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Abstract: Repairing the worn surfaces of wear-resistant workpieces, such as rollers, is one of the
main application fields of surface treatment, but the repairing time is often not considered. In fact, the
repairing time is very important, since it affects the repair quality and service life of wear-resistant
workpieces. In this paper, a remelted gradient coating was prepared on a ductile iron plate by plasma
transferred arc to simulate the repair treatment of wear-resistant workpieces. First, two positions in
the remelted gradient coating were defined, i.e., the top of the gradient remelted layer was defined
as M1, and the position where the hardness was two-thirds of the top of the remelting layer was
defined as M2. Next, the time taken to repair the workpiece when the working surface reached
M2 was proposed. Finally this method was verified by a comparative study on the microhardness
and wear resistance of the M1 and M2. In this paper, the M2 was located at a ~0.5 mm from the
top of the remelted gradient layer. The results show that the microhardness of the position of the
M1 was higher than that of the position of the M2. However, the wear resistance of the M1 was
worse, as confirmed by the wear rates. At the same time, cracks and fragments were observed on
the worn surface of the M1 and M2 positions. Furthermore, the coefficient of friction (COF) of the
position of M1 was noted to be first higher and subsequently lower than that of the position of M2,
owing to the grinding ball entering the substrate. The abrasion mechanisms of both regions were
observed to be complex, including oxidative wear, adhesive wear, delamination wear, and/or fretting
wear. The experimental data indicate that it is feasible to determine the repair time according to the
microhardness of workpieces.

Keywords: microhardness; wear resistance; remelting; ductile iron; plasma transferred arc

1. Introduction

Serious wear issues in workpieces made with ductile iron, such as rollers, industrial
valves, etc., have led to an urgent demand for improvements in hardness and wear re-
sistance. Therefore the worn surfaces of these workpieces are repaired in the production
process. This is an economical and simple method that is of great significance in increasing
the service life of workpieces and reducing energy consumption in the industry. As far as
the production technology is concerned, the material modification techniques usually used
in the industry include casting [1–3], forging [4–6], welding [7,8], heat treatment [9–11], and
surface modification [12–16]. Among these techniques, research into the use of high-energy
beams to improve the microstructure and performance workpiece surfaces has received
significant attention because high-energy beams have a wide range of potential applications
in workpiece-surface modification, since they offer significant advantages during repair
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of these worn surfaces, including high energy density and processing speed. Ductile iron
usually serves as a workpiece material, and its performance needs to be further improved
to fulfil the demands of the rapid development of industrial technology. Many literature
reports indicate that the microstructure and properties of ductile iron were improved using
a high-energy-density arc with laser and plasma [17–25]. Li et al. [20] simulated the reman-
ufacture processing of ductile iron using laser cladding to improve the microstructure and
mechanical properties by using different groove and cross-cladding processes; the results
indicated that the microstructure of the surface cladding was martensite and lamellar
cementite, that the microhardness decreased significantly in the bottom of the grooves, and
that the ultimate strength of the specimen was 502 MPa. Cheng et al. [21] comparatively an-
alyzed the surface-melted microstructure and properties of gray and nodular cast irons by
using a plasma transferred arc; the graphite dissolved near the surface and a white cast-iron
structure transformed after the solidification. After solidification, the microhardness in the
surface layer was higher than that in the specimen substrate. Ceschini et al. [22] first created
a surface treatment for ductile iron at two different energy intensities and then carried out
dry sliding wear. The results showed the lower depth of the hardened layer, and the surface
hardness was measured in the ductile iron treated by the lower-energy-intensity laser, while
the wear resistance of the ductile iron was enhanced. In addition to high-energy-beam
surface remelting, the surface cladding and surface alloying of ductile iron have also been
studied. Pagano et al. [23] studied the transformation of the microstructures, hardness, and
tribological performance of a ductile cast-iron surface remelted by laser, and the results
indicated that the wear resistance, hardness, and coefficient of friction of the ferritic ductile
cast iron were increased simultaneously. Cao et al. [24,25] remelted and alloyed on the
surface of ductile iron using a plasma transferred arc. The results showed that either
remelting or alloying can improve the surface hardness and wear resistance of ductile iron.

It can be seen from the aforementioned analysis that surface modification is an effective
way to improve the surface microstructure and performance of workpieces made with
ductile iron, especially their hardness and wear resistance, but the repair time of workpieces
made with ductile iron has not received attention from researchers. In fact, to determine
the repairing time of workpieces made with ductile iron is crucial for industries because it
influences the quality and service life of workpieces.

