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Abstract: Due to their lightweight, porous and excellent energy absorption characteristics, foam
and honeycomb materials have been widely used for filling energy absorbing devices. For further
improving the energy absorption performance of the novel tube proposed in our recent work, the
nonlinear dynamics software Abaqus was firstly used to establish and verify the simulation model of
aluminum-filled tube. Then, the crashworthiness of honeycomb-filled tubes, foam-filled tubes and
empty tube under axial load was systematically compared and analyzed. Furthermore, a comparative
analysis of the mechanical behavior of filled tubes subjected to bending load was carried out based
on the study of dynamic response curve, specific energy absorption and deformation mechanism,
the difference in energy absorption performance between them was also revealed. Finally, the most
promising filling structure with excellent crashworthiness under lateral load was optimized. The
research results show that the novel thin-walled structures filled with foam or honeycomb both show
better energy absorption characteristics, with an increase of at least 8.8% in total absorbed energy.
At the same time, the mechanical properties of this kind of filled structure are closely related to the
filling styles. Foam filling will greatly damage the weight efficiency of the novel thin-walled tube.
However, honeycomb filling is beneficial to the improvement of SEA, which can be improved by up
to 18.2%.

Keywords: thin-walled structure; filling structure; numerical simulation; crashworthiness optimization;
energy absorption performance

1. Introduction

Thin-walled structures have been widely used in automobiles, aviation and other
industrial fields, due to their excellent mechanical properties. Therefore, the research on
their mechanical properties has always been a hot topic for scholars [1–5]. Galib et al. [6]
conducted a comprehensive experimental and numerical study on circular tubes subjected
to dynamic load. Zhang et al. [7,8] pointed out that multi-cell square tubes showed better
mechanical properties. Alavi Nia et al. [9] conducted axial impact tests on structures
with different polygonal cross-sections, and proposed that the multi-cell cross-section was
conducive to the improvement of energy absorption performance.

Considering that the traditional thin-walled structure has limited room to improve
energy absorption efficiency and stability, it can no longer meet current requirements.
Researchers have found that applying biological structural features to structural design
can effectively enhance its energy absorption performance [10–13]. Song et al. [14] de-
signed a novel bionic tube with grooves and studied its crashworthiness under lateral
impact. The study demonstrated that the innovative design is conducive to improving the
energy absorption efficiency of regular structures. Based on the structural characteristics of
bamboo, Zou et al. [15] designed a bionic tube and solved its numerical examples under ax-
ial/transverse impact. Palombini et al. [16] mechanically explored the special geometry of a
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single vascular bundle in bamboo, and the new design proposed has a better improvement
in its strength and crashworthiness under dynamic loads. Ferdynus et al. [17] proposed a
new type of trigger for the square tube and focused on its effect on the energy absorption
indicators achieved (triggering effect).

Metal matrix syntactic foams are high-performance foams consisting of a light-weight
matrix and a set of porous fillers. Orbulov and Szlancsik et al. [18–20] carried out a lot of
experimental work to characterize its structure–mechanical property relationship. Fiedler
et al. [21] analyzed the mechanical properties of the foam with gradient characteristics.
Rabiei et al. [22,23] manufactured steel composite metal foam core sandwich panels and
studied their quasi-static mechanical properties. These studies show that metal foam has
superior mechanical properties and can be used as energy absorption materials.

In order to further enhance the crashworthiness, some scholars fill the regular tubes
with lightweight porous materials such as metal foam and honeycomb [24–28]. Li et al. [29,30]
conducted bending experiments on foam-filled tubes with different structures. Qi et al. [31]
conducted a numerical analyzed mechanical behavior investigation of empty and foam-
filled hybrid beams, and optimized their design. Pandarkar et al. [32] elaborated on foam-
filled pipes, and the main conclusion was that filling thin-walled structures can improve the
stability of the structure. Cakıroglu [33] focused on the quasi-static mechanical properties
of honeycomb-filled round pipes and optimized their crashworthiness design. Inspired
by biology, Nian et al. [34] proposed a new type of gradient honeycomb-filled round tube
and systematically studied its crashworthiness under lateral load. Yao et al. [35] mainly
analyzed the dynamic responses of honeycomb-filled structure under various conditions.

