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Abstract: At present, the selection of optimal technological parameters for laser powder bed fusion
(LPBF) is determined by the requirements of the fusion process. The main parameters that are
commonly varied include laser power (P), scanning speed (v), hatch spacing (h), and layer thickness
(t). The productivity of the LPBF process (the increment in the fused volume of the material)
is equal to the product of the last three parameters, and the mechanical properties are largely
determined by the volumetric fusion energy density, which is equal to the ratio of laser power to
productivity. While ensuring maximum process productivity, it is possible to obtain acceptable
quality characteristics—mechanical properties, surface roughness, etc.—for a certain range of LPBF
technological parameters. In these cases, several quality characteristics act as constraints on the
optimization process, and productivity and the key quality characteristics become components of the
objective function. Therefore, this article proposes a formalized representation of the optimization
problem for the LPBF process, including the derivation of the objective function with the constraint
matrix, and provides a solution to the problem using the linear programming (LP) method. The
advantages of the proposed method include the guaranteed convergence of the solution with an
unlimited number of constraints; the disadvantage concerns the adequacy of the solution, which
is limited by a relatively narrow range of parameter changes. The proposed method was tested
in determining the optimal LPBF parameters for an HN58MBYu powder LP model that included
13 constraints and an objective function with two target parameters. The obtained results made it
possible to increase the productivity by 15% relative to the basic technological parameters.

Keywords: additive manufacturing; HN58MBYu; design of experiments; Taguchi method; linear
programming method

1. Introduction

Additive manufacturing (AM) technologies produce three dimensional physical ob-
jects from digital information through a special technique of depositing metal on the
previous layer [1–5]. AM is defined as “a process of joining materials to make parts from
3D model data, usually layer upon layer, as opposed to subtractive manufacturing and for-
mative manufacturing methodologies” by ASTM and ISO standards [4]. A new approach
embedded in AM makes it possible to obtain new consumer properties in as-built parts.
Metal AM technology contains several processing parameters (variables), which makes it
challenging to correlate them with the desired properties and quality characteristics when
optimizing them. Every additive manufacturing process has its own variety of process
parameters, which, in combination with material properties and environmental conditions,
influence the quality of fabricated parts. The capability of AM to fabricate freeform de-
signs makes it very suitable for the aerospace industry. Among various AM technologies,
laser powder bed fusion (LPBF) provides the highest precision when forming desired part
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shapes [1,2]. The main parameters that are commonly varied include layer thickness (t),
scanning speed (v), laser power (P), and hatch spacing (h) [6].

The correlations between the LPBF processing parameters and the various proper-
ties of the fabricated parts, such as tensile behavior [7], surface quality [8], mechanical
performance [9], and fatigue properties [10], have been the subject of various studies.

To determine the optimal processing parameters, it is necessary to create AM models.
Chen [3] categorized AM modeling studies into empirical, analytical, and numerical models,
along with machine-learning techniques. Practical experiments suitable for empirical
models are expensive, especially for metal powder [11], making the detection of parameters
that influence the quality of as-built parts a more challenging task [12]. Numerous studies
can be found in the literature on the application of design of experiments (DoE) methods
(e.g., Taguchi, half-factorial design, central composite design, etc.) and analysis of variance
(ANOVA) to define the parameters and parameter combinations that influence the types of
properties of as-built parts [13–15]. A full factorial DoE method consists of equal numbers
of replicates for all the possible combinations of the levels (values) of each of the processing
parameters. The advantage of this approach is that it provides the exact response for
the effects of parameters and all of the combinations of their interactions [16]. Krishnan
et al. [17] used a full factorial DoE method with three levels of three factors to evaluate the
most significant factor affecting the mechanical properties of LPBF-manufactured AlSi10Mg
specimens. Laser power, scanning speed, and hatch spacing were among these parameters,
and hatch spacing was the parameter with the most significant influence. Linares et al.
used a rough and refined DoE method to target the best combination of process parameters
for optimization of 17-4PH steel fatigue life [18]. However, employing a full factorial
DoE method leads to high costs and time losses in the manufacturing of specimens and
modeling of correlations between the characterization and the process parameters [19].
Therefore, fractional factorial DoE methods are required to evaluate the most significant
process variables, such as the Taguchi method. Typically, fractional factorial DoE methods
are used to analyze the most significant paired parameter interactions and their main
effects [20].

