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Abstract: This work investigates the effects of various processing parameters (laser power, scanning
speed, hatch distance and beam offset) on the resultant inclined up-facing surface roughness of
AlSi10Mg alloys produced by laser powder bed fusion (LPBF). A two-step approach, orthogonal test
followed by the Doehlert matrix design (DMD) test is used to efficiently optimize the up-facing surface
and contour parameters. The former method aims to determine the significance of variables while the
latter one facilitates a rapid optimization. The results show that the interaction and interdependency
among the parameters are of great significance to the obtainable surface roughness. Using a rational
design of experiments, the optimized up-facing surface roughness of Ra of 5.4 µm is achieved. This is
attributed to the elimination of the laser partition track and the reduction in irregularities at the edges
of the parts. This work demonstrates an effective approach of experimental processing parameter
optimization to improve the surface finish of LPBF parts.

Keywords: additive manufacturing; laser powder bed fusion (LPBF); AlSi10Mg; surface roughness;
inclined up-facing surface; contour parameter

1. Introduction

Laser powder bed fusion (LPBF) is a promising additive manufacturing (AM) tech-
nique that shows high potential for manufacturing fully dense metallic components with
complex and customizable shapes. It has been successfully applied in aerospace, automo-
tive and biomedical industries [1,2]. Though noticeable progress has been made in LPBF,
some challenging issues still need addressing to allow for the full industrialization of LPBF
as a manufacturing process. Particularly, near-net-shape parts made by LPBF usually have
high surface roughness, resulting in time-consuming and resource-demanding post surface
treatments to meet the delivery requirements [3,4]. Reducing the surface roughness of
as-built products by the optimization of processing conditions is therefore desirable.

The distinctive processing manner of LPBF leads to the formation of four different
types of surfaces depending on the orientations with respect to the build direction, namely,
the top surface, the two side surfaces, the inclined up-facing and down-facing surfaces
(Figure 1a). Specifically, top surfaces are formed by the last processed layer featuring
overlapping laser scan tracks. Side surfaces are parallel to the build direction and exhibit
the beginning and ending features of laser scan tracks. Inclined up-/down-facing surfaces
are the surfaces with certain (non-normal) angles to the build direction, where the staircase
effect (Figure 1b) plays an essential role in the formation of surface roughness. The surfaces
of LPBF parts, in most conditions, have inclined angles toward the build direction rather
than parallel or perpendicular to the processing direction. The combination of the staircase
effect, powder particle attachment and edge effect results in higher surface roughness of
inclined up-facing surfaces [5,6]. In addition to the staircase effect (Figure 1b), an inclined
down-facing surface usually shows high surface roughness as larger melt pools are formed
with more semi-melted powder particles attached to the surface and the slow local heat
transfer to the surrounding powder bed [5].
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Figure 1. Schematic figure of (a) typical faces of LPBF sample, (b) staircase effect in LPBF process, 
and (c) the definition of up-facing skin as indicated by green line infill, for layer N. 

There have been many studies on the minimization of surface roughness in LPBF 
products, and the majority of them focused on the side and top surfaces. The material 
systems of the related studies include stainless steel [7,8], Ni-based superalloys [9,10], Ti-
based alloys [11–15], CoCr-based alloys [16,17] and aluminum alloys [18–21]. Generally, 
top surface quality can be improved when continuous scan tracks and sufficient overlap 
between adjacent tracks are achieved by adjusting parameters [22,23]. Side surface rough-
ness reduction needs a lower energy input to minimize the semi-melted powder on the 
surface [24]. Some authors have investigated upward-facing inclined surfaces. Newton et 
al. [25] indicated that the amount of attached particles of Ti-6Al-4V parts in powder bed 
fusion is increasing with increasing surface slope angle. Chen et al. [26] reported that the 
surface roughness of the inclined surfaces is affected by the orientation of the surface to 
the center of the build platform. 

