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Abstract: In this study, five bobbin tools with different shoulder fillet radii were employed for the
bobbin tool friction stir welding (BT-FSW) of A1050-O sheets to systematically evaluate the effects of
shoulder fillet radius on the welding defect formation, flash formation, weld thickness, grain size
of the stir zone, and tensile properties. The quality classifications of the joints’ appearance were
summarized as process windows, and the appropriate welding condition range for each shoulder
fillet radius was clarified. It was observed that an increase in the shoulder fillet radius decreased the
welding defects and flash formation; however, it increased the minimum thickness of the weld except
when the shoulder fillet radius was 0.5 mm. The grain size of the stir zone increased with increasing
shoulder fillet radius from 0.5 mm to 6 mm. The ultimate tensile strength (UTS) of the stir zone
decreased with increasing shoulder fillet radius from 0.5 mm to 1 mm, increased from 1 mm to 3 mm,
and remained constant from 3 mm to 6 mm. The results indicate that a shoulder fillet radius larger
than 3 mm is effective in decreasing flash formation and maintaining a constant weld thickness.

Keywords: bobbin tool friction stir welding; tool geometry; welding defect; flash formation;
aluminum; tensile property

1. Introduction

Friction stir welding (FSW) is a solid-state welding technique that has many advan-
tages over conventional fusion welding. According to the review by Mishra and Ma [1],
FSW is an energy-efficient, environmentally friendly technology that is considered to be
the most significant development in welding in recent years. Therefore, it has gained wide
interest from both industry and academia. FSW has been considered for application to
various materials (Al, Mg, Cu, Fe, Ti, and its alloys, etc.). In addition, varioues aspects of
process optimization are also being studied. Liu et al. reported that the softening and tensile
properties of A1050-H24 aluminum sheets are significantly affected by FSW parameters,
such as the welding speed and tool rotation speed [2]. Fujii et al. studied the effects of
carbon content and phase transformation on the mechanical properties and microstructures
of carbon steel welded using FSW, which was the first example of welding general steels
without phase transformation [3]. Wang et al. developed a novel friction stir spot weld-
ing technique using double-sided tools with adjustable probes that can obtain a flat joint
without a keyhole in the welding of magnesium alloys and low-carbon steel [4,5]. Various
novel metal-forming and welding methods have been developed by researchers based on
the FSW concept. For example, Otsu et al. developed a friction stir incremental forming
method by combining FSW and incremental sheet metal forming to form aluminum alloy
sheets without heating from an external heat source [6].

In conventional FSW, since the stirring at the bottom of the joint along the plate
thickness direction is relatively weak, kissing bonds or root defects may occur due to
insufficient stirring and heat input at the bottom [7,8]. It is difficult to install a back support,
making it difficult to apply conventional FSW to large hollow structural parts. In order
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to solve these problems, bobbin tool friction stir welding (BT-FSW) was developed as a
derivative technology of FSW, in which the material is sandwiched with shoulders from
both sides. In some literature, it is also called self-support FSW or self-reacting FSW [9–22].
A schematic illustration of BT-FSW, which is an FSW variant, is shown in Figure 1. The
bobbin tool consists of a probe, top shoulder, and bottom shoulder. BT-FSW has various
advantages, such as the omission of the backing bar and an absence of root defect formation.
Furthermore, in BT-FSW, since the tool load can be canceled by the internal stress of the
tool, the rigidity required for the device and fixture is low, and the heat input is relatively
high, so the material tends to soften, so the welding speed can be increased. It is possible to
improve the efficiency compared to conventional FSW [9,10]. Zhou et al. explained that
flash was formed due to heat accumulation at the retreating side in magnesium alloy FSW
using a bobbin tool with upper and lower shoulders of different diameters [11].
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Figure 1. Schematic illustration of BT-FSW.

Because the shoulder and probe have a significant influence on the heat generation
and material flow during both the FSW and BT-FSW processes, tool geometry is considered
an influential aspect of the process development. Regarding the probe shape design, Reza-
E-Rabby et al. investigated the effect of probe thread shapes on the weldability of different
aluminum alloys (AA 7050 and AA 6061) with a cylindrical probe tool with four thread
pitches, including an unthreaded probe [22]. It was observed that thread shapes were
beneficial for improving the tool performance by inhibiting wormhole defects through
effective material transportation. In contrast, Thomas et al. reported that a probe with
a non-circular cross-section is effective for joining thick plates, and a probe with a spiral
grooved shape is suitable for high-speed joining [23].