The Taguchi method is one of the best experimental methodologies used to find the
minimum number of experiments to be performed within the permissible factor and level
limits. It provides a systematic approach for the optimization of designs in terms of quality
and cost with orthogonal arrays of factors [21]. The aim of the Taguchi method is to optimize
the technological parameters for the additive manufacturing of metal items, such as directed
energy deposition (DED) [22–24], and to reduce deviations before optimizing the design
to achieve average target values for the output parameters. Manjunath et al. [23] used
the Taguchi L9 orthogonal die design to optimize the DED process and obtained the best
interfacial adhesion between a substrate and a Colmonoy 52 SA nickel-chromium-boron
hardmetal deposition material. Liu et al. [22] used a Taguchi L25 orthogonal die to achieve
maximum-density AlSi10Mg parts and optimize DED process parameters, including the
laser power, scanning speed, powder feed rate, and shielding gas flow. The Taguchi method
has also been used to optimize the LPBF process for various materials, including titanium
alloys [25,26], AlSi10Mg [10,27,28], SS316L [29,30], CoCrMo [25], and Inconel [31]. Rathod
and Karia [28] reported the importance of layer thickness in determining hardness and
surface roughness. Calignano et al. [27] found that scanning speed had the greatest impact
on the surface roughness of LPBF components. Jiang et al. [29] investigated the effects of
laser power, scanning speed, and the hatch spacing of LPBF parts on surface roughness,
hardness, and density. They reported that laser power was the most important parameter
influencing all the properties under study. Sathish et al. [31] used the Taguchi method to
study the effect of growth orientation and heat treatment on the coefficient of friction in
Inconel 718 specimens fabricated with the LPBF method.

The response surface method (RSM) uses a combination of DoE, regression analysis,
and optimization methods to improve the stochastic response value [32]. The RSM can
be used with full-factor DoE or fractional factorial DoE. As an optimization tool for the
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production of LPBF high-entropy alloys, Dada et al. [33] used a full-factor experiment
along with the RSM. By changing the laser power and scanning speed, they considered
the values for the microhardness of the obtained specimens as an output response. Read
et al. [34] used the RSM to evaluate the best laser power, scanning speed, hatch spacing,
and scanned area size to optimize the porosity level of LPBF AlSi10Mg parts. Pant et al. [35]
implemented a central composition plan with the RSM to model and optimize the DED
process of 316L stainless steel. Bartolomeu et al. [36] fabricated Ti-6Al-4V specimens by
varying three processing parameters (laser power, scanning speed, and hatch spacing) in
the LPBF process and used the RSM to analyze experimental shear stress results, hardness,
and density. El-Sayed et al. [37] used the RSM to propose optimal process parameters,
including laser power, scan speed, and hatch spacing, for applications involving Ti-6Al-
4V medical implants and concluded that higher-density energy leads to a decrease in
surface roughness and a decrease in the level of porosity. Marmarelis et al. [38] used the
Taguchi method and RSM to investigate the effect of laser power, scanning speed, and
hatch spacing on the density and surface roughness of AlSi10Mg specimens made using
PBF and reported that groove spacing was the most significant factor in determining the
output characteristics. Fotovvati et al. developed a multipurpose RSM model to optimize
LPBF processing parameters for Ti-6Al-4V given all responses with equal weights. They
developed an artificial neural network (ANN) model, trained it on the specimens used
for the Taguchi method, and validated it on the specimens used for the RSM [39]. Wang
et al. [40] combined the two methods (i.e., Taguchi and the RSM) to study the effect of laser
power, scanning speed, and hatch spacing on the mechanical properties and microstructure
of nickel-based superalloy specimens produced with PBF technology. They applied linear
models, two-factor interaction models, and quadratic simulation to obtain response surfaces
for the tensile strength of fabricated specimens and observed that quadratic simulation of
this response resulted in the lowest error value among all tested models.

