be
achieved [53]. The regulating agencies around the world are quite aware of the importance
of this issue, however, with the rapid development and technological advancement in
AM of medical devices, these directions have not been necessarily kept up and still pose
some unique challenges in meeting requirements and establishing regulatory standards
associated with quality assurance in manufacturing [54]. More importantly, there is a need
for re-scrutinizing the regulatory position on the breadth of the ‘design envelope’ covering
mass-manufactured AM porous implants [43].

7. Conclusions

Additive manufacturing technology is gaining rapid interest in orthopedic implant de-
sign and development due to its design freedom, which allows for patient-specific custom
implant designs. In this systemic review, besides the porous design, mechanical proper-
ties, in vitro and in vivo biological properties, fatigue behaviors and multifunctionality
of AM porous Ti64 implants were carefully reviewed and presented thoroughly for all
the AM processes currently utilized in the design and development of these porous Ti64
implants/scaffolds. This review article helps in mitigating the current gap in the existing
review articles on AM porous Ti64 related to the review of different AM processes, fatigue
behavior and critical design aspects of these porous implants. To reduce the stress-shielding
effects of solid titanium implants, researchers are currently focusing on the design and
development of porous Ti64 alloy implants along with the aim of creating novel multi-
functional implants. Most of the porous Ti64 implants were fabricated using either a laser
powder bed fusion or an electron beam melting process. Research studies on porous Ti64
implants suggest that they can be tailored to mimic the mechanical properties (Young’s
modulus, mechanical strength, etc.) similar to natural bone. Different macroporous cellular
structures can be utilized to improve the fluid permeability/cellular activity within the Ti64
bone implants. Furthermore, bioactive, and antibacterial surface modification, infusion
of bioactive materials within the Ti64 matrix, and surface treatment to form functionally
packed porous implants have a perspective towards future multifunctional orthopedic
Ti64 alloy implants. Since gradient porous design mimics closest to the natural bone and
has promising potential as orthopedic implants/scaffolds, more studies on these gradient
designs are necessary. Further in-depth studies on design, mechanical, fatigue, biological,
and multi-functionality aspects of porous Ti64 along with the convergence of future study
findings, can turn the porous Ti64 implants into feasible alternatives for the currently ex-
pensive Tantalum implants. The comparison of AM porous Ti64 with other manufacturing
techniques for orthopedic implant/scaffold can also be an interesting topic for future study,
such that their respective advantages and disadvantages can be identified.
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