In this study, the top of the gradient remelted layer was defined as M1, and the position
where the hardness was two-thirds of the top of the remelting layer was defined as M2. The
aim was to determine the repairing time of workpieces made with ductile iron according to
a surface hardness of two-thirds, i.e., after the workpiece was repaired, a portable hardness
tester was used to measure the hardness of the surface. When the hardness was two-thirds
of the surface hardness, it was necessary to repair the worn surface again. Finally, the
feasibility of this method was verified by the comparative microstructure, microhardness,
and wear resistance of the M1 and M2 positions in the remelted gradient layer fabricated by
the plasma transferred arc. This study will provide a theoretical foundation for determining
the repair time of the workpieces made by the ductile iron.

2. Materials and Methods

The substrate used was EN-GJS-500-7 (3.42 wt% C, 2.58 wt% Si, 0.38 wt% Mn, 0.014 wt% S,
and 0.040 wt% P). The substrate’s microstructure included ferrite, pearlite and graphite
nodules, as shown in Figure 1.

The surface remelting of the ductile iron was carried out at the plasma transferred-arc
surface-modification processing center (developed by Wuhan Huacai Surface Technology
Company, Wuhan, Hubei, China) [24]. A diagram of plasma processing is shown in
Figure 2a.
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Figure 2. Schematic diagram of remelting treatment and determined research position: (a) the
processing principle of plasma transferred arc, (b) the position definitions of M1 and M2 in this paper.

The processing parameters were selected after several optimization experiments,
which were as follows: arc current of 60 A, scanning speed of 1000 mm/min, nozzle
diameter of 4 mm of plasma transferred arc, 4 mm of work distance, 2 L/min of plasma
gas flux (Ar), and an overlap ratio between tracks of 25%. After the surface remelted, the
cross-section specimens were sectioned, ground, and polished, and then the microhardness
was measured using a TMVS-1 microhardness tester with a load of 1.96 N and a dwell
time of 15 s to confirm the position of the M2, which was located about 0.52 mm from the
top of the remelted gradient layer, as shown in Figure 2b. Next, the specimens were etched
by a solution of 4 mL nitric acid and 96 mL ethanol to reveal the microstructure in the
remelted gradient layer. The microstructure was analyzed using XJL-03 optical microscope
(OM) and scanning electron microscope (Leo 1530 FEG SEM, Carl Zeiss AG Co., Ltd.,
Oberkochen, Germany) in combination with energy-dispersive X-ray spectroscopy (INCA
EDS, Oxford Instruments Co., Ltd., Bucks, England) on the cross-sectional specimens. The
phase composition in the M1 and M2 was investigated using X-ray diffraction (XRD-6100,
Shimadzu Instruments Co., Ltd., Kyoto, Japan) with Cu-Kα radiation generated at 40 kV
and 40 mA, with a scanning speed of 5◦/min. Subsequently, the layers with thicknesses
of 0.52 mm from the top of remelted gradient layer were first ground and then polished.
Finally, the wear tests were conducted with a ball-on-disk apparatus (MFT-R4000 tester,
Lanzhou Huahui Instrument Technology Company, Lanzhou, China) under dry sliding
conditions at room temperature. The disc was made of the M1 and M2, while the counter-
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part ball, which had a diameter of 6.3 mm, was composed of Si3N4 ceramic. The wear tests
were carried out at a normal load of 20 N and a sliding speed of 20 mm/s, for a duration
of 30 min. The coefficient of friction (COF) generated between the contacting ball and disc
was measured automatically and continuously recorded during the test. Subsequently,
the worn surfaces of the specimens were observed using scanning electron microscope
(SEM). The weight loss from the discs was measured using a precision balance, with an
accuracy of ±0.0001 g. Subsequently, the wear rate (ω) of the specimens was calculated
using Equation (1) [26]:

ω = w/SF (1)

where w is the wear loss in grams, S is the total sliding distance in meters, and F represents
the load in the wear tests. Three repeat tests were performed for each frictional pair, and
the reported values represent the average of the three repeat tests.