Researchers have adopted various methodologies to obtain better performance from
a process. Unlike the Taguchi method, which is designed to optimize single response
characteristics, the grey relational analysis (GRA) method is able to optimize multiple
outcomes [41]. Dongari et al. [42] optimized deposition parameters for wire-arc additive
manufacturing (WAAM)-fabricated Inconel 625 single beads by applying a GRA method-
ology. Bhadrakali et al. [43] optimized WAAM process parameters obtained for strength
and hardness values using GRA followed by the Taguchi method. In previous studies, the
Taguchi approach and GRA have been used to optimize the process parameters and design
of support structures in a nickel–nickel chromium alloy combustion chamber [44]. A simi-
lar approach was also implemented when optimizing the LPBF parameters of bimetallic
specimens from AlSi10Mg–Cr18Ni10Ti powders [45].

Machine learning (ML) methods and their combinations, which are applied for simu-
lation and multi-response optimization of AM process parameters, are widely described
in the literature [45–54]. These methods include artificial neural networks (ANNs), back-
propagation neural networks (BPNs), a radial basic function (RBF) neural network based
on fuzzy clustering and a pseudo-inverse method, the genetic algorithm (GA), multi-gene
genetic programming (MGGP), the non-dominated genetic algorithm (NSGA-II), a multi-
objective particle swarm optimizer, and an ensemble MGGP consisting of an ANN, a
Bayesian classifier, and support vector regression (SVR) [12].

In addition to machine learning, robust planning and other optimization methods
have also been used [55] and can be successfully adapted for multi-response optimization
problems in AM.

When the quality characteristics (response parameters) of the products that are to be
obtained in the AM process are multiple, some of them can then be used as constraints in
multi-response optimization. In this case, to optimize the technological parameters, the
classical methods of linear or nonlinear programming can be used.

The linear programming (LP)-based method is used to linearize nonlinear power
system optimization problems. This method is reliable and has good convergence char-
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acteristics; however, the main shortcoming is that it can be trapped in local minima [56].
To improve the accuracy of the LP method used in this study, it was assumed that the
optimization process occurs in two steps. At the first stage, the optimal parameters are
determined using DoE based on the problem of minimizing porosity and, at the second
stage, a multicriteria optimization problem is solved using the LP method.

Existing AM models are comprised of a set of equations relating the technological pa-
rameters of the process and the parameters of the state of the synthesized material—such as
internal stresses and strains, temperature, individual structural parameters, etc.—presented
in the form of analytical finite-element or empirical models. These parameters form a
multi-connected area within which the area of the technological parameters that provide
the multiple quality characteristics required can be defined.

The aim of this study was to develop a framework, models, and a method for de-
termining the AM modes that make it possible to obtain a set of quality indicators at the
maximum performance of the process. At the same time, some of the quality indicators can
then be included in the objective function in order to maximize or minimize them; the rest
can be used as constraints.

In setting the optimization problem, it was assumed that the basic (recommended)
technological parameters of the LPBF were known from previous studies or from data
from other sources. Thus, within a narrow range of basic technological parameters (P, v,
h, t), it was necessary to determine a combination of them that would ensure maximum
productivity (v·h·t) and key quality characteristics. These parameters were intended to
be included in the objective function; the rest of the quality characteristics were intended
to be included in the constraints. The use of the linear programming method has several
advantages:

- It ensures the convergence of the solution for any number of constraints. Any addi-
tional restriction can be easily introduced; for example, the dependence of residual
porosity on a combination of P, v, h, t;

- It facilitates constraint sensitivity analysis, which makes it possible to define critical
constraints; i.e., define those constraints that have the greatest impact on the objective
function. The limitations of the suggested method include the fact that the solution has
acceptable adequacy only for a narrow range of changes in the basic parameters. The
novelty of the proposed method for optimization is the formalization of the objective
function, which consists of the process productivity and one or more key quality
characteristics of choice; for example, the yield strength of the fused sample. It is
preferable to obtain constraints in the form of polynomials. This makes it possible to
reduce the optimization problem to a linear programming problem after taking the
parameters’ logarithms.