Regarding shoulder geometry, although a simple shoulder shape, such as a flat shoul-
der, can be manufactured easily, a flat surface shoulder often leads to excessive flash
formation, as Unfried-Silgado et al. reported on AA1100 aluminum [24]. Casalino et al.
also investigated the effects of shoulder geometry on weldability [25] and reported that a
flat shoulder is sensitive to the process parameters and results in flash and welding defect
formation. In contrast, a convex shoulder design can increase the contact area with the
workpiece and facilitate the joining of workpieces of different thicknesses, as Nishihara
and Nagasaka reported [26]. A concave shoulder design is commonly used to prevent
material spilling and compress material around the probe during FSW, as demonstrated by
Scialpi et al. [27] and reviewed by El-Moayed et al. [28].
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Because the BT-FSW tool has two shoulders rather than one, the role of the shoulder
geometry in BT-FSW is more significant than that in FSW. However, there are few studies
on the BT-FSW shoulder shape design [10]. Therefore, the relationship between shoulder
characteristics and welding defects needs further investigation. Moreover, flash is always
formed as the weld thickness decreases, which results in welding defects and a decrease in
strength, as reported by Li et al. [8]. Especially in BT-FSW, the two shoulders are plunged
from both sides of the sheet at the same time, and the problems of flash formation and
sheet thickness reduction are much more obvious than in FSW. As Galvão et al. indicated,
most cylindrical tool shoulders require a 1–3◦ tool tilting angle to maintain the material
reservoir and produce a compressive forging force on the weld [29]. However, it is difficult
to utilize the tilt angle in BT-FSW because the bottom shoulder strikes the sheet when the
bobbin tool is tilted.

De Giorgi et al. reported that a flat shoulder with a fillet radius of 1 mm results in
negligible flash formation [30]. Recently, Jiang et al. conducted a BT-FSW experiment
using a bobbin tool with a relatively large fillet radius of 6 mm at the edge of the shoulder
with a total plunging depth of 0.2 mm and reported that a sound joint was obtained, and
almost no flash formation was observed [31]. Other studies also used welding tools with
relatively large radius fillets on the shoulder edges [12–16,27]. However, the effects of
changes in shoulder fillet radius on flash formation and welding defects have not yet been
systematically evaluated. Therefore, it is difficult to obtain a practical process window
for the BT-FSW that can be used as a guideline for selecting welding parameters and a
designing tool.

Considering the above data, in this study, the effect of the shoulder fillet radius (Rsf)
on welding defects, flash formation, and weld thickness reduction in BT-FSW was analyzed.
The BT-FSW was performed using tools with five different shoulder fillet radii. Flash
formation, welding defects, the minimum thickness of the weld, the grain size of the stir
zone (SZ), and tensile properties were systematically evaluated to elucidate the effects of
the shoulder fillet radius on welds.

2. Materials and Methods

Pure aluminum sheets of JIS A1050-O with dimensions of 200 mm × 200 mm × 2.0 mm
were used in this study. Stir-in-plate welding was performed using a three-axis vertical
machining center (MILLAC 44V II, OKUMA Corp., Aichi, Japan). The apparatus is shown
in Figure 2. The aluminum sheet was clamped to the table with a blank holder and screw
bolts. A bobbin tool was introduced from a hole in the table into the sheet and removed
from the hole after the FSW. A schematic of the bobbin tool used in the experiments is
shown in Figure 3. The tool sizes used are listed in Table 1. Five bobbin tools with shoulder
fillet radii (Rsf) of 0.5, 1, 2, 3, and 6 mm were prepared. A tool with a shoulder fillet radius
of 1 mm is often used as a filleted tool [30]. The shoulders were simply flat to clarify the
influence of the shoulder fillet radius. The diameter of the flat plane of the shoulder (Fs) was
kept constant at Φ8 mm for all tools, which means that the total diameter of the shoulders
varied between Φ9 mm, Φ10 mm, Φ12 mm, Φ14 mm, and Φ20 mm with changes in Rsf.
The tools were made of stainless steel (JIS SUS304), which is easily available and has a good
balance of high-temperature strength and workability. M6 right-hand screw bolts were
used to connect the top and bottom shoulders, and the gaps between the shoulders were
adjusted to a constant value of 1.8 mm, which is 0.2 mm smaller than the sheet thickness,
using a feeler gauge. The welding speed and tool rotation speed were varied from 1000 to
5000 mm/min and 1000 to 7000 rpm, respectively, to evaluate the effect of the welding
parameters on the weld morphology.
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Table 1. Tool size and welding parameters in BT-FSW experiments.