3. Results and Discussion
3.1. Microstructural Characteristics and Microhardness

The graphite morphologies from the remelted gradient zone (RZ), heat-affected
zone (HZ), and substrate [24,25] are shown in Figure 3. As can be seen from Figure 3a,
the graphite nodule in the remelted gradient zone disappeared. As the depth from the
surface of the remelted gradient layer increased, the graphite’s morphology was observed
to be similar to that in the substrate. As the remelted gradient layer formed during
the processing of the ductile iron, the graphite nodule in the remelted gradient layer
fused under a high energy input, followed by its disappearance in the remelted gradient
zone. This phenomenon was similar to the findings reported in the literature [20]. The
observed phenomenon results were due to the short remelting time owing to the fast
scanning speed of the plasma transferred arc, which resulted in the quick solidification of
the remelted gradient layer associated with self-quenching. Furthermore, the inoculant
element resulting in ductile iron due to the high temperature induced by the plasma
transferred arc and the nucleoid core of the graphite nodule disappeared in the remelted
gradient layer.
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Figure 4 demonstrates the microstructure of the ductile iron gradient remelted by the
plasma transferred arc, and the remelted-gradient and heat-affected zones were observed
to form on the surface of the ductile iron.
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As can be seen from Figure 4, the microstructure of the remelted gradient layer pre-
sented the characteristics of hypoeutectic white cast iron. Similar to previous literature
reports [21], the microstructure of the remelted gradient zone transformed from the ferrite,
pearlite, and graphite nodules to the residual austenite and ledeburite dendrites. Mean-
while, the heat-affected zone was observed to form between the remelted gradient zone
and the substrate. This was mainly related to the temperature gradient formed during
the cooling of the remelted gradient layer. Two methods of heat release could be used for
the solidification of the gradient remelted layer: one way was to release the heat to air,
and the other involved its absorbtion by the substrate. The cooling rate of the remelted
gradient layer was fast, resulting in a temperature gradient, which promoted the formation
of the hypoeutectic white cast iron. Under the action of the plasma transferred arc, the
remelted gradient temperature rapidly increased, and a fraction of the melting carbon
atoms dissolved in the remelted gradient layer. However, most of the melting carbon atoms
did not dissolve in the remelted gradient layer as the solubility of the carbon in the α-iron
was low. In addition, the solubility of the carbon in the iron liquids reduced in decreasing
temperatures in the remelted gradient layer. As the remelted gradient layer solidified, the
nucleation of the carbon atom could not occur and the graphite nodule disappeared in
the remelted gradient layer. This led to the precipitation of the carbon atoms from the
remelted gradient layer. At the same time, the carbon atoms that melted into the remelted
gradient layer were continuously precipitated and dissolved during the solidification of
the remelted gradient layer under argon flow.

A SEM analysis was carried out to gain further insights into the microstructure of the
remelted gradient layer, and the images of the field-emission scanning electron microscope
(FISEM) are shown in Figure 4. The microstructure demonstrated that the fine grains on
the surface of the remelted gradient layer consisted of residual austenite and cementite, as
shown in Figure 5a,b.

It was confirmed that the self-quenching restrained the reformation of the graphite
nodule. On enhancing the depth from the top of the remelted gradient layer, the extent of
needle-like cementite reduced, while the amount of retained austenite was larger compared
to the M1. It is a well-known fact that microstructures with needle-like cementite can
improve wear resistance.
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gradient layer and (b) heat-affected zone and substrate.

The microhardness was measured along a cross-section extending over a depth of
approximately 0.7 mm from the M1, as shown in Figure 6. The results indicated that the
microhardness peaks were 871 HV0.2 at the M1 and decreased towards the substrate. The
higher microhardness of the M1 can be attributed to the presence of fine cementite and
abundant ledeburite dendrite. In the heat-affected zone, the large fraction of the residual
austenite and free carbon resulted in a lower hardness compared to the M1. On enhancing
the depth from the M1, the microhardness continuously decreased as the fraction of the
residual austenite increased, while the fraction of the ledeburite dendrites and needle-like
cementite reduced. Finally, with the depth extending to the substrate, the microhardness
decreased sharply.
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It can be seen that the hardness of the M2 proposed in this paper is about 581 HV0.2,
which is close to the micro-hardness of the working layer of rolls manufactured by centrifu-
gal casting [27]. In addition, an adequate thickness (approximate 0.2 mm) between the M2
position and the substrate was determined to ensure the safety of wear-resistance work-
pieces. Therefore, the method of using two-thirds as the surface repair time proposed in this
paper was feasible and met the performance requirements of wear-resistant workpieces.

3.2. X-Ray Diffraction Analysis

An XRD analysis was carried out to confirm the phase composition of the M1 and M2,
as shown in Figure 7. It can be seen that the M1 and M2 consisted of mainly graphite, α-Fe,
and cementite. It can be confirmed that the microstructure in the remelted gradient layer
was in good agreement with the iron-carbon diagram.
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3.3. Wear Rate and Friction Coefficient

The wear rates of the M1 and M2 at room temperature, determined through the worn
surface profiles, are shown in Figure 8. As can be seen, the wear rates of the M1 and M2
were 2.7778 × 10−7 and 1.3689 × 10−7 g·N−1·m−1 respectively. Thus, the wear rate of the
M2 was about half that of the M1.
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the hardness was two-thirds of the top of the remelting layer (M2).