2. Theoretical Foundations of the Optimization Method and Models
2.1. Algorithm

An enlarged optimization algorithm for determining AM modes can be represented
with the following use cases.

A set of target quality indicators are defined and an objective function is formulated
that includes those quality indicators that need to be maximized or minimized.

Optimal technological parameters are determined according to the most significant
quality indicators. In relation to the AM process, such indicators are the parameters of
the continuity of the structure of the build specimens—porosity, number, and size of
microcracks. As already mentioned, the optimized technological parameters include layer
thickness (t), scanning speed (v), laser power (P), and hatch spacing (h). At this stage of
optimization, the optimum response parameter vector {h0, v0, t0, P0} is determined.

Using the design of experiments method and regression analysis, functional relation-
ships are established between quality indicators and AM process parameters. The scope
of these dependencies must include the vector {h0, v0, t0, P0}. To implement the proposed
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linear programming method, it is advisable to represent these dependencies in the form of
polynomials.

The remaining quality indicators that need to be included in the optimization cycle
are formalized as constraints; i.e., their values, obtained during the optimization of target
indicators, should not exceed or be lower than the accepted boundary values.

An optimization problem is solved to determine the optimal technological parameters
based on the objective function and constraints using the linear programming method.

It should be noted that this algorithm is applicable when the optimal values and
constraints are within the scope of the dependencies obtained with the DoE method.

2.2. Object Function in General

The economic efficiency of a technological operation with fixed or slightly variable cost
parameters for an operation is determined by its productivity. For laser powder melting
operations, which include LPBF and L-DED processes, this performance indicator is the
increment speed of the alloyed material volume V:

V = v·h·t, (1)

where:
v is the scanning speed (mm/s);
h is the hatch spacing (mm);
t is the layer thickness (mm).
If we use V as an objective function, then the optimization problem of increasing

economic efficiency while ensuring multiple quality indicators can be determined according
to Equation (2):

argmax(v · h · t)
v,h,t

∈
{

v, h, t
∣∣∀(v, h, t) : Ri(v, h, t, P) ≤ Ri0, Rj(v, h, t, P) ≥ Rj0,

i = 1, . . . , I, j = 1 . . . J, Rimin ≤ Ri ≤ Rimax, Rjmin ≤ Rj ≤ Rjmax

}
, (2)

where:
Ri(v,h,t,P) is the constraint function on the left with a constraint value Ri0;
Rj(v,h,t,P) is the constraint function on the right with a constraint value Rj0;
Ri min, Ri max, Rj min, and Rj max are area boundaries of allowable values for the

functions R;
P is the laser power (W);
I and J are the number of constraints on the left and right, respectively.
As an example of a function Ri, we can give the dependence of the number of non-

melts (point of non-melts), and that of the function Rj would be the dependence of the yield
strength Ri on the technological parameters of fusion.

If we use a more complex functional F, which takes into account multiple quality
parameters, as an objective function, then, assuming the nature of such a dependence is
additive in terms of factors, we can write:

argmaxF(v, h, t, P)
v,h,t,P

∈
{

v, h, t, P
∣∣∀(v, h, t, P) : Ri(v, h, t, P) ≤ Rimax, Rj(v, h, t, P) ≥ Rjmin,

i = 1, . . . , I − n, j = 1 . . . J − k, Rimin ≤ Ri ≤ Rimax, Rjmin ≤ Rj ≤ Rjmax

}
, (3)

where the function F can be defined as:

F(v, h, t, P) = KV
V −Vmin

Vmax −Vmin
+

n

∑
i=1

Ki
Rimax − Ri

Rimax − Rimin
+

k

∑
j=1

Kj
Rj − Rjmin

Rjmax − Rjmin
, (4)

where:
Kv, Ki, and Kj are the coefficients taking into account the influence (significance) of the

relevant factors;
n + k + 1 is the number of analyzed factors in the functional F.
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2.3. Definition of Constraints