In summary, the novel thin-walled tube obtained by filling with foam and honeycomb
material has better crashworthiness. Although there are a large number of studies on the
foam or honeycomb filling structures, comparative studies of these two filling methods are
rarely reported. Therefore, it is important to conduct in-depth research of the mechanical
behavior of the novel thin-walled tubes filled with foam and honeycomb, and then to
understand the collision behavior and energy absorption characteristics between them
more thoroughly. The difference in the dynamic response of the foam and honeycomb-filled
novel thin-walled tubes under different filling styles is systematically studied, specifically
involving the energy absorption characteristics, peak impact force, deformation mode and
load displacement characteristics. The optimization design of the most promising filling
structure with excellent crashworthiness is further conducted to maximize the specific
energy absorption and minimize the peak collision force.

2. Numerical Model
2.1. Geometric Model of the Filling Structure

Figure 1 gives the geometric model of the filling structure. Rinner, Router and T are the
radius and wall thickness of the inner and outer round tubes, respectively. The dotted line in
the picture is the angle bisector of the angle α, and the intersection of two adjacent oblique
lines falls on the intersection of the angle bisector and the section line of the outer tube. The
sizes of Rinner, Router, T and α are, respectively, 15 mm, 30 mm, 1 mm and 90◦. Figure 2b
exhibits the different filling methods of these novel thin-walled structures. Among these
seven filling styles, G is a full filling style and A–F are partial filling styles. The filling
structure adopts the following naming rules: F and H indicate foam and honeycomb, and
the second letter indicates the filling style. For example: FA means using foam to fill in A
style of filling, HA uses honeycomb to fill in style A.



Metals 2022, 12, 2163 3 of 15Metals 2022, 12, x FOR PEER REVIEW 3 of 16 
 

 

  
(a) (b) 

Figure 1. Geometric configuration of the filling structure: (a) novel thin-walled structure; (b) filling 
styles. 

 
Figure 2. Finite element model of the filled structure. (a) the calculation model of the axial compres-
sion; (b) the calculation model of the axial compression; (c) Finite element mesh model of thin-
walled tube. 

2.2. Finite Element Model 
To study the impact behavior of the infill structure under impact load, a model of the 

infill structure was constructed by the nonlinear dynamic finite element method for sim-
ulation. Figure 2 is the numerical simulation model of infill structure. Part a in Figure 2 is 
the calculation model of the axial compression of the filling structure. The tube wall and 
honeycomb are treated as shell, the foam is treated as solid. The impact block and rigid 
wall are set as rigid bodies. When the impact block impacts the thin-walled tube axially at 
a speed of 20 m/s, the rigid wall at the bottom is fixed. The contact settings in the dynamic 
compression process are as follows: the thin-walled tube adopts automatic single-surface 
contact and the contact between thin-walled tube and the rigid wall is set as surface-to-
surface contact. The sensitivity analysis of the mesh shows that the mesh size of the ele-
ment of 1.5 mm × 1.5 mm is sufficient to produce reliable results. In these contacts, the 
dynamic and static friction coefficients are set to 0.2 and 0.3. The right side of part a in 
Figure 2 is the model of the filling structure under different filling methods, with a length 
of 150 mm. 

Part b is the finite element model of the filling structure under lateral load. The in-
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Figure 2. Finite element model of the filled structure. (a) the calculation model of the axial com-
pression; (b) the calculation model of the axial compression; (c) Finite element mesh model of
thin-walled tube.

2.2. Finite Element Model

To study the impact behavior of the infill structure under impact load, a model of
the infill structure was constructed by the nonlinear dynamic finite element method for
simulation. Figure 2 is the numerical simulation model of infill structure. Part a in Figure 2
is the calculation model of the axial compression of the filling structure. The tube wall
and honeycomb are treated as shell, the foam is treated as solid. The impact block and
rigid wall are set as rigid bodies. When the impact block impacts the thin-walled tube
axially at a speed of 20 m/s, the rigid wall at the bottom is fixed. The contact settings in
the dynamic compression process are as follows: the thin-walled tube adopts automatic
single-surface contact and the contact between thin-walled tube and the rigid wall is set as
surface-to-surface contact. The sensitivity analysis of the mesh shows that the mesh size of
the element of 1.5 mm × 1.5 mm is sufficient to produce reliable results. In these contacts,
the dynamic and static friction coefficients are set to 0.2 and 0.3. The right side of part a in
Figure 2 is the model of the filling structure under different filling methods, with a length
of 150 mm.