Shoulder fillet radius Rsf [mm] 0.5, 1, 2, 3, 6

Diameter of the flat area of shoulder Fs [mm] 8

Shoulder diameter [mm] 9, 10, 12, 14, 20

Tool rotation direction Clockwise

Tool rotation speed N [rpm] 1000–7000

Tool welding speed V [mm/min] 1000–5000

Gap between top and bottom shoulders ds
[mm] 1.8

Processing type Stir-in-plate
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Specimens with dimensions of 30 mm × 3 mm × 2 mm were used for cross-sectional
observation, as shown in Figure 4a. Macroscopic images of the cross-section were taken
using an image scanner (GT-X820, Seiko Epson Corp., Nagano, Japan), and the minimum
thickness in each weld was measured using the images. The specimens were polished with
#240 to #3000 sandpapers and Al2O3 suspensions with diameters of 1 µm and 0.3 µm. After
polishing, the anodizing procedure was performed in a 2% aqueous BH3F solution at 30
V for 60 s at room temperature. The cross-sectional microstructure was observed using a
metallurgical microscope (BX52M, Olympus Corp., Tokyo, Japan) with simple polarizing
equipment and a digital imaging system. The grain size in the stir zone was evaluated from
microscopic images using the line intercept method.
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Figure 4. Schematic illustrations of the welding path and sampling location and size for (a) a within-
weld tensile test and cross-sectional observation, (b) whole-weld tensile test, (c) a within-weld tensile
test specimen, and (d) a whole-weld tensile test specimen.

Whole-weld and within-weld tensile specimens were prepared along the transverse
direction of the welds, as shown in Figure 4a,b. The size of each specimen is shown
in Figure 4c,d. The whole-weld tensile specimens were prepared according to Japanese
Industrial Standard JIS Z 2241. The within-weld tensile specimens were uniquely designed
so that the gauge length was completely covered by a stir zone. Tensile tests were performed
using a universal testing machine (AGX-250kN, SHIMADZU CORP., Kyoto, Japan) at
room temperature with a constant cross-head speed of 1 mm/min for the entire weld
specimen and 0.2 mm/min for the stir zone. To comprehensively evaluate the effects of
the distributions of the thickness and microstructure along the transverse direction on
the tensile properties, the nominal stress was calculated assuming that the thickness was
uniform over the base metal without flattening the specimen surface.