Although many studies addressed the influence of processing parameters on the den-
sity and surface morphology of the final parts, most of them only varied the core param-
eters. However, the up-facing skin parameters and contour parameters also play signifi-
cant roles on surface quality. Unfortunately, the mechanisms of inclined surface rough-
ness evolution in the LPBF process are still not well-studied. In this regard, this work aims 
to provide a clear view on the effect of the up-facing skin parameters and contour scan-
ning strategies in the context of inclined up-facing surfaces produced by LPBF from 
AlSi10Mg. Two steps of experimental investigations were conducted to understand the 
individual and interactive effects of varied factors on the surface roughness of up-facing 
surfaces. The evolution mechanism of surface roughness over varying parameters is dis-
cussed. This paper can shed light on potential strategies for the design and manufacturing 
of AlSi10Mg parts with high surface quality.  

2. Experimental Procedures 
2.1. Materials and LPBF Process 

Figure 1. Schematic figure of (a) typical faces of LPBF sample, (b) staircase effect in LPBF process,
and (c) the definition of up-facing skin as indicated by green line infill, for layer N.

There have been many studies on the minimization of surface roughness in LPBF prod-
ucts, and the majority of them focused on the side and top surfaces. The material systems
of the related studies include stainless steel [7,8], Ni-based superalloys [9,10], Ti-based al-
loys [11–15], CoCr-based alloys [16,17] and aluminum alloys [18–21]. Generally, top surface
quality can be improved when continuous scan tracks and sufficient overlap between adja-
cent tracks are achieved by adjusting parameters [22,23]. Side surface roughness reduction
needs a lower energy input to minimize the semi-melted powder on the surface [24]. Some
authors have investigated upward-facing inclined surfaces. Newton et al. [25] indicated
that the amount of attached particles of Ti-6Al-4V parts in powder bed fusion is increasing
with increasing surface slope angle. Chen et al. [26] reported that the surface roughness
of the inclined surfaces is affected by the orientation of the surface to the center of the
build platform.

Although many studies addressed the influence of processing parameters on the
density and surface morphology of the final parts, most of them only varied the core param-
eters. However, the up-facing skin parameters and contour parameters also play significant
roles on surface quality. Unfortunately, the mechanisms of inclined surface roughness
evolution in the LPBF process are still not well-studied. In this regard, this work aims to
provide a clear view on the effect of the up-facing skin parameters and contour scanning
strategies in the context of inclined up-facing surfaces produced by LPBF from AlSi10Mg.
Two steps of experimental investigations were conducted to understand the individual
and interactive effects of varied factors on the surface roughness of up-facing surfaces.
The evolution mechanism of surface roughness over varying parameters is discussed. This
paper can shed light on potential strategies for the design and manufacturing of AlSi10Mg
parts with high surface quality.

2. Experimental Procedures
2.1. Materials and LPBF Process

A near-spherical gas-atomized AlSi10Mg powder (Avimetal Powder Metallurgy Tech-
nology Co., Ltd., Beijing, China) with a size ranging from 15 to 53 µm was used for LPBF
experiments. Specimens with inclined surfaces (Figure 2) were fabricated using commer-
cial SLM equipment (Farsoon, 273M, Farsoon Technologies Co., Ltd., Changsha, China)
equipped with a 500 W fiber laser and a spot size of 90 µm. The build plate was preheated
to 80 ◦C before processing. The core parameters of specimens were kept constant (laser
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power of 380 W, scanning speed of 1800 mm/s and hatch distance of 0.189 mm). The layer
thickness was 30 µm. The inclination angles of samples to the build plate were fixed at 45◦.
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Figure 2. (a)The as-designed LPBF–AlSi10Mg samples and (b) the as-built AlSi10Mg samples.

2.2. Design of Experiments
2.2.1. Up-Facing Parameters Optimization

The up-facing skin parameters and contour parameters were investigated using the
following design of experiment (DOE) methods. As shown in Figure 1a,c, the inclined
up-facing surfaces were defined as the surfaces that face upwards and possess a non-normal
angle with the build direction. To improve the surface finish on up-facing surfaces, a certain
thickness near the surface (skin) was processed with parameters different from the core
parameters. The thickness of up-facing surfaces was defined by LPBF machine programs
by specifying the up-facing skin thickness, threshold d. Specifically, the cross-section area of
layer N was compared with layer N − 1; if the area of layer N was larger than that of layer
N − 1 and the upper surface length was larger than the threshold d, then the difference in
the area between the two layers was defined as the up-facing skin.

Two DOE methods were used in sequence for the experimental study of the param-
eters. Firstly, an orthogonal test method was used for screening purposes with a small
number of runs, i.e., to determine the importance of variables and their effects on the
outcoming roughness value. Secondly, the Doehlert matrix design (DMD) was used for the
optimization of parameters to identify a processing window where minimal surface rough-
ness can be achieved. DMD is a type of response surface methodology; it requires a lesser
number of experiments compared to central composite design (CCD) and Box–Behnken
design (BBD) when the number of variables is 2, 4, 6 and 8 [26–29]. According to DMD, the
total number of experimental combinations (N) is given by N = k2 + k + n0, where k is the
number of independent variables and n0 is the number of repetitions center points. The
experimental conditions designed with DMD are distributed around the center point with
equal distance to the center and in between neighboring points, and therefore is also called
uniform shell design.

The DOE matrix is defined by the number of variables and the coded values (Ci) of
the experimental matrix. The relationship between coded and real values is given by [27]:

Ci =

(
Xi − X0

i
∆Xi

)
α

where Ci is the coded value for the level of factor i, Xi is its real value in an experiment, X0
i

is the real value at the center of the experimental domain, ∆Xi is the step of variation of the
real value and α is the coded value limit for each factor.

Four up-facing skin parameters, namely laser power, scanning speed, hatch distance
and beam offset, were investigated. The L25(54) orthogonal table with four factors and five
levels was used, as seen in Table 1. After analyzing the results from the orthogonal tests,
independent variables were further investigated in the next step of DMD experiment with
more levels. The coded factors and different numbers of levels of Doehlert matrix were
shown in Table 2. It is worth mentioning that the number of levels in a Doehlert design
is not the same for all factors (Seen in Table 2). Therefore, the factors with the stronger
effect are recommended to be set as the variable with more levels in order to obtain more
information and achieve optimized results efficiently.
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Table 1. Factor levels of L25(54) orthogonal test.

Factors Levels

(Up-facing) laser power (W) 40 60 80 100 120
(Up-facing) scanning speed (mm/s) 400 600 800 1000 1200

(Up-facing) hatch distance (mm) 0.05 0.06 0.07 0.08 0.09
(Up-facing) beam offset (mm) 0.04 0.06 0.08 0.1 0.12

Table 2. Independent factors and their coded levels in the Doehlert matrix design.

Independent Factors Coded levels

Factor A coded −1 −0.5 0 0.5 1 - -
Factor B coded −0.866 −0.577 −0.289 0 0.289 0.577 0.866
Factor C coded −0.817 −0.613 −0.204 0 0.204 0.613 0.817
Factor D coded −0.791 0 0.791 - - - -

2.2.2. Contour Parameter Optimization

The surface quality of LPBF parts can be improved by contour scans [30]. As illustrated
in Figure 3, the real boundary of each processed layer is where the laser scan tracks run,
which creates undulation and attached particles. The contour scan direction is parallel
to the edge and removes the surface irregularities by remelting the material on the very
top surface.
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Therefore, after the up-facing skin parameters were optimized, the contour parameters,
including contour scanning speed and contour offset, were studied. The three factors and
five levels in the orthogonal test table (L25(53)) are provided in Table 3.
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Table 3. Factor levels of L25(53) orthogonal test.

Factors Contour Levels

(Contour) laser power (W) 100 120 140 160 180
(Contour) scanning speed (mm/s) 1000 1300 1600 1900 2200

(Contour) beam offset (mm) 0.07 0.08 0.09 0.1 0.11

2.3. Surface Quality Characterization

The sample surface roughness was measured by the stylus contact method using a
Mitutoyo Surftest SJ-310 surface profilometer according to the ISO 25178 standard. All
the surface roughness data are the average of three experimental results and the length of
each measured line was 12 mm. The cross-sectional planes were ground and polished for
optical microscopy (OM, OLYMPUS GX53, Olympus Corporation, Tokyo, Japan). Scanning
electron microscopy (SEM, OLYMPUS TMI4000, Olympus Corporation, Tokyo, Japan) was
used to observe the surface morphology. A laser scanning confocal microscope (OLS4100,
OLYMPUS, Tokyo, Japan) with a 3D-image-acquisition function was used for characterizing
the areal surface texture. The measured area was 2 mm × 6 mm.

3. Results and Discussion
3.1. Optimization of Up-Facing Skin Parameter

The parameters which differ from the core/infill parameters are applied on the inclined
up-facing surface areas to obtain an improved surface quality. According to the orthogonal
test table, 25 groups of LPBF AlSi10Mg samples were tested and the measured values of
up-facing surface roughness are shown in Table 4. The range analysis and factor-level
trend curves are shown in Table 5 and Figure 4a, respectively. The analysis shows that the
scanning speed and laser power are the two most important factors that significantly affect
the up-facing surface roughness, followed by hatch distance and beam offset. An increase
in the scanning speed leads to a relatively high surface roughness, while higher laser power
seems to decrease the roughness value. An Ra value lower than 12 µm is achieved only
when the laser power is over 100 W. Therefore, high laser power and moderate scanning
speed were adopted in the following optimization process.

Table 4. L25(54) orthogonal test and experimental results of up-facing skin roughness.

Run
Factors: Up-Facing Skin Parameters Results

Power (W) Scanning Speed (mm/s) Hatch Distance (mm) Beam Offset (mm) Surface Roughness (Ra, µm)

1 40 400 0.05 0.04 13.25
2 40 600 0.06 0.06 13.60
3 40 800 0.07 0.08 14.73
4 40 1000 0.08 0.10 13.86
5 40 1200 0.09 0.12 15.34
6 60 400 0.06 0.08 13.82
7 60 600 0.07 0.10 14.26
8 60 800 0.08 0.12 16.26
9 60 1000 0.09 0.04 15.71

10 60 1200 0.05 0.06 16.57
11 80 400 0.07 0.12 13.86
12 80 600 0.08 0.04 15.92
13 80 800 0.09 0.06 15.69
14 80 1000 0.05 0.08 14.16
15 80 1200 0.06 0.10 15.63
16 100 400 0.08 0.06 11.75
17 100 600 0.09 0.08 12.65
18 100 800 0.05 0.10 11.42
19 100 1000 0.06 0.12 13.80
20 100 1200 0.07 0.04 15.65
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Table 4. Cont.

Run
Factors: Up-Facing Skin Parameters Results

Power (W) Scanning Speed (mm/s) Hatch Distance (mm) Beam Offset (mm) Surface Roughness (Ra, µm)

21 120 400 0.09 0.10 12.51
22 120 600 0.05 0.12 14.45
23 120 800 0.06 0.04 14.14
24 120 1000 0.07 0.06 11.82
25 120 1200 0.08 0.08 14.49

Table 5. Range analysis results of orthogonal test for up-facing skin roughness.