Part b is the finite element model of the filling structure under lateral load. The
indenter and the supports are treated as rigid bodies. The indenter impacts the thin-walled
structure vertically downward at 4.4 m/s and the supports are fixed during the impact.
The settings of contact properties, mesh size and thin-walled tube length are the same as
part a.

2.3. Material Properties

The material of the new thin-walled tube and honeycomb filler is aluminum alloy
AlMgSi0.5F22 with density ρ = 2.7 × 103 kg/m3, elastic modulus E = 68.566 GPa, Poisson’s
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ratio ν = 0.29, yield stress σy = 231 Mpa and ultimate stress σult = 254 Mpa. Considering
that aluminum is not sensitive to strain rate, material strain-rate effect can be ignored
during simulation analysis [36]. The foam filling is made of foamed aluminum. In order
to save calculation cost and ensure sufficient calculation accuracy, crushable foam is used
for modeling. The platform stress of lightweight porous materials is very important for its
energy absorption. The calculation formula of foam aluminum platform stress σp [31,37] is
as follows:

σp = Cpow(
ρ f

ρ0
)

n
(1)

In the formula, ρf and ρ0 are the density of the foam and foam substrate, respectively.
The density of aluminum is ρ0 = 2.7 × 103 kg/m3. Cpow and n are constants. According to
the test results in literature [38], Cpow = 526 Mpa and n = 2.17. The simplified functional
relationship of the foam stress–strain curve is used for simulation, as shown in Table 1 [39].
The Young’s modulus of the foam is E = 64.8 GPa, the tensile stress cut-off value is 1.11, the
rate-sensitive damping is 0.05 and the Poisson’s ratio is 0.01 [31].

Table 1. Simplified stress–strain relationship of aluminum foam.

Strain 0 σp/E 0.6 0.7 0.75 0.8
Stress 0 σp σp 1.35 σp 5 σp 0.05 E

2.4. Evaluation Index

Generally, energy absorption (EA), average crushing force (MCF), maximum collision
force (MIF), specific energy absorption (SEA) and crushing force efficiency (CLE) are
commonly used evaluation indicators. As a key indicator, specific energy absorption (SEA)
is often used to evaluate the mechanical performance of thin-walled structures. A larger
SEA means better crashworthiness. The calculation formula is as follows:

SEA =
EA
M

(2)

Among them, M is the total mass and EA indicates the total absorbed energy of the
structure. The calculation formula of EA is as follows:

EA =
∫ s

0
F(x)dx (3)

In the formula, S indicates the displacement of impact force and F(x) represents the
instantaneous collision force.

CLE is an index for evaluating the uniformity and consistency of the collision force. It
is another very important evaluation index for crashworthiness. It can be calculated as:

CLE =
MCF
PCF

× 100% (4)

Among them, MCF is the average crushing force, PCF is the maximum collision load
and the calculation formula of MCF is as follows:

MCF =
1
s

∫ s

0
F(x)dx (5)

2.5. Validation of the FE Model

To verify the effectiveness of the numerical model, the results of the axial compression
simulation of foam-filled multi-cell square tube (F01, F40) are compared with the refer-
ence results in literature [40]. Figure 3 shows that the simulation values in this paper are
consistent with the results in reference [40], which have been verified by the theoretical
results. Subsequently, the bending behavior of foam-filled square tube in reference [41]
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was simulated. Figure 4 shows the comparison between the test results and the numer-
ical results. Both the force–displacement curve and the deformation mode show a high
consistency feature. In summary, the finite element model of axial and lateral impact is
sufficiently reliable.
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3. Numerical Results
3.1. Axial Compression Analysis