The COFs of the M1 and M2 are shown in Figure 9. It can be seen that the COF of the
M1 first decreased, followed by an increase to a steady value of approximately 0.22. On the
other hand, the COF of the M2 first decreased for a short period of time and subsequently
approached a constant value of approximately 0.077. The reason for the lower COF value of
the M2 compared to the M1 was the presence of a large amount of carbon atoms in free form
serving as lubricant, thus reducing the COF. As the traces of the grinding balls appeared
from the M2 to the substrate, the COF became unsteady and continuously increased to
higher values due to the variable performance of the different zones. The transformation
law of hardness, wear resistance, and coefficient of friction was similar to that described
in [23], i.e., the hardness and wear resistance were higher while the coefficient of friction
became larger.
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3.4. Worn Surface Morphology

The worn surfaces and EDS of the M1 and M2 positions are shown in Figure 10 and
Table 1. Specifically, Figure 10a,c demonstrates the worn surface of the M1, and Figure 10b,d
presents the worn surface of the M2. It can be seen from Figure 10a,b that the worn surfaces
in both specimens were relatively smooth and demonstrated oxidative wear, adhesive
wear [28], delamination wear [19], and/or fretting wear [29]. In addition, the worn surface
of the M2 position was smoother compared to that of the M1 position. This can be attributed
to the presence of the soft phase in this region. Furthermore, some cracks and fragments
were found to have appeared on the worn surface of the M1 position, while the fragments
were peeled on the worn surface of the M2 position. The observed features were induced
by many factors, including the high hardness and low plasticity of the M1 position and
the ductile iron of the M2 had better toughness than that of the M1 position. In addition,
the free carbon in the M2 position acted as a void defect, which reduced the bonding force
between the M2 position and the substrate. Therefore, the hardness of the M1 position was
much higher than that of the M2 position; however, the wear rate of the M1 was faster than
that of the M2 position.

Table 1. Results of EDS analysis at different positions according to Figure 10c,d.

Point Number
Element (at %)

C Fe O Si Mn

1 32.64 18.54 45.42 3.38 0.03
2 17.02 13.75 57.78 11.36 0.08
3 32.37 56.78 7.75 2.74 0.36
4 22.24 48.48 22.55 4.21 0.18
5 20.26 21.57 57.27 0.72 0.19

Furthermore, particles appeared on the worn surfaces of the M1 and M2 position,
and the O content was high, as shown point 2 and 5 in Figure 10. These were iron oxides,
as confirmed by the results of the EDS. In addition, the Si content of point 2 was higher
than that of point 5. Furthermore, the silicon element transferred from the Si3N4 ceramic
ball was induced by the high micro-hardness of the M1 position. However, points 1, 3
and 4 included the amounts of C, Fe, and O, as well as the phases of graphite and iron
oxides formed, determined according to the Ellingham diagram for selected oxides [30]
and Figure 6. It can therefore be further proven that oxidation wear occurs during friction
and wear experiments.
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4. Conclusions

(1) The remelting of the ductile iron was carried out by a plasma transferred arc with
arc current of 60 A and a scanning speed of 1000 mm/min. As a result, the M1 con-
sisted mainly of γ-Fe and cementite, and the M2 contained primarily α-Fe, graphite,
and cementite.

(2) Although the hardness of the M1 was much higher than that of the M2, the method
of using two-thirds as the surface repair time proposed in this paper was feasible. In
addition, the wear rate of the M1 was faster than that of the M2. This can be attributed
to the presence of free carbon in the M2. The COF of the M1 was noted to be first
higher and subsequently lower than that of the M2, due to the transformation of the
microstructure from the soft phase with α-Fe to the hard phase with ledeburite den-
drites and cementite. The abrasion mechanisms of both regions were complex, which
included oxidative wear, adhesive wear, delamination wear, and/or fretting wear.

(3) Cracks and fragments were present on the worn surface of the remelted gradient layer.
These features were induced by many factors, especially the free carbon in the M2
acting as a void defect, which reduced the bonding force between the M1 and the
substrate. However, a small crack and fragment were noted on the worn surface of the
M2, which can be attributed to the presence of a large amount of α-Fe in the substrate.
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