The optimal values h0, v0, and P0 correspond to the optimal value of the specific heat
flux density:

q0 ↔ {P0, h0, v0, t}

The functional dependency linking these parameters is discussed below.
The heat source from the laser beam can be represented by a double ellipsoid in

three dimensions with a Gaussian distribution along each axis, as proposed in the Goldak
model [57]. The solution of the Gaussian dependence—for example, using the finite element
method—requires the construction of a very fine grid with a thickening at the laser spot.
In this case, the number of finite elements becomes extremely large. Thus, to simplify
the problem, it is advisable to represent the heat source model as constant over the layer
surface, changing only in the direction of depth, which gives the heat flux density equation
as a function of depth in 0 < z < c [57]:

q(z) =
2
√

3P√
π · c · h2 exp

(
−3

z2

c2

)
(5)

where c is a melting pool depth.
In engineering practice, when describing LPBF or LDED technology, it is assumed that

the fusion process can be described in terms of the energy density of the laser beam per
unit volume of the alloyed material:

E =
P

h · v · t (6)

where t is the layer thickness in the coordinate z.
Using Equation (5), we can determine the average heat density in a layer thickness t

located between two tracks with a step h:

Q =
h
t

t∫
0

q(z)dz =
2
√

3P√
π · c · h · t

t∫
0

exp
(
−3

z2

c2

)
dz (7)

Given that the Gaussian integral limited by the limits 0 < z < t and a—const has a
solution:

t∫
0

exp(−a · z2)dz =

√
π

2
√

a

√
(1− exp(−2a · t2)) (8)

we will get:

Q =
P

h · t ·
(

1− exp
(
−6

t2

c2

)) 1
2

(9)

Taking into account Equation (6), the average density of thermal energy per unit
volume of a layer thickness t is determined by the dependence:

q =
Q
v

= E ·
(

1− exp
(
−6

t2

c2

)) 1
2

(10)

Based on Equation (10), we can obtain the dependence for the optimal thermal energy
density, calculated from the values of the optimum response parameter vector {h0, v0, t0,
P0t}. It should be noted that the parameters h0, v0, t0, and P0 were obtained through an
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optimization procedure that takes into account the parameters of the continuity of the
structure.

qopt =
Popt

hoptvopttopt
·
(

1− exp

(
−6

topt
2

c2

)) 1
2

(11)

From the condition of equality of the thermal energy density for optimal technological
parameters and the thermal energy density for the assigned values {h, v, t, P} according
to Equation (12), we can select the increment speed of the alloyed material volume V
according to Equation (13):

q(h, v, t, P) = q0(h0, v0, t0, P0) (12)

V = h · v · t = h0 · v0 · t0
P
P0
·

√(
1− exp

(
−6

t2

c2

))
/
(

1− exp
(
−6

topt2

c2

))
(13)

Assume that there is a constraint on the layer thickness t:

t ≤ tmax < c (14)

In this case, the linear Equation (15) is valid, which is obtained after taking the
logarithm from Equation (16) and substituting Equation (17) into it:

ln(v) + ln(h) + ln(t) − ln(P) = KV, (15)

where

KV ≤ KVmax = ln
[

h0·v0·t0
P0
·
√(

1− exp
(
−6 tmax2

c2

))
/
(

1− exp
(
−6 topt2

c2

))]
KV ≥ KVmin = ln

[
h0·v0·t0

P0
·
√(

1− exp
(
−6 tmin

2

c2

))
/
(

1− exp
(
−6 topt2

c2

))] (16)

Let the remaining quality characteristics of the fusion process be described by the
following polynomial dependencies:

(a) roughness:

R = Kr

(
P
v

)arp

· harh · tart (17)

(b) tensile strength:

σ = Kσ

(
P
v

)aσp

· haσh · taσt (18)

(c) percentage of elongation:

δ = Kδ

(
P
v

)aδp

· haδh · taδt (19)

where Ki and aij, i = {r, σ, δ}, j = {p, h, t} are the coefficients obtained using the method of
regression analysis based on the experimental results.

It is possible to specify “right” and “left” constraints on the quality characteristics:

Ra ≤ Rmax,
σ ≥ σmin,
δ ≥ δmin.