K
Factor: Up-Facing Skin Parameters

Power (W) Scanning Speed (mm/s) Hatch Distance (mm) Beam Offset (mm)

k1 14.15 13.04 13.97 14.93
k2 15.33 14.52 14.55 14.23
k3 15.05 14.22 13.84 13.74
k4 13.05 13.87 14.46 13.53
k5 13.48 15.41 14.26 14.62

R = max(ki) − min(ki) 2.27 2.38 0.71 1.40
Order of factors 2 1 4 3
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SEM images of inclined up-facing surface of LPBF parts using Doehlert design (Table 6): (b) No.3
(Ra = 6.92 µm), (c) No.14 (Ra = 9.15 µm), (d) No.20 (Ra = 12.78 µm).
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Table 6. The Doehlert matrix and experimental results of up-facing surface roughness.

Run

Coded Levels Uncoded Level: Up-Facing Parameters Results

A B C D Hatch
Distance (mm)

Laser Power
(W)

Scanning
Speed (mm/s)

Beam Offset
(mm)

Surface
Roughness

(Ra, µm)

1 0 0 0 0 0.07 150 700 0.08 9.41
2 1 0 0 0 0.09 150 700 0.08 9.09
3 0.5 0.866 0 0 0.08 193 700 0.08 6.92
4 0.5 0.289 0.817 0 0.08 164 945 0.08 9.33
5 0.5 0.289 0.204 0.791 0.08 164 761 0.11 9.51
6 −1 0 0 0 0.05 150 700 0.08 10.85
7 −0.5 −0.866 0 0 0.06 107 700 0.08 12.70
8 −0.5 −0.289 −0.817 0 0.06 136 455 0.08 10.48
9 −0.5 −0.289 −0.204 −0.791 0.06 136 639 0.05 11.28
10 0.5 −0.866 0 0 0.08 107 700 0.08 12.69
11 0.5 −0.289 −0.817 0 0.08 136 455 0.08 11.02
12 0.5 −0.289 −0.204 −0.791 0.08 136 639 0.05 12.28
13 −0.5 0.866 0 0 0.06 193 700 0.08 7.84
14 0 0.577 −0.817 0 0.07 179 455 0.08 9.15
15 0 0.577 −0.204 −0.791 0.07 179 639 0.05 9.46
16 −0.5 0.289 0.817 0 0.06 164 945 0.08 10.02
17 0 −0.577 0.817 0 0.07 121 945 0.08 12.03
18 0 0 0.613 −0.791 0.07 150 884 0.05 11.13
19 −0.5 0.289 0.204 0.791 0.06 164 761 0.11 10.13
20 0 −0.577 0.204 0.791 0.07 121 761 0.11 12.78
21 0 0 −0.613 0.791 0.07 150 516 0.11 10.46
22 0 0 0 0 0.07 150 700 0.08 10.71
23 0 0 0 0 0.07 150 700 0.08 10.31
24 0 0 0 0 0.07 150 700 0.08 10.17
25 0 0 0 0 0.07 150 700 0.08 10.75

The up-facing skin parameters were further optimized using DMD. According to the
ranking order of the factors affecting surface roughness in the orthogonal test, laser power
and scanning speed are set as coded factors B and C with seven levels, respectively. The
beam offset is set as coded factor A with five levels, while hatch distance is set as coded
factor D with three levels (Table 2). The number of central replicates is four to estimate the
experimental variance. Therefore, the total number of experiments is 25 and the surface
roughness result is provided in Table 6.

It can be seen from Table 6 and Figure 4b–d that surface finish is significantly reduced
when using higher laser power and moderate scanning speed. The lowest surface roughness
of 6.9 µm is obtained at a laser power of 193 W and scanning speed of 700 mm/s, which
represents a 39.4% decrease compared with the optimized result from the orthogonal test
(11.42 µm). According to Mumtaz et al. [9], the surface roughness Ra of LPBF parts could
be reduced using a high laser power because the recoil pressure induced by the resultant
higher laser energy input is able to flatten the melt pools and reduce ball formation. This
is consistent with our results. Moreover, once the inclined surface is determined as an
up-facing surface area (Figure 1c), specific parameters will be used. The stripe scanning
strategy that is commonly used in the infill/core area will be suppressed to obtain a
complete laser track rather than a partition track (Figure 5). By using higher laser power
and an un-partition scanning strategy, the staircase effect can be eliminated to a large extent,
thereby reducing the roughness.
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3.2. Contour Parameter Optimization

Contour parameter optimization was conducted by applying the optimized up-facing
skin parameters. According to the orthogonal test method, 25 combinations of contour
parameters should be required, and the measured results of up-facing surface roughness are
shown in Table 7. The experimental results are modeled by the Design-Expert program, and
the fitting model is selected as the complete quadratic polynomial. Taking the interaction
terms into account, the linear regression model with the surface roughness of an AlSi10Mg
alloy as the response can be expressed by Equation (1):

Y = β0 + ∑ βiXi + ∑ βiiX2
ii + ∑ βijXiXj (1)

where Y is the predicted response; Xi and Xj are the independent variables; and β0, βi, βii
and βij are the regression coefficients for the intercept, linear and quadratic terms.

Table 7. L25(53) orthogonal test and experimental results of surface roughness with contour scans applied.

Headings
Factors: Contour Parameters Results

Power (W) Scanning Speed (mm/s) Beam Offset (mm) Surface Roughness (Ra, µm)

1 100 1000 0.07 5.49
2 100 1300 0.08 5.82
3 100 1600 0.09 8.18
4 100 1900 0.1 12.20
5 100 2200 0.11 16.77
6 120 1000 0.08 6.22
7 120 1300 0.09 6.48
8 120 1600 0.1 7.10
9 120 1900 0.11 17.52
10 120 2200 0.07 14.55
11 140 1000 0.09 7.51
12 140 1300 0.1 7.92
13 140 1600 0.11 9.80
14 140 1900 0.07 11.26
15 140 2200 0.08 12.98
16 160 1000 0.1 6.91
17 160 1300 0.11 9.03
18 160 1600 0.07 9.25
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Table 7. Cont.

Headings
Factors: Contour Parameters Results

Power (W) Scanning Speed (mm/s) Beam Offset (mm) Surface Roughness (Ra, µm)

19 160 1900 0.08 10.43
20 160 2200 0.09 12.92
21 180 1000 0.11 7.53
22 180 1300 0.07 9.47
23 180 1600 0.08 9.91
24 180 1900 0.09 10.53
25 180 2200 0.1 11.78

The regression model is obtained by analysis of variance (ANOVA) and test of sig-
nificance. The threshold P value for statistical significance is set as 0.05. Table 8 shows
the statistical significance of main effects ranking in the order of scanning speed (B), laser
power (A) and beam offset (C). In addition, the interaction effects between the laser power
and beam offset, scanning speed and beam offset are also significant. The p value of the
A2 term is very large, while the BC term cannot be evaluated. To make the model more
accurate, the insignificant terms A2 and BC were removed. Therefore, the resultant ANOVA
table for response surface model is achieved after adjustment, as shown in Table 9. The
statistics R2, adj R2 and pred R2 are also calculated to confirm the mathematical models.

Table 8. The p-value of each coefficient in regression model for contour parameters.

Source A B C AB AC BC A2 B2 C2

p-value 0.453 0.000 0.462 0.005 0.008 / 0.818 0.000 0.015

Table 9. Analysis of variance for response surface model.

Source Degrees of Freedom Sum of Squares Mean Square F Value p Value Heading

Model 7 188.65 26.95 72.61 0.000 Significant
A-Laser power 1 0.233 0.233 0.63 0.440

B-Scanning speed 1 107.32 107.32 289.12 0.000
C-Beam offset 1 0.223 0.223 0.60 0.449

B2 1 9.488 9.488 25.56 0.000
C2 1 2.933 2.933 7.90 0.012
AB 1 4.092 4.092 11.02 0.004
AC 1 3.542 3.542 9.54 0.007

Error 17 6.310 0.371
Total 24 194.96

R2 = 96.76%, Adj. R2 = 95.43%, Pred R2 = 92.46%.

Both an F-value of 72.61 and a p-value of <0.0001 imply that the model is highly
significant in the range of experimentation. The high values of R2 (96.76%) and Adj. R2

(95.43%) indicate good agreement between the experimental data and the model. The high
value of pred R2 (92.46%), which is close to R2 and Adj. R2, indicates a good prediction
power of the model for new observations. Based on the ANOVA for response surface
model, a new linear regression equation is obtained as shown in Equation (2):

Y = 2.98 + 0.1947A − 0.00317B − 236C + 0.000005A2 + 2364C2 − 0.000047AB − 1. (2)

Figure 6a shows the distribution of residuals (difference between experimental value
and prediction) with normal distribution superimposed. The 3D response surface plots
of the surface roughness with respect to interaction factors such as laser power, scanning
speed and beam offset are shown in Figure 6b–d. When the response surface of two factors
is shown, the other two variables are held at their respective central level of testing ranges.
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It is shown in Figure 6b that an individual increase in laser power or beam offset
leads to an increase in surface roughness. However, surface roughness always decreases
regardless of the change in these two factors, indicating a strong interaction between these
laser power and beam offset. Figure 6c shows that low surface roughness is only obtained
when lower laser power and lower scanning speed are used. Figure 6d demonstrates that
there is no interaction between scanning speed and beam offset. A higher scanning speed
leads to higher surface roughness regardless of the changes in beam offsets.

As shown in Figure 7, images from the side view of the up-facing surface indicate
the fluctuation trend at the edge of each sample when keeping contour laser power con-
stant (Figure 7a1–e1). A high contour scanning speed results in worse fluctuation, indicat-
ing a higher surface roughness. OM images from the front view of the up-facing surface
(Figure 7a2–e2) and 3D surface morphologies (Figure 7a3–e3) confirm this conjecture. The
higher the scanning speed, the worse the surface quality. Unmelted/semi-melted powder and
balling can be observed with an increasing scanning speed. The decrease in energy density
is a good explanation for this phenomenon, as lower laser energy density input results in
insufficient melting at the edge of the part which is then incapable of eliminating the effect
on edge irregularities and the staircase effect [31]. When the optimized contour parameters
are used, the surface roughness Ra is significantly decreased to 5.49 µm, a 21% improvement
compared to the 6.92 µm obtained when using up-facing skin parameters only.
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Figure 7. Optical microscopies and 3D surface morphologies with different contour scanning speeds
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(c1–c3) V = 1600 mm/s, (d1–d3) V = 1900 mm/s, (e1–e3) V = 2200 mm/s (inset pictures show the
observation orientation).

4. Conclusions

This study investigates the effects of varying processing parameters, including up-
facing parameters (laser power, scanning speed, hatch distance) and contour parameters
(laser power, scanning speed, beam offset), on the resultant roughness of the inclined up-
facing surfaces of an AlSi10Mg alloy. The combination of the orthogonal test and Doehlert
matrix design test is used. The following conclusions can be drawn:

(1) The ranking order of the inclined up-facing skin parameters affecting the surface
roughness is scanning speed > laser power > hatch distance > beam offset;

(2) By considering the ranking order of statistical significance obtained by the orthogo-
nal test, the Doehlert matrix design test can efficiently optimize the parameters, achieving
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a lower Ra of 6.92 µm, and witnessing a further 39.4% decrease compared to the optimized
result in the orthogonal test (11.42 µm);

(3) After applying the contour parameters and optimized up-facing parameters, the
surface roughness is significantly reduced to Ra of 5.4 µm, which represents a 22% decrease
compared to the optimized result without contour scan;

(4) The up-facing surface finish is improved by optimizing the parameters that mitigate
the staircase effect and remove the laser partition tracks, and can be further improved by
optimizing the contour parameters that reduce irregularities at the edges of the parts.
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