In this section, the mechanical behavior of filled structures subjected to axial impact
will be studied. The unfilled novel thin-walled tube is also introduced for comparison.
Figure 5 shows the EA and SEA of the filling structure in different filling styles. The EA
values of the honeycomb- and foam-filled tubes under different filling styles are higher than
that of empty tubes (red dotted line) in Figure 5a. In addition, the EA of honeycomb/foam-
filled tubes shows obvious differences between different filling styles. Partially filled HB/FB
has the smallest EA, which is, respectively, 8.8% and 17.6% higher than that of empty tube.
This shows that whether it is honeycomb or foam filling, the different filling methods
of novel thin-walled tube are all conducive to total energy absorption. Additionally, the
foam-filling method has better enhancement effect.
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Considering that foam and honeycomb filling may compromise the weight efficiency
of the novel structures, Figure 5b compares the SEA of the filling structures. As shown in the
picture, the SEA of the foam-filled tube is relatively low, regardless of the filling method. By
contrast, the honeycomb filling method increases the SEA. Among the foam/honeycomb-
filled tubes, partially filled FB/HA has the largest SEA, which is 40.4% lower and 18.2%
higher than that of the empty 20.86 KJ tube. Although foam filling plays a positive role in
improving mechanical properties, it greatly impairs the weight efficiency. It is worth noting
that honeycomb filling just compensates for this defect. Figure 6 shows the peak impact
force of the filling structure with different filling methods. The foam-filled structure has the
greatest peak force, while the empty tube has the least. This shows that honeycomb is more
conducive to reducing peak force than foam filling. Among foam/honeycomb-filled tubes,
fully-filled FG/HG has the largest PCF, followed by partially filled FE/HD, and partially
filled FB/HA is the smallest.
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From the above analysis, we can see that FB/HA has the best crashworthiness among
these novel thin-walled tubes. To have a better understand, Figure 7 exhibits deformation
modes of FB, HA and the unfilled thin-walled structure. These three thin-walled structures
have all undergone orderly and progressive folding. However, they have different folding
characteristics. As shown in the partial enlarged cross-sectional view on the right, the
honeycomb-filled tube outside (black solid line ellipse) and the number of internal folds
(black solid line box) are larger than foam-filled and empty tubes. Although the number
of folds on the outside of the foam-filled tube is the same as that of empty tube, there are
more folds on the inside of the foam-filled tube. Meanwhile, the whole structure of the
foam-filled structure has a certain degree of plastic deformation (such as the blue solid line
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box) when the compression displacement is 60 mm, while more plastic deformation means
that more impact energy is absorbed, which explains why the EA of FB is greater than that
of HA.
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3.2. Three-Point Bending Analysis

The thin-walled structures will also be subjected to lateral loads in actual use. Thin-
walled structures are not only impacted by axial loads, but are sometimes also impacted
by lateral loads. Therefore, the bending performance of the structure is very important for
its application. Figure 8 shows the EA, SEA, PCF and CLE of the filling structure under
different filling styles. As shown in Figure 8a, the EA of foam- and honeycomb-filled
structures are both larger than that of empty tube. Fully filled FG and HG have the largest
EA, followed by partially filled FA and HD. In particular, under the same filling style, just
the EA of the honeycomb-filled tube in the filling style C exceeds that of foam-filled tube.
This shows that both foam and honeycomb filling will cause the increase in total absorbed
energy, and foam filling is more conducive to the growth of EA than honeycomb filling.
However, it does not represent an increase in its energy absorption efficiency. The SEA of
honeycomb-filled tube is higher than that of empty tube. The SEA of foam/honeycomb-
filled pipes showed significant differences. The partially filled FB/HF has the largest SEA,
which is 27.4%/26.8% lower/higher than the empty tube. The results indicate that the
honeycomb filling is an extremely effective means to enhance energy-absorption capacity,
and the F filling method may be the best choice.
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The PCF of the filling structures is also compared in Figure 8c. The PCF of foam and
honeycomb filling is greater than that of empty tube, and PCF of the foam filling tube is the
highest. At the same time, the PCF of foam and honeycomb tubes are affected by filling
method. In Figure 8d, filling techniques do not make CLE of the empty tube change too
much and the CLE did not change significantly with the change of the filling method.

Based on the above, FB/HF has the best energy absorption characteristics among
foam/honeycomb-filled tubes. For further understanding the difference in bending perfor-
mance, the force–displacement curves, specific energy absorption–displacement curves and
deformation modes are selected for comparative analysis, as shown in Figure 9. The impact
force for the honeycomb filling tube and the empty tube presents the same trend. It first
increases sharply and then slowly decreases, while the collision force of the foam-filled tube
shows a monotonous increasing trend. The collision force of foam- and honeycomb-filled
structures is bigger, and when the loading displacement is equal to 120 mm, the collision
force of foam-filled pipes is the largest. This means that foam and honeycomb-filled tubes
can withstand a higher level of lateral impact and transmit greater bending moments. In
order to better illustrate this point, Figure 9c shows their deformation modes. It can be
seen from the map that the partially recessed area of the foam-filled tube is arc-shaped. The
effective contact area is larger than that of the honeycomb-filled and empty tube. Although
honeycomb filling and empty tube both have the phenomenon of concentrated deformation
area, the local recessed area is V-shaped. However, the cross-sectional deformation of the
partially recessed area of the honeycomb-filled tube is more obvious than that of empty
tube. As shown in the SEA-displacement curve in Figure 9b, the SEA of honeycomb-filled
tube is the largest. This is just the opposite for foam-filled tube. Therefore, foam-filled tubes
are not the best choice for crashworthiness.
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4. Multi-Objective Optimization Design
4.1. Optimization Problem Set-Up