(20)

The following constraints on the geometric dimensions of the alloyed layer can be
added to Equation (22):

tmin ≤ t ≤ tmax
hmin ≤ h ≤ hmax

(21)
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The logarithm of the polynomial Equations (17)–(19), taking into account the con-
straints from Equations (20) and (21) and the previously obtained inequality from Equation
(15), make it possible to obtain a system of linear constraints in the classical formulation of
the linear programming problem:

Amin · X + Bmin ≥ 0,
Amax · X + Bmax ≤ 0,

(22)

where

Amin =



aσp −aσp aσh aσt
aδp −aδp aδh aδt
0 0 1 0
0
1
0
−1

0
0
1
1

0
0
0
1

1
0
0
1


, Amax =



arp −arp arh art
0 0 1 0
0
1
0

0
0
1

0
0
0

1
0
0

−1 1 1 1

 (23)

are the coefficient matrices for variables in constraint equations;

Bmin =



ln
(

σmin
Kσ

)
ln
(

δmin
Kδ

)
ln(hmin)
ln(tmin)
ln(Pmax)
ln(vmax)
KVmin


, Bmax =



ln
(

Rmax
KR

)
ln(hmax)
ln(tmax)
ln(Pmax)
ln(vmax)
KVmax


(24)

are the “left” and “right” constraint matrices;

X =


ln(P)
ln(v)
ln(h)
ln(t)

 (25)

is the vector of variables.

3. Validation of the Optimization Model for HN58MBYu Alloy
3.1. Objective Function Formation

The objective function FΣ(h,v,t) can be represented as a linear combination of the pro-
ductivity factor FV(h,v,t) and the factor that is obtained by including one of the constraints
in the objective function. In this case, the corresponding constraint row is excluded from
the constraint matrix and coefficient matrix. For example, if the objective function includes
a constraint on the minimum value of the yield strength (i.e., requirement to maximize the
difference (σ − σmin)→max), then the objective function will take the form:

FΣ(p,h,v,t) = kv·FV(h,v,t) + kσ·Fσ(p,h,v,t);
FΣ(p,h,v,t)→max.

(26)
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In expanded form, Equation (28) is written as:

FΣ(p, h, v, t) = kv
ln(v)+ln(h)+ln(t)

MV
+ kσ

aσp ln(P)−aσp ln(v)+aσh ln(h)+aσt ln(t)
Mσ

=

=
kσaσp

Mσ
ln(P) +

(
kv

MV
− kσ

aσp
Mσ

)
ln(v) +

(
kv

MV
+ kσ

aσh
Mσ

)
ln(h) +

(
kv

MV
+ kσ

aσt
Mσ

)
ln(t)

, FΣ(p, h, v, t)→ max
MV = ln(vmax · hmax · tmax)
Mσ = aσp ln(P/v)max + aσh ln(hmax) + aσt ln(tmax)

(27)

where kv and kσ are the coefficients of influence (desirability) of the performance factor and
the factor of ultimate strength for the target function. Let us take kv = 0.3 and kσ = 1.

3.2. Materials and Experiment Design

A total of 48 flat specimens with dimensions of 2 mm × 15 mm × 70 mm (24 pieces)
and 3 mm × 15 mm × 70 mm (24 pieces) obtained using laser layer-by-layer growth (LPBF)
with a Selective Laser Melting System® 280HL (SLM Solutions GmbH, Lübek, Germany)
from HN58MBYu powder in 16 modes (three specimens for each mode) were studied
(Figure 1). The chemical composition of the powder is given in Table 1. LPBF modes are
given in Table 2. We used a 43 × 22 plan in a fractional factorial experiment (three factors
varied at four levels, two factors varied at two levels) obtained from the D-optimal design
45//D16 through equivalent transformation of the last two columns. Five parameters
were changeable during the experiment: scanning speed (v), hatch spacing (h), and fusion
volume energy density (VED)—all at three levels of variation—and layer thickness (t) and
sample thickness—at two levels. These technological parameters were the key parameters
affecting the quality characteristics. The laser power (P) values in Table 2 are given only for
reference according to the dependence P = VED·v·h·t.
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mm 

Tensile 
Strength, 

MPa 

Relative 
Elongation Ra 

1 56 148 480 0.11 0.05 3 1036 21.1 4.48 
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10 69 273 660 0.12 0.05 3 1024 23.0 4.47 
11 76 331 660 0.11 0.06 3 998 22.5 4.48 
12 63 299 660 0.12 0.06 2 1013 17.3 4.52 
13 56 218 540 0.12 0.06 2 1055 15.9 4.59 
14 69 313 540 0.14 0.06 3 980 19.6 4.60 
15 76 267 540 0.13 0.05 3 1024 23.1 4.42 
16 63 187 540 0.11 0.05 2 1081 19.85 4.49 
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The influence of the thickness of the built specimens S on the mechanical properties 
was evaluated using the Mann–Whitney U-test, which showed a statistically significant 
effect from this factor on the tensile strength and relative elongation (Table 3). The in-
fluence of the factor was considered statistically significant if the p-level was <0.05. 

Figure 1. Samples from heat-resistant HN58MBYu alloy (a); Selective Laser Melting System®

280HL (b).

The produced samples were subjected to tensile tests using an Instron 5982 Testing
System (ITW, Glenview, IL, USA) for uniaxial static tensile-compression examination in
accordance with the recommendations of the ASTM E8/E8M standard. The roughness Ra
of the samples was measured with a profilometer MarSurf PS1 (Mahr GmbH, Göttingen,
Germany) in accordance with the recommendations of the ISO 13565-1 standard.

Table 1. Chemical composition of nickel–chromium HN58MBYu alloy in at.%.

C S P Mn Cr Si Ni Fe Al B Mo Nb Mg Y La

0.05 0.011 0.012 0.49 26.4 0.8 Balance 2.7 1.29 0.002 7.6 3.1 0.02 0.02 0.03
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Table 2. Technological modes and test results for mechanical properties.

No.
Energy
Density
Е, J/mm3

Laser
Power Р,

W

Scanning
Speed v,

mm/s

Scanning
Step h,

mm

Layer
Thick-
ness t,
mm

Sample
Thick-
ness S,

mm

Tensile
Strength,

MPa

Relative
Elonga-

tion
Ra

1 56 148 480 0.11 0.05 3 1036 21.1 4.48
2 69 215 480 0.13 0.05 2 1024 19.9 4.46
3 76 306 480 0.14 0.06 2 1020 16.2 4.58
4 63 218 480 0.12 0.06 3 1011 24.3 4.56
5 56 262 600 0.13 0.06 3 962 20.1 4.49
6 69 273 600 0.11 0.06 2 1024 19.6 4.51
7 76 274 600 0.12 0.05 2 1025 21.2 4.50
8 63 265 600 0.14 0.05 3 1013 25.1 4.47
9 56 259 660 0.14 0.05 2 1051 20.8 4.50

10 69 273 660 0.12 0.05 3 1024 23.0 4.47
11 76 331 660 0.11 0.06 3 998 22.5 4.48
12 63 299 660 0.12 0.06 2 1013 17.3 4.52
13 56 218 540 0.12 0.06 2 1055 15.9 4.59
14 69 313 540 0.14 0.06 3 980 19.6 4.60
15 76 267 540 0.13 0.05 3 1024 23.1 4.42
16 63 187 540 0.11 0.05 2 1081 19.85 4.49

max 76 331 660 0.14 0.06 3 1081 25.1 4.6
min 56 148 480 0.11 0.05 2 962 15.9 4.42

The influence of the thickness of the built specimens S on the mechanical properties
was evaluated using the Mann–Whitney U-test, which showed a statistically significant
effect from this factor on the tensile strength and relative elongation (Table 3). The influence
of the factor was considered statistically significant if the p-level was <0.05.

Table 3. Nonparametric analysis of the effect of sample thickness on mechanical properties.

Mechanical
Properties

Mann–Whitney
U-Criterion

Z—Normal
Distribution

Function
p-Level

Tensile strength, MPa 11.50000 −2.10042 0.035693
Relative elongation,

% 7.50000 2.52050 0.011719

A box plot of the mechanical property range of the built specimens grouped by
thickness is shown in Figure 2.

Taking into account the fact that the thickness of the built specimens has a significant
effect on the mechanical properties, the subsequent simulation was performed for each
group of specimens of different thicknesses separately.

3.3. Solution of the Optimization Problem

To obtain polynomial models, eight experimental results for 3 mm thick plates were
selected, the logarithmic values of the technological parameters and responses of which are
given in Table 4.
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Table 4. Natural logarithms of factors and responses for LPBF flat specimens from HN58MBYu.

No.
Logarithm of
Linear Power

Density, ln(p/v)

Logarithm of
Scanning Step,

ln(h)

Logarithm of
Thickness Layer,

ln(t)

Logarithm of
Tensile Strength,

ln(σ)

Logarithm of
Relative

Elongation, ln(δ)

1 −1.17657 −2.20727 −2.99573 6.943122 3.049273
2 −0.78929 −2.12026 −2.81341 6.918695 3.190476
3 −0.82859 −2.04022 −2.81341 6.869014 3.00072
4 −0.8172 −1.96611 −2.99573 6.920672 3.222868
5 −0.88277 −2.12026 −2.99573 6.931472 3.135494
6 −0.69012 −2.20727 −2.81341 6.905753 3.113515
7 −0.54537 −1.96611 −2.81341 6.887553 2.97553
8 −0.70432 −2.04022 −2.99573 6.931472 3.139833
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Based on the data from Table 4, the coefficients of Equations (18) and (19) were
determined using the method of linear regression analysis:

σ =

(
P
v

)0.75506
· h−1.44727 · t−1.54890 (28)

δ =

(
P
v

)0.353741
· h−0.763524 · t−0.619330 (29)

To analyze the roughness, we used the previously obtained dependence from Equa-
tion (30):

Ra = 5.6t0.075 (30)

The adequacy of Equations (28) and (29) was assessed using the coefficient of determi-
nation R of the residuals (described deviations from the normal distribution). The larger the
value of R, the more residuals could be explained by regression. Accordingly, for relative
elongation R, residues = 0.9998; for tensile strength R, residues = 0.9997. The statistical
significance and the response impact of each input parameter P/v, h, and t were assessed
using an ANOVA univariate test (Table 5). Regression coefficients were F-test-significant if
the p-value < 0.05. Based on the SS values in Table 5, it was concluded that layer step t had
the greatest influence on the responses, both for tensile strength and relative elongation.

Table 5. ANOVA univariate test of Equations (28) and (29).

Input Parameter
Logarithm of Tensile Strength, ln(σ) Logarithm of Relative Elongation, ln(δ)

Group
Dispersion SS Fisher F-Test p-Value SS—Dispersion in

Group Fisher F-Test p-Value

ln(P/v) 0.134641 9.05307 0.019695 0.02955 2.497524 0.158037
ln(h) 0.255182 17.15802 0.004337 0.07102 6.002435 0.044108
ln(t) 0.612845 41.20670 0.000361 0.09798 8.280913 0.023731

The observed and predicted elongation and yield strength values are shown in
Figures 3 and 4.
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Figure 4. The observed and predicted yield strength values.

To solve the optimization problem, it was necessary to consider the technological
parameters and limitations that formed the range of acceptable values for the LPBF process
with the HN58MBYu alloy. The initial data for the LP optimization process can be found
in Table 6. The maximum and minimum parameter values in the table had to be grouped
according to the previously defined recommended base values (lines 13–16, Table 6) and
they had to not go beyond the range of the experimental data (Table 2). The lower and upper
limits of deviations from the recommended values were also calculated from Equation (2)
and are indicated in the matrix of constraints. Figure 5 shows the scheme for measuring
the melting pool depth from microstructure data. To do this, a single track (or layer) was
welded onto the substrate and the value of depth c was measured from microstructure data.
To reveal the microstructure of the transverse sections of the specimens, they were etched
in a reagent (35 mL HCl, 24 mL HNO3, 6 mL HF, 35 mL H2O).
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Figure 5. Determination of the minimum depth of the melting pool с was calculated as the distance
from the layer surface to the heat-affected zone: (a) LPBF single track (P = 200 W, v = 500 mