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Abstract: Cu/Al clad plates prepared using a corrugated + flat rolling (CFR) technique were annealed
at 300–450 ◦C for 10–240 min. Furthermore, the interfacial diffusion behavior and the bonding
properties of the Cu/Al clad plates were studied in detail. The results demonstrated that, at the
initial stage of the annealing process, the development of the first IMCs layer was restrained by the
high atomic concentration gradient in the new bonding interface zone, and the second intermetallic
compounds (IMCs) layer preferentially formed in the new bonding interface zone, leading to a slight
increase in the growth activation energy of the clad plates. In addition, the atoms’ diffusion behavior
at the peak and trough interfaces was not significantly affected by the matrix microstructure, and
there was no discernible difference in the growth activation energy at these two positions. Ultimately,
it was shown that the maximum average peel strength at the peak and trough interfaces reached
53.07 N/mm and 41.23 N/mm, respectively, when annealing at 350 ◦C for 10 min.

Keywords: Cu/Al clad plate; CFR technique; interfacial diffusion; peel strength

1. Introduction

Bimetallic clad plates have the characteristics of both of their base metals, so they
have been widely concerned by many scholars [1–3]. In the past few decades, a variety of
clad plates preparation technologies have been developed, such as explosion welding [4],
extrusion welding [5], diffusion bonding [6], rolling bonding [7,8], etc. Among them,
rolling bonding technology has been used to prepare the Cu/Al clad plates because of
its advantages of having a high production efficiency, simple operation, and low cost [9].
However, the Cu/Al clad plates prepared by the traditional flat rolling method have some
problems, i.e., a low interface bonding strength and poor flatness [10].

As is known, strong interface bonding and a good plate flatness play an important
role in the secondary forming and industrial application of clad plates [11]. Hence, Wang
et al. [12] proposed the corrugated + flat rolling (CFR) technique, which consists of two
stages: (1) a corrugated rolling stage, in which the slab to be compounded is rolled on a
two-high rolling mill with the upper corrugated roll and the lower traditional flat roll at
room temperature. This process can form local strong normal stress and strong frictional
shear stress at the interface of the plate, which causes the hard brittle layer and oxide layer
to break seriously, and makes the local interface area form high-strength bonding; (2) a
flat rolling stage, where the corrugated clad plate prepared in the previous stage is further
rolled and combined on the traditional flat roll mill after reasonable annealing treatment.
This can make the original weak bonding area form strong stress again, thus achieving
overall high-strength bonding across the entire interface of the clad plate and significantly
optimizing the flatness of the clad plate.
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The Cu/Al clad plates after CFR underwent work hardening, and their plastic defor-
mation ability decreased significantly. The annealing process is one of the most common
methods used to eliminate the hardening of metal materials during processing [13]. Luo
et al. [14] found that the annealing treatment of the clad plate could not only improve the
microstructure of the metal matrix but also promote the mutual diffusion between atoms on
both sides of the interface so that the interface formed metallurgical bonding, thus improv-
ing the interface bonding strength. Chen et al. [15] studied the influence of interfacial phase
development on the fracture mechanism and the bonding strength of the annealed Cu/Al
clad plates. The results showed that annealing treatment can eliminate interface defects,
improve the interface structure, and enhance the properties. However, an unreasonable
annealing process also leads to the formation of a variety of brittle intermetallic compounds
(IMCs) at the interface, which deteriorates the interfacial bonding performance. Heness
et al. [16] pointed out that the phases development in the interface of roll-bonded Cu/Al
clad plates controls the strength. In addition, the phase development of the Cu/Al clad
plate was monitored as a function of the annealing time. It was found that the initial rolling
pressure had no effect on the phase development, but affected the interfacial thickness.
According to the previous research, the deformation rate and matrix microstructure in
different positions of the Cu/Al clad plate after CFR were varied [17]. Additionally, an
intermittent compound layer structure was formed at the interface, which complicated the
interface phase development of the CFR Cu/Al clad plate during the annealing process.