3. Results and Discussions
3.1. Defect Types and Process Windows

Figure 5 shows the process windows for (a) Rsf = 0.5 mm, (b) Rsf = 3 mm, and
(c) Rsf = 6 mm. The marks in the process windows were used for the classification of the
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surface appearance of BT-FSW welds obtained in the present study. Figure 6 shows the
typical appearances of each classification of welds.
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As shown in Figure 5a, in the Rsf = 0.5 mm process window, penetrating defect I
(bold line square) and the groove-like defect (break line square) occurred at relatively high
rotation speeds and low welding speeds. Penetrating defect I was a continuous crack-like
defect with a spiny end surface on the advancing side (AS) of the welds penetrating the
thickness of the sheets, as shown in Figure 6b. The groove-like defect was generated on
the advancing side (AS) of the backside or both sides of the welds, as shown in Figure 6e.
In the case of conventional FSW, groove-like defects are generally generated owing to
insufficient heat input, as reported by Kim et al. [32]. However, the groove-like defects
in BT-FSW in the present study might have been caused by excessive heat input, which
has a different generating principle than the groove-like defect observed in conventional
FSW. Because penetrating defect I and the groove-like defects occurred at relatively high
rotation speeds and low welding speeds and formed on the advancing side of the weld, they
were considered identical defects; it was assumed that the groove-like defects extended
and penetrated the sheet thickness to become penetrating defect I. Sued et al. reported
similar types of defects as “cutting effects” [12]. In contrast, penetrating defect II (thin
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square) occurred at a rotation speed lower than N = 2000 rpm and a welding speed higher
than V = 3000 mm/min. Penetrating defect II was a continuous crack-like defect with a
relatively smooth end surface that occurred on the advancing side of the welds penetrating
the thickness of the sheets, as shown in Figure 6c. Penetrating defect II might have occurred
due to the insufficient material flow owing to low heat input, that is, this type of defect
might correspond to the groove-like defect in the conventional FSW [32]. Curiously, this
type of defect formation due to insufficient heat input has rarely been focused on in BT-FSW
research [10]. This is probably because such welding conditions were precluded as clearly
failing conditions, in addition to being hidden by the occurrence of tool fracture, which will
be subsequently described. Tool fracture (cross mark) occurred at low tool rotation speeds
and high welding speeds because the load on the tool increased with decreasing heat input.
The maximum welding speed of 5000 mm/min in this study is more than four times faster
than that of any of the studies reviewed by Fuse et al. [10]. If the tool material has a higher
strength, it is expected that the welding speed can be further improved. As shown in
Figure 6d, at high rotation speed and high welding speeds (diagonal square), penetrating
defect III, which was an intermittent welding defect characterized by crescent-shaped
holes penetrating the sheet, was observed. Therefore, penetrating defect III was presumed
to have been caused by the destabilization of the material flow as usually reported in
conventional FSW [32]. Even in BT-FSW, unwelded joints due to the instability of material
flow often become a problem [10]. In contrast to these welding defect conditions, weldable
conditions were also observed; the weldable conditions, under which no welding defects
were observed, were characterized by a rotation speed range of 1000 to 4000 rpm and
welding speed range of 2000 to 3000 mm/min. However, because of the formation of
a continuous pleated flash (triangle mark), the sound joint condition (circle mark) was
not observed in the Rsf = 0.5 mm process window. The pleated flash was formed on the
retreading side (RS) and had a pleated shape and relatively large volume, as shown in
Figure 6f. However, it can be inferred that the welding parameters had negligible influence
on the formation of the pleated flash.
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Figure 5b shows the Rsf = 3 mm process window. When the Rsf increased from 0.5 mm
to 3 mm, penetrating defect I and groove-like defects were observed under high rotation
speeds, penetrating defect II disappeared, and penetrating defect III remained almost
unchanged. Consequently, the range of the weldable conditions increased significantly.
Although the pleated flash was not observed at any welding parameter with the Rsf = 3 mm
tool, a discontinuous spiny flash (inverse triangle mark), which had a relatively small
volume, was observed under high rotation-speed conditions, as shown in Figure 6g. This
can be interpreted as an exposure of a spiny flash hidden by a pleated flash with a relatively
large volume. Because the spiny flash was observed only under high rotation-speed
conditions, sound joints without any flash or defect were observed under low rotation
speeds in the weldable condition range, as shown in Figure 6a.

Figure 5c shows the Rsf = 6 mm process window. Penetrating defect I, groove-like
defects, and penetrating defect III were located in almost the same area as in the Rsf = 3 mm
process window. Penetrating defect II and pleated flash were not observed, similar to
the Rsf = 3 mm process window. In contrast, when the Rsf was increased from 3 mm to
6 mm, the tool fracture range shifted towards the low-welding-speed side under the low
rotation speed conditions. As a result, the weldable condition range became narrower.
However, the sound joint condition range increased, and spiny flash conditions retracted
to the high-rotation-speed side.

Although the continuous pleat-shaped flash was observed for all welding parameters
for Rsf = 0.5 mm, as shown in Figure 5a, the pleat-shaped flash disappeared for Rsf values
of 3 mm and 6 mm. Therefore, it can be inferred that the pleated flash was primarily caused
by the shape of the shoulder. Moreover, relatively large volumes of pleated flash promote
the formation of welding defects owing to a material shortage at the weld. Therefore, the
weldable condition range becomes significantly narrower, as was observed in the case of
Rsf = 0.5 mm. Such a classification of flash morphology and quantitative effect shoulder
fillet radius have not been reported in previous studies [10].

3.2. Average Flash Height and Weld Thickness

To investigate the effects of the shoulder fillet radius in more detail, the welding
conditions of N = 2000 rpm and V = 2000 mm/min, which are weldable conditions over
the Rsf range of 0.5 mm to 6.0 mm, were selected from the process windows, as shown
in Figure 5. Images of the weld surface and cross-sectional images of welds for different
shoulder fillet radii, Rsf, of 0.5 mm, 1 mm, 2 mm, 3 mm, and 6 mm, are shown in Figure 7.
The minimum thickness of the weld and the average height of the flash formation were
measured from the cross-sectional images, as shown in Figure 8. The welds with Rsf values
of 0.5 mm, 1 mm, and 2 mm exhibited higher flash heights than the welds with Rsf values of
3 mm and 6 mm. Thus, it can be concluded that a larger amount of material was ejected from
the weld for Rsf values of 0.5 mm, 1 mm, and 2 mm. The average flash height decreased
from 1.4 mm to 0.2 mm as the Rsf increased. As shown in Figure 8, except at the Rsf value of
0.5 mm, the minimum weld thickness increased as the Rsf increased from 0.5 mm to 6 mm;
the weld thickness decreased from 1 mm to 6 mm. Because the weld obtained under the
current welding conditions was relatively uniform along the welding direction, it can be
inferred that the total amount of material in the cross-section was preserved before and
after the welding. Therefore, the reduction amount of the material around the center of
the weld was the same as the amount of material ejected as the flash. These above results
clearly demonstrate that a relatively large shoulder edge fillet effectively prevent a flash
formation accompanying weld thickness reduction, as researchers have believed [12–16,27].
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Figure 8. Relation between minimum thickness, average height of flash, and the shoulder fillet radii
Rsf (N = 2000 rpm, V= 2000 mm/min, Fs = 8 mm, ds = 1.8 mm).
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The typical cross-sectional microstructures with different shoulder fillet radii are
shown in Figure 9. From Figure 9a, it can be observed that the pleated flash had a long
cross-sectional length but a small cross-sectional area; therefore, the volume of the pleated
flash was relatively small, even though its height was significantly high. Therefore, the
trends of the average flash height and the minimum thickness of the weld were not in
agreement. In addition, as shown in Figure 9a, a pleated flash was formed around the
boundary between the SZ and TMAZ and had a continuous microstructure with the SZ
on the inside and TMAZ on the outside. Based on the morphology and microstructural
characteristics, it can be concluded that the pleated flashes were formed owing to the
separation of the surface layer of the base metal due to stress concentration at the shoulder
edge in front of the tool [27], similar to chip formation during micro-cutting. Therefore,
the formation of pleated flash was suppressed with the increase of Rsf due to reduction of
stress concentration. Additionally, Liu et al. reported that, during hot micro-cutting, the
growth of chips is slightly suppressed owing to the folding back of the material flow that
forms the chips as the edge radius increases, and the effect of the material temperature on
this tendency is small [33]. That is, when the Rsf value is large, even if pleated flashes are
generated, they are difficult to extrude in the out-of-plate direction.
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Figure 9. Cross-sectional microstructure of flash formed in the RS edge of the stir zones welded
with the shoulder fillet radius Rsf of (a) 0.5 mm and (b) 2 mm. (N = 2000 rpm, V = 2000 mm/min,
Fs = 8 mm, ds = 1.8 mm).

On the other hand, as shown in Figure 9b, the spiny flash had a microstructure
continuous with only the SZ. Therefore, it was concluded that the spiny flash was formed
by the extruding part of the SZ around the shoulder edge due to decreasing viscosity with
excessively elevated temperature [10]. This conclusion agrees with the formation of spiny
flash under high-heat-input conditions, as shown in Figure 5. As reported by Fuse and
Badheka, a large diameter of the bobbin tool shoulder results in more flash formation owing
to high heat generation, which facilitates the flow of plasticized material [34]. Note that, in
this study, the large shoulder fillet radius produced less flash even though it resulted in a
large contact area and heat generation. The reason why the spiny flash was suppressed as
the Rsf increased is assumed that the spiny flash generated due to the increase in heat input
accompanying the increase in Rsf were also folded towards the in-plate direction by the
shoulder edge with the larger Rsf [33], just like the pleated flash. However, the spiny flash
was not observed for Rsf values resulting in pleated flash formation. Considering that both
flashes were located in the RS of SZ, it can be inferred that an early pleated flash formation
suppressed the spiny flash formation.

3.3. Grain Size

Figure 10 shows the OM cross-sectional images of the base metal (BM) center of the
stir zone (SZ). The SZs had finer equiaxial crystal grains than the BM. The average grain
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sizes of the BM and SZs are shown in Figure 11. From the result, the average grain size in
the SZs increased from 5.6 µm at Rsf = 0.5 mm to 16.1 µm at Rsf = 6 mm. The increase in
grain size was caused by the increase in heat input as the contact diameter between the
shoulder and sheet material increased.
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Figure 10. Optical microscope images of (a) base metal and stir zones with different shoulder fillet
radii Rsf of (b) 0.5 mm, (c) 1 mm, (d) 2 mm, (e) 3 mm, and (f) 6 mm, respectively. (N = 2000 rpm, V =
2000 mm/min, Fs = 8 mm, tool gap = 1.8 mm).
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Figure 11. Relation between the grain size of the stir zone and the shoulder fillet radius Rsf

(N = 2000 rpm, V = 2000 mm/min, Fs = 8 mm, ds = 1.8 mm).
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For evaluating the relationship between FSW welding conditions and heat input, the
following heat-input equation proposed by Frigaard et al. [35] is generally used:

q =
4
3

π2µPN(φ/2)3, (1)

where q is the frictional heat generated on the shoulder, µ is the friction coefficient between
the shoulder and the material, P is the pressure on the shoulder surface, N is the rotation
speed of the tool, and Φ is the shoulder diameter. Considering Equation (1), the heat input
per unit welding length Q is expressed by the following equation [36]:

Q =
αq
V

,

Q =
π2µPNφ3

6V
, (2)

where α is the heat input efficiency, and V is the tool welding speed. Therefore, when α, µ,
and P are assumed to be constant, the following equation is obtained:

Q ∝
Nφ3

V
(3)

when the tool shoulders with different Rsf values are plunged into the sheet with the same
tool-plunging depth, the shoulder contacting diameter Φ in Equation (3) increases as Rsf
increases, resulting in more heat input per unit length Q. Therefore, in this study, the grain
size increased from 5.6 µm to 16.1 µm with increasing heat input.

3.4. Tensile Properties
3.4.1. Whole Joint

Figure 12 and Table 2 shows the ultimate tensile strength (UTS), elongation of the entire
joint (EWJ), and elongation within the weld (EWW). In this study, nominal elongations,
which were calculated as the difference in the gauge length before and after the tensile test
divided by the original gauge length, were used as the EWJ. The changes in the width of
the weld during the test were divided by the original width of the weld to obtain the EWW.
The error bars indicate standard deviation. The UTS of the joint was almost the same as
or slightly higher than that of the BM; this is represented by the blue dotted line. All the
joint tensile test specimens exhibited fractures in the BM. Thus, it can be concluded that the
tensile strength of the weld was higher than that of the BM, even though the weld thickness
was reduced. In contrast, the EWJ of the weld was smaller than that of the BM. The EWJ
increased with increasing shoulder fillet radius from 0.5 mm to 1 mm, decreased from 1 mm
to 3 mm, and remained constant from 3 mm to 6 mm. The EWJ trend was similar to the
EWW trend. Figure 13 shows the appearance of the welds after the tensile test. As shown
in Figure 13, the weld with Rsf = 1 mm, which had the lowest minimum thickness, was
constricted in the welding direction, which is perpendicular to the tensile direction. Thus,
the weld with Rsf = 1 mm yielded a lower load than the BM owing to the reduction in the
thickness in the SZ. However, because the tensile strength of the weld was greater than that
of the BM, it can be assumed that the deterioration of the tensile strength due to thickness
reduction was compensated by the large strain hardening of the microstructure of the SZ. In
contrast, although the weld thickness decreased for all the welds, the yield strength of the
welds was higher than that of the BM; thus, it can be concluded less elongation occurred
within the weld.
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Figure 12. Relation between shoulder fillet radii Rsf and tensile properties of whole-weld specimens
(N = 2000 rpm, V = 2000 mm/min, Fs = 8 mm, ds = 1.8 mm).

Table 2. Tensile test results for whole-weld specimens.

Sample UTS [MPa] Joint
Efficiency [%] EWJ [%] EWW [%] Fracture Location

Base metal 71.8 - 48.3 - -
Rsf = 0.5 mm 74.6 ± 0.5 103.9 35.8 ± 1.2 10.5 ± 0.6 Base metal
Rsf = 1 mm 72.7 ± 0.5 101.3 40.7 ± 0.9 16.5 ± 0.9 Base metal
Rsf = 2 mm 72.7 ± 0.1 101.3 37.3 ± 0.9 11.5 ± 2.1 Base metal
Rsf = 3 mm 74.4 ± 0.1 103.6 36.0 ± 2.2 9.1 ± 2.0 Base metal
Rsf = 6 mm 72.4 ± 0.1 100.8 36.4 ± 1.2 8.0 ± 1.5 Base metal
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3.4.2. Within Weld

The UTS and elongation values of the SZ tensile specimens are shown in Figure 14
and Table 3. All of the specimens fractured near the center of the SZ. The UTS of the SZ was
relatively higher than that of the BM, as represented by the blue dotted line, owing to the
refinement of the grains in the SZ. The UTS was the lowest for Rsf = 1 mm and gradually
increased with increasing Rsf from 1 mm to 3 mm. However, the UTS of Rsf = 3 mm was
slightly larger than that of Rsf = 6 mm. The tendency of elongation was similar to that of the
UTS, and all elongations in the SZ were lower than that in the BM. As shown in Figure 8,
the average grain sizes in the SZs increase monotonically with increasing Rsf. That is, the
changing tendency of the UTS and elongation was similar to that of the minimum weld
thickness shown in Figure 8 rather than the tendency of grain size. It was concluded that
the minimum weld thickness had a more significant effect on the UTS and elongation than
the grain size. However, based on the Hall–Petch relation, the UTS is also affected by the
grain size. The effect of grain refinement became apparent in each comparison of the UTS
between Rsf = 3 mm and 6 mm and between Rsf = 0.5 mm and 2 mm; considering these
comparisons, it can be inferred that the changing tendency of UTS differed from that of the
minimum thickness, as shown in Figure 8.
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Figure 14. Relation between shoulder fillet radii Rsf and tensile properties of within-weld specimens
(N = 2000 rpm, V = 2000 mm/min, Fs = 8 mm, ds = 1.8 mm).

Table 3. Tensile test results for within-weld specimens.

Sample UTS [MPa] Elongation [%]

Base metal 73.2 88.7
Rsf = 0.5 mm 84.9 ± 0.2 83.2 ± 0.0
Rsf = 1 mm 72.1 ± 0.0 60.4 ± 0.1
Rsf = 2 mm 81.2 ± 0.7 62.6 ± 0.0
Rsf = 3 mm 88.9 ± 0.1 77.7 ± 0.1
Rsf = 6 mm 88.1 ± 0.5 81.6 ± 0.0

4. Conclusions

In this study, BT-FSW tools with five different shoulder fillet radii of 0.5 mm, 1 mm,
2 mm, 3 mm, and 6 mm were used to elucidate the effect of the shoulder fillet radius
on the formation of welding defects, flash formation, weld thickness reduction, tensile
property, and grain size. A1050-O sheets were used for the experiments, and the following
conclusions were obtained.
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1. The average height of flash decreased with increasing shoulder fillet radius from
0.5 mm to 6 mm. Therefore, it can be concluded that increasing the shoulder fillet
radius is an effective approach to decrease flash formation.

2. The shoulder fillet radius had an obvious effect on the flash shape under the same
welding conditions. Continuous flash formation with a large volume was observed
for a shoulder fillet radius of 0.5 mm. In contrast, discontinuous flash formation with
a small volume was observed under relatively high heat-input welding conditions for
shoulder fillet radii of 3 mm and 6 mm.

3. The formation of welding defects decreased under both relatively high and low heat-
input welding conditions with increasing shoulder fillet radius from 0.5 mm to 3 mm
and 6 mm. Additionally, a sound weld area without any flash or welding defect
formation was observed when the radius was increased from 0.5 mm to 3 mm and
6 mm.

4. The minimum weld thickness decreased when the shoulder fillet radius changed from
0.5 mm to 1 mm, then increased when the radius increased from 1 mm to 3 mm, and
finally became almost constant above a radius of 3 mm. The changing tendency of the
UTS was similar to that of the minimum thickness.

5. The grain size of the stir zone increased with increasing shoulder fillet radius, which
can be attributed to the increase in the heat input with a larger shoulder fillet radius.

6. From the viewpoint of suppressing flash formation and tool fracture at high welding
speeds, the optimum shoulder fillet radius is 3 mm.
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