It is often required that thin-walled structures can absorb the most energy in a certain
range of peak stress. Therefore, SEA and PCF are selected as two objectives of this optimal
design. Crashworthiness optimization aims to maximize SEA and minimize PCF. However,
SEA and PCF are in conflict with each other. Therefore, a multi-objective optimization
design is selected to solve this contradictory objective problem [42–45]. From the analysis
in Section 3.2, FB and HF have better crash resistance. Moreover, the crashworthiness of
HF is better than that of FB. However, the optimal crashworthiness of these structures still
depends on different structure and material parameters. Therefore, in this section, the
novel thin-walled tube wall thickness T, honeycomb wall thickness t and foam density
ρ f are used as design variables. The crashworthiness optimization problem is described
as follows:

The optimized expression of FB is as follows:
Minimize [PCF(T, ρ f ),−SEA(T, ρ f )]

s.t
{

0.5 mm ≤ T ≤ 1.5 mm
170 Kg/m3 ≤ ρ f ≤ 340 Kg/m3

(6)

The optimized expression of HF is as follows:
Minimize [PCF(T, ρ f ),−SEA(T, ρ f )]

s.t
{

0.5 mm ≤ T ≤ 1.5 mm
0.01 mm ≤ t ≤ 0.1 mm

(7)

The optimized expression of empty tube is as follows:{
Minimize [PCF(T, ρ f ),−SEA(T, ρ f )]

s.t{0.5 mm ≤ T ≤ 1.5 mm
(8)

4.2. Experimental Design

The main experimental design methods include central composite design, Taguchi
orthogonal experiment method [45], Latin hypercube design and full-factor experiment.
Because the full-factor experiment has good uniformity [10,39], this paper uses the full-
factor design to generate 16 sample points (four levels for design variables T, t, ρf), as
shown in Figure 10. Subsequently, numerical simulation on these sample points is carried
out and corresponding response values are obtained.
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4.3. Predictive Model

Since the construction of SEA and PCF forecasting models is important for the crash-
worthiness optimization, the accuracy of forecasting models needs to be verified. Firstly,
through polynomial regression analysis (PR), the functional relationship between the opti-
mization objective and design parameters is established, and the corresponding prediction
model is obtained. Then, the square value of index R (R2), adjusted R2 (R2

adj), root mean
square error (RMSE) and maximum relative error (MARE) are used to evaluate the accuracy
of this prediction model. The corresponding expression is as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ŷ)2 (9)

R2
adj = 1−

(
1− R2

) n− 1
n− k− 1

(10)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(11)

MARE = max
i=1,2,...n(

|yi − ŷi|
|yi|

) (12)

Among them, yi represents the value of the design points obtained by experiment
and numerical analysis, ŷi is the predicted value of prediction model, n is the number
of experimental sample points, y represents the average value of yi and k is the number
of non-constant items. Normally, the closer R2 is to 1, the higher the degree of fit; the
smaller the RSME and MARE, the more accurate the prediction model. Table 2 gives the
accuracy index of the forecasting model of FB, HF and empty tube. From Table 2, we can
see that all R2 values are close to 1, and all MARE values are less than 6%. Therefore, it
can be considered that these PR mathematical models are accurate enough to be used in
crashworthiness optimization.

Table 2. Accuracy of the prediction model.

Objectives SEA PCF

Estimators R2 R2
adj MARE RMSE R2 R2

adj MARE RMSE
FB 0.9891 0.98 2.39% 0.026 0.9949 0.9907 2.18% 1.291
HF 0.9784 0.9604 2.61% 0.0307 0.9558 0.9352 5.08% 0.3869

Empty tube 0.9987 0.9977 0.89% 0.0115 0.9981 0.9965 1.32% 1.1887

4.4. Particle Swarm Algorithm and Optimization Process

Since the particle swarm algorithm has the advantages of easy implementation, high
accuracy and fast convergence [46,47], this paper uses the particle swarm algorithm to
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obtain a Pareto relatively optimal solution of the prediction model. Ten particles are set
for tracking and each particle moves 100 times in the constrained space for accuracy. The
inertia weight w is an important parameter that affects the pros and cons of the particle
swarm algorithm. The solution of the HF prediction model obtained by the particle swarm
algorithm under different inertia weights is shown in Figure 11. It can be seen from the
picture that when the inertia weight is equal to 0.7, the solutions of the SEA and PCF
prediction models have undergone large oscillations at first, and then stabilized in a certain
area. Therefore, when the inertia weight is equal to 0.7, the convergence is best. The specific
parameters of the particle swarm algorithm are shown in Table 3. Figure 12 is the flow
chart of the optimized design. First, the full-factor experimental design is carried out on
the problem of clear optimized design. Further, perform simulation analysis on the sample
points to obtain the target response value. Then, the prediction models of SEA and PCF were
constructed through polynomial regression analysis. Finally, the Pareto optimal solution
set is given after the calculation of the prediction model by the optimized algorithm.
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Table 3. Parameters of particle swarm algorithm.

Parameters Value

Number of particles 10
Maximum number of iterations 100

Inertia weight 0.7
Personal learning coefficient 1.5
Global learning coefficient 1.5
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4.5. Multi-Objective Optimization Results

To comprehensively analyze the crashworthiness difference between FB, HF and
empty tube more, the Pareto boundary obtained after particle swarm optimization is
compared and shown in Figure 13. It can be found from the figure that when the PCF
is constant, the closer the Pareto boundary is to the left, the greater the specific energy
absorption (SEA). The Pareto optimal solution set of HF is closest to the left, followed by
the empty tube. Therefore, the crashworthiness of HF is better than that of FB and empty
tube, and the crashworthiness of FB is the worst. In engineering applications, designers
can choose based on requirements of PCF. When the PCF is less than or equal to 15 KN, the
red five-pointed star in the map is the optimal design point of each structure. Figure 14
shows the force–displacement diagrams and deformation modes of these three optimal
structures. The PCF of the three structures in Figure 14a is less than 15 KN, and HF has the
largest PCF. In Figure 14b, local recessed area of the HF optimal structure presents an arc
shape, while both FB and empty tube present V shapes.
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5. Conclusions

To further enhance the crashworthiness of the novel thin-walled structure, foam and
honeycomb are used to fill it. The numerical simulation model of the filled structure was
first built and verified using the nonlinear dynamic Abaqus software. Then, the impact
resistance of honeycomb-filled tubes, foam-filled tubes and empty tube under axial load
was systematically compared and analyzed. Furthermore, based on the force–displacement
curve, specific energy absorption and deformation model, a comparative analysis of the
mechanical behavior of filled tubes subjected to lateral impact was carried out. The op-
timization design of the most promising filling structure with excellent crashworthiness
was finally conducted to maximize the specific energy absorption and minimize the peak
collision force. The results of this study show that:

(1) The introduction of honeycomb filling and foam filling enabled the thin-walled
structures to absorb more energy. The total absorbed energy increases at least 8.8% com-
pared with the empty tube. At the same time, the crashworthiness of the filling structure
was closely related to the filling styles. The foam filling will greatly impair the weight
efficiency of the novel thin-walled tube. However, honeycomb filling was beneficial to the
improvement of SEA, which can be improved by up to 18.2%.

(2) Honeycomb filling was more conducive to the reduction of PCF than foam filling
under axial load. Among foam/honeycomb-filled tubes, fully filled FG/HG had the largest
PCF, followed by partially filled FE/HD and FB/HA was the smallest.

(3) Under the action of lateral load, foam- and honeycomb-filled tubes could withstand
a higher level of lateral impact and transmit greater bending moments than empty tube.
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Among foam/honeycomb-filled tubes, FB/HF was the most promising structure with
excellent crashworthiness.

(4) The particle swarm algorithm was further used for crashworthiness optimization
design of FB and HF, and the Pareto boundaries were obtained and compared. By way
of contrast, the optimal structure of HF showed the best crashworthiness. In practical
engineering applications, the use of honeycomb-filled novel thin-walled tube may be the
best choice.
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