In conclusion, in order to explore the effect of the interfacial atoms diffusion behavior
and annealing process parameters on interfacial bonding properties of CFR Cu/Al clad
plates during annealing, the development process of interfacial IMCs was observed under
different annealing temperatures and annealing times. Furthermore, the relationship
between the interfacial phase development and shear fracture mechanism was studied
in detail. It provided valuable information for the annealing control process of the CFR
Cu/Al clad plate.

2. Experimental Materials and Methods
2.1. Materials Preparation

T2 copper plate with an initial thickness of 2 mm and 1060 aluminum plate with an
initial thickness of 8 mm were employed as the raw materials in this experiment. The
material composition and mechanical properties are shown in Tables 1 and 2, respectively.
The preparation process of Cu/Al clad plate was as follows: (i) blank preparation, where
the surfaces of the raw plates were polished until “frosted” effect by the steel wire brush
with 0.3 mm diameter. Then, the polished surfaces were cleaned with alcohol, the treated
plate was stacked, and holes were punched in the four corners of the combined plates.
The clad plates were riveted with 1060 pure aluminum. (ii) Corrugated cold roll bonding
(CCRB), where the two-high rolling mill with the upper corrugated roll and the lower
traditional flat roll with 320 mm diameter were used to prepare the rolling experiments at
room temperature. The first roll reduction rate was 40% and the rolling speed was 0.1 m/s.
(iii) Intermediate annealing treatment, where the CCRB clad plate was annealed for 60 min
at 350 ◦C. (iv) Flat roll bonding (FRB), where the annealed Cu/Al corrugated clad plates
were flattened to 2.4 mm (reduction was 60% by one pass) thickness by two-high rolling
mill with 320 mm diameter. (v) Final annealing treatment, where Cu/Al clad plates after
FRB were subjected to annealing treatment at 300–450 ◦C for 10–60 min. The complete
process diagram is shown in Figure 1.

Table 1. Chemical composition of T2 Cu and 1060 Al (wt.%).

Component Plate Cu Al Ti Bi Sb As Fe Sn S Si

T2Cu >99 - - 0.001 0.002 0.002 0.008 0.008 0.005 -
1060Al - >99.61 0.013 - - - 0.26 - - 0.08
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Table 2. The mechanical properties of raw T2 Cu and 1060 Al.

Component Plate Hardness (VHN) Yield Strength (MPa) Elongation (%)

T2Cu 86 90 30.93%
1060Al 41 79 25.29%
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Figure 1. The schematic diagram of CFR technique.

2.2. Mechanical Properties

Several methods can be used to test the bonding strength of Cu/Al clad plate, such as
bending test, shear test, and peel test [18,19]. Due to the thickness of Cu layer after CFR
being too thin, peel test was conducted to check the bonding quality. The peel samples
were cut along the transverse direction (TD) of the annealed Cu/Al clad plate at peak
and trough positions. The special positions and specifications of the sample are shown in
Figure 2. The bonding properties of the specimens were determined by peeling tests on
the Instron 5969 universal material testing machine with a tensile rate of 0.5 mm/min. The
peel strength was calculated by the following equation: σ = F/L, where F is the peel force
(N) and L is the width of the peel sample (mm).
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Figure 2. The positions and specifications of the peel test samples.

2.3. Microstructural Characterization

The samples to be microscopic observation were polished to smooth surface [20,21].
The scanning electron microscope (SEM, JSM-IT500, JEOL Ltd., Tokyo, Japan) equipment
was used to research the interface microstructure of the cross-section (RD-ND) plane of
the sample at the typical position (peak and trough) of the annealed clad plate. The micro-
morphology of the peeling fracture sections was also characterized by SEM to clarify the
influence of interface phase development on interface bonding properties after annealing.
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3. Results and Discussion
3.1. Interface Microstructure of Cu/Al Clad Plate after CCRB and FRB

The SEM micrographs at peak and trough interfaces of the CCRB Cu/Al clad plates an-
nealed at 350 ◦C for 60 min are shown in Figure 3a,b. The IMCs layer with an approximately
2.5 µm thickness was formed at the interface, there were cracks at the peak interface, and
the thickness of the IMCs layer was not uniform, which was caused by the low interface-
bonding rate at the peak position and the obstruction of atomic diffusion in the unbonded
zone during the annealing process. The line scan results in Figure 3e,f displayed that
three IMCs sub-layers, Cu9Al4, CuAl, and CuAl2, were formed at the interface.

Metals 2022, 12, x FOR PEER REVIEW 4 of 14 
 

 

2.3. Microstructural Characterization 

The samples to be microscopic observation were polished to smooth surface [20,21]. 

The scanning electron microscope (SEM, JSM-IT500, JEOL Ltd., Tokyo, Japan) equipment 

was used to research the interface microstructure of the cross-section (RD-ND) plane of 

the sample at the typical position (peak and trough) of the annealed clad plate. The mi-

cromorphology of the peeling fracture sections was also characterized by SEM to clarify 

the influence of interface phase development on interface bonding properties after anneal-

ing. 

3. Results and Discussion 

3.1. Interface Microstructure of Cu/Al Clad Plate after CCRB and FRB 

The SEM micrographs at peak and trough interfaces of the CCRB Cu/Al clad plates 

annealed at 350 °C for 60 min are shown in Figure 3a,b. The IMCs layer with an approxi-

mately 2.5 μm thickness was formed at the interface, there were cracks at the peak inter-

face, and the thickness of the IMCs layer was not uniform, which was caused by the low 

interface-bonding rate at the peak position and the obstruction of atomic diffusion in the 

unbonded zone during the annealing process. The line scan results in Figure 3e,f dis-

played that three IMCs sub-layers, Cu9Al4, CuAl, and CuAl2, were formed at the interface. 

The SEM images at the peak and trough interfaces of the FRB Cu/Al clad plates are 

shown in Figure 3c,d. It can be seen that the interface IMCs of Cu/Al clad plates were torn 

after the FRB process, forming the interface morphology of intermittent IMCs and the new 

bonding zone. 

 

Figure 3. SEM images of the Cu/Al clad plates: (a,c) at peak, (b,d) at trough, (a,b) by CCRB, (c,d) by 

FRB; (e) and (f) are the EDX line scanning results along the line in (a) and (b), respectively. 

  

Figure 3. SEM images of the Cu/Al clad plates: (a,c) at peak, (b,d) at trough, (a,b) by CCRB, (c,d) by
FRB; (e) and (f) are the EDX line scanning results along the line in (a) and (b), respectively.

The SEM images at the peak and trough interfaces of the FRB Cu/Al clad plates are
shown in Figure 3c,d. It can be seen that the interface IMCs of Cu/Al clad plates were torn
after the FRB process, forming the interface morphology of intermittent IMCs and the new
bonding zone.

3.2. Interface Structure Evolution after Annealing

According to the Cu-Al binary alloy phase diagram [22], the Cu/Al clad plates were
annealed at a temperature of 300–450 ◦C for 60 min. The SEM images of the annealed
interface are exhibited in Figure 4. After annealing at 300 ◦C for 60 min, the new IMCs
(second IMCs layer) with a thickness of approximately 0.68 µm can be observed in the
new bonding zone. The thickness of the original IMCs (first IMCs layer) only increased
by approximately 0.27 µm, as shown in Figure 4a,e. When the annealing temperature was
350 ◦C, the thickness of the second IMCs layer obviously expanded to 1.56 µm (Figure 4b,f),
whereas the first IMCs layer did not change significantly. This is due to the significant
difference in atom concentration on both sides of the new bonding interface zone. Atoms in
both sides of the interface preferentially and quickly diffused under the thermal diffusion
influence, and the second IMCs layer expanded quickly. The initial annealing treatment had
an impact on the first IMCs layer, and the atomic concentration in both sides of the interface
had a seamless transition. Therefore, under the “containment effect” of the second IMCs
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layer, the thickness of the first IMCs layer changed little. The interface IMCs thickness
grew significantly and tended to be uniform throughout when the annealing temperature
reached 400 ◦C and 450 ◦C. The reason for this was that the atoms’ diffusion velocity
increased significantly when the temperature increased, the atoms’ concentration gradient
at the interface dropped rapidly, and the diffusion behavior at each position gradually
tended to be balanced.
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In order to clarify the type of the second IMCs layer, a point scan analysis of different
IMCs sub-layers at the interface was carried out, as shown in Table 3. When the annealing
temperature was 300 ◦C, the thickness of the second IMCs layer was thin, making it
challenging to identify the type of interface IMCs by energy dispersive spectroscopy (EDS)
analysis. According to the research of Yuan et al. [23], Cu9Al4 and CuAl2 IMCs sub-
layers can most easily be formed at the Cu/Al interface during the annealing process. In
particular, Mao et al. [24] observed that the IMCs of the as-cast Cu/Al clad plate interface
after annealing at 300 ◦C for 1 h were Cu9Al4 and CuAl2 phases through the TEM. Therefore,
it can be preliminarily judged that the phases of the second IMCs layer in Figure 4a,e were
Cu9Al4 and CuAl2. When the temperature exceeded 350 ◦C, three sub-layers were formed
at the interface, which were found to be Cu9Al4, CuAl2, and CuAl by point scan analysis.

Table 3. The element contents of Cu and Al by element point scanning at point 1–20 (wt%).

Element Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 Point 10

Cu 39.45 62.56 48.59 34.84 67.37 51.94 37.82 68.35 47.92 38.67
Al 60.55 37.44 51.41 65.16 32.63 48.06 62.18 31.65 52.08 61.33

Element Point 11 Point 12 Point 13 Point 14 Point 15 Point 16 Point 17 Point 18 Point 19 Point 20

Cu 42.84 64.34 50.16 32.57 64.91 53.58 31.49 66.82 51.95 34.55
Al 57.16 35.66 49.84 67.43 35.09 46.42 68.51 33.18 48.05 65.45

3.3. Growth of Interface IMCs Layer during Annealing

Previous research [6] had shown that the annealing temperature and annealing time
were important influencing factors on the interface IMCs growth. Therefore, in this paper,
the IMCs layer growth of the Cu/Al clad plate after FRB was systematically studied. The
annealing process parameters were as follows: the annealing temperature was 300–450 ◦C
and the annealing time was 30–240 min.

The solid phase transition under the annealing condition of the Cu/Al interface was
the result of the mutual diffusion reaction of Cu and Al atoms under thermal action. The
relationship between the thickness of each IMCs layer and the annealing time can be
expressed by the empirical equation [25]:

d = Ktn (1)
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where d is the thickness of the intermetallic layer, K is the growth rate constant, n is the
time exponent, and t is the annealing time.

Considering that there was an intermittent IMCs layer at the interface before annealing
treatment (Figure 3c,d), Equation (1) can be changed to Equation (2).

The thickness of each IMCs layer as a function of the square root of the annealing time
(30–240 min) for different temperatures is shown in Figure 5. In general, the solid-state
growth of the IMCs layer was either linear or parabolic growth kinetics. According to
the previous research [26], the IMCs layer growth law of Cu/Al clad plates annealed at
300–500 ◦C followed a parabolic growth kinetics. Linear growth meant that the IMCs
growth was controlled by the reaction rate. Thus, the value of n can be taken as 1 in
Equation (2). Parabolic growth implies that the IMCs growth is controlled by volume
diffusion, so n was 0.5 in Equation (2), whereas it can be seen from Figure 5 that the IMCs
thickness was a linear function of the square root of the annealing time, implying that the
growth of the IMCs layers in this study was controlled by diffusion; thus, the value of n
was 0.5 in Equation (2). The calculated value of K through linear regression and the growth
rate constants of all IMCs layers are listed in Table 4.

d = Ktn + d0 (2)

where d0 is a constant.
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Table 4. Calculated growth rate constants.

Position Temperature (◦C) IMC K (m2/s) Position Temperature (◦C) IMC K (m2/s)

Peak

300
CuAl2 7.68 × 10−17

Trough

300
CuAl2 6.39 × 10−17

Cu9Al4 3.83 × 10−17 Cu9Al4 3.83 × 10−17

CuAl 3.26 × 10−18 CuAl 3.26 × 10−18

350
CuAl2 6.98 × 10−16

350
CuAl2 6.85 × 10−16

Cu9Al4 2.08 × 10−16 Cu9Al4 2.05 × 10−16

CuAl 5.03 × 10−17 CuAl 4.48 × 10−17

400
CuAl2 3.29 × 10−15

400
CuAl2 3.16 × 10−15

Cu9Al4 1.11 × 10−15 Cu9Al4 1.21 × 10−15

CuAl 3.30 × 10−16 CuAl 2.98 × 10−16

450
CuAl2 6.66 × 10−15

450
CuAl2 6.18 × 10−15

Cu9Al4 5.09 × 10−15 Cu9Al4 4.59 × 10−15

CuAl 6.71 × 10−16 CuAl 7.68 × 10−16

According to classical kinetic theory, the activation energies for IMCs growth can be
determined by the Arrhenius equation [25]:

K = K0 exp(− Q
RT

) (3)

where K is the growth rate constant, K0 is a pre-exponential factor, Q is the reaction activation
energy, R is the molar gas constant (8.314 J/(K mol)), and T is the annealing temperature.

According to the information in Table 3, an Arrhenius plot (Figure 6) is created
to determine the values of K0 and Q (Table 4). The activation energies calculated for
the growth of the Cu9Al4, CuAl2, and CuAl were 112.328 KJ/mol, 102.455 KJ/mol, and
122.353 KJ/mol at the peak position, respectively, and those at the trough position were
109.947 KJ/mol, 104.997 KJ/mol, and 125.445 KJ/mol, respectively. It can be seen that
the atoms’ diffusion behavior at the interface between the peak and the trough was less
affected by the matrix microstructure. The activation energy at the peak position was only
slightly higher than that at the trough. The activation energy sequence of the three IMCs
can be expressed by CuAlC > Cu9Al4 > CuAl2. Furthermore, in the previous study of
Chen et al. [27], the growth activation energies of CuAl2 and CuAl were 97.5 KJ/mol and
107.85 KJ/mol, respectively, which are slightly lower than the results in this study. This
was due to the fact that, at the beginning of the annealing process, the first IMCs layer
(Figure 4a,e) had a clear restraint effect on the development of the second IMCs layer
(Figure 4b,f)) in the research, causing the growth activation energy of each IMCs layer to be
slightly higher than the conventional value.

It is worth noting that, although the data in Figure 6 basically followed the Arrhenius
equation, there were certain deviations from the scatter. This is because, when the annealing
treatment was below 350 ◦C, the atoms’ diffusion in the second IMCs layer was greatly
affected by the atomic concentration gradient, which limited the diffusion behavior, and
the activation energy was improved. In addition, Braunovic et al. [28] found that a single
activation energy cannot be used to describe the formation rate of intermetallic phases over
the entire temperature range. Evidently, the activation energy was smaller at temperatures
below 350 ◦C than those above 350 ◦C. The lower activation energy was generally consid-
ered to be the result of the short circuits atoms’ diffusion via structural defects such as grain
boundaries and dislocations at the interface forming IMCs. The activation energy of the
atoms at the interface above 350 ◦C was usually related to the volume diffusion, which also
confirmed the rationality of the existence of scatter points in Figure 5.
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3.4. Effect of Annealing Time on Interface Structure and Bonding Properties

Hug et al. [29] displayed that the total thickness of interface IMCs was less than
2 µm, which was beneficial for improving the interface bonding strength. Considering the
efficiency of the annealing treatment and the interface bonding performance, the Cu/Al
clad plates after FRB were annealed at 350 ◦C for 10 min, 20 min, 40 min, and 60 min,
respectively. Then, the interface structure and bonding property were analyzed.

3.4.1. Interface Microstructure Evolution

Figure 7 is the interface SEM images at the peak and trough positions after anneal-
ing at 350 ◦C. It can be seen that, after 10 min annealing, there was no obvious IMCs
layer in the new bonding interface zone at the peak and trough, and the thickness of the
second IMCs layer did not change significantly. This is because the metal matrix expe-
rienced the process of a temperature rise in the early stage of annealing, and the IMCs
formation required a certain amount of incubation time, so the mutual diffusion between
atoms on both sides of the interface was slow. The diffusion interface was dominated by
the formation of solid solutions α-Cu and α-Al, which were conducive to improving the
interface bonding strength.
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As shown in Figure 7c,d, when the annealing time was 20 min, a small amount of
IMCs gradually began to form in the new bonding interface zone, and its thickness was
approximately 0.5 µm, whereas the thickness of the first IMCs layer still did not change
significantly. With the increase in annealing time, the thickness of the IMCs layer at the
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whole interface gradually increased. When the annealing time reached 60 min, the interface
structure with wide and narrow IMCs layer intervals was formed. Among them, the
thickness of the second IMCs layer increased significantly more quickly than that of the
first IMCs layer. After 60 min annealing, the thickness of the second IMCs layer increased
by approximately 1.6 µm, whereas the thickness of the first IMCs layer only increased by
approximately 0.5 µm.

3.4.2. Bonding Performance

The peel samples were cut at the peak and the trough positions of the above annealed
Cu/Al clad plates. Figure 8 shows the results of the peel strength test. It can be seen that,
when the annealing time was 10 min, the average peel strength of the interface at the peak
and wave reached a maximum of 53.07 N/mm and 41.23 N/mm, respectively. It is worth
noting that the peel strength at the peak is higher than that at the trough. This is due to
the following two reasons: (1) in the FRB stage, the local reduction at the peak is greater
than that at the trough, and the bonding properties of the new bonding zones are higher;
(2) the new bonding zones has a higher proportion in the whole interface zone at the peak,
and contributes more to the bonding strength of the interface. Then, with the increase in
annealing time, the average peel strength of the interface gradually decreased.
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3.4.3. Microstructure of Peel Surface

Figures 9 and 10 display the micromorphology of the peel sections on both the Cu
side and Al side at peak and trough positions after the peel experiment, respectively. The
components of each feature position were determined by EDS point scan, and the detection
results are shown in Tables 5 and 6. It can be seen that the morphology of the peek section of
the Cu/Al clad plate after various time annealing treatments exhibited significant changes.
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Figure 9. SEM images of peeling section at peak: (a,b) 10 min, (c,d) 20 min, (e,f) 40 min, (g,h) 60 min;
(a,c,e,g) Cu side, (b,d,f,h) Al side.

Table 5. The element contents of Cu and Al by point scanning of peeled section at peak (wt%).

Element Point a Point b Point c Point d Point e Point f Point g Point h

Cu side
Cu 3.48 66.36 25.33 65.31 17.67 64.58 78.36 59.32
Al 96.52 33.64 74.67 34.69 82.33 35.42 21.64 40.68

Element Point i Point j Point k Point l Point m Point n Point o Point p

Al side
Cu 2.64 43.61 7.64 48.41 23.45 48.67 8.47 35.78
Al 97.36 56.39 92.36 51.59 76.55 41.33 91.53 64.22

Table 6. The element contents of Cu and Al by point scanning of peeled section at trough (wt%).

Element Point A Point B Point C Point D Point E Point F Point G Point H

Cu side
Cu 5.62 61.88 25.41 41.86 30.29 52.61 22.37 48.62
Al 94.38 38.12 74.59 58.14 69.71 47.39 77.63 51.38

Element Point I Point J Point K Point L Point M Point N Point O Point P

Al side
Cu 5.37 36.76 16.34 42.18 22.31 42.85 20.38 54.86
Al 94.63 63.24 83.66 57.82 77.69 57.15 79.62 45.14
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Figure 10. SEM images of peeling section at trough: (a,b) 10 min, (c,d) 20 min, (e,f) 40 min, (g,h)
60 min; (a,c,e,g) Cu side, (b,d,f,h) Al side.

When the annealing time was 10 min, the peel sections of the Cu side and Al side
showed the coexistence of a ductile Al ridge fracture and brittle IMCs layer fracture, as
shown in Figures 9a,b and 10a,b. The ductile Al ridge fracture occurred in the second IMCs
layer zones, whereas the brittle fracture occurred in the first IMCs layer zones. At this time,
the atoms on both sides of the interface at the second IMCs layer diffused with each other
and underwent a solid solution reaction to form a metallurgical bond layer, which can
improve the bond strength of this region. However, there was almost no change at the first
IMCs layer, which had little impact on the interface combination. Therefore, the interface
peel strength was improved.

When the annealing time was 20 min, the peel sections on both Cu and Al sides at
the peak and trough position still showed the coexistence of a ductile fracture and brittle
fracture, as shown in Figures 9c,d and 10c,d. However, a local brittle fracture appeared at
the Al ridge adhered to the Cu side. This is because the diffusion rate of Cu atoms in the Al
matrix was higher than that of Al atoms in the Cu matrix, which can lead to the formation
of brittle IMCs in the Al matrix. In addition, the fracture occurred near the Al matrix during
the peeling process. As a result, the interface peel strength began to decrease.
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The brittle fracture region of the Al ridge on the Cu side peel section was further
expanded when the annealing time increased to 40 min and 60 min, as shown in Figure 9e,f
and Figure 9g,h. In particular, when the annealing time was 60 min, a large number of
brittle fracture zones appeared even at the Al ridge on the Al side peel section. This is due
to the fact that, as the annealing time increased, the brittle compound layer developed at
the interface gradually spreaded to the Al side, causing the fracture toughness of the new
interface to significantly decrease. Therefore, the peel strength at the peak and trough of
the clad plate was further reduced to 24.45 N/mm and 23.78 N/mm.

Based on the above analysis, it was found that the average peeling strength at the
interface appeared to strengthen when the clad plate was annealed at 350 ◦C for 10 min.
However, with the increase in annealing time, the thickness of the IMCs layer generated at
the interface gradually increased. The brittle fracture area gradually expanded during the
peeling process, and the average peeling strength began to decrease. Therefore, a reasonable
annealing treatment of the Cu/Al clad plate can further improve the interface-bonding
strength. Additionally, the annealing treatment can reduce the stress and homogenize the
microstructure of Cu and Al substrates, which was beneficial to the subsequent processing
of the Cu/Al clad plates.

4. Conclusions

(1) The growth activation energies calculated for the Cu9Al4, CuAl2, and CuAl phases
were 112.328 KJ/mol, 102.455 KJ/mol, and 122.353 KJ/mol and 109.947 KJ/mol,
104.997 KJ/mol, and 125.445 KJ/mol at the peak and trough, respectively. Among
them, the growth activation energy at the peak position was slightly higher than that
at the trough position. The activation energy sequence of the three IMCs was CuAl >
Cu9Al4 > CuAl2.

(2) The formation of the first IMCs layer was significantly restrained at the early stages of
annealing by a greater atomic concentration gradient in the new bonding interface
area, which caused a slight rise in the IMCs layer’s growth activation energy.

(3) The maximum average peel strength at the peak and trough interfaces annealing at
350 ◦C for 10 min reached 53.07 N/mm and 41.23 N/mm, respectively. Furthermore,
the average peel strength of the interface gradually decreased as the annealing period
was extended, and numerous brittle IMCs layers formed at the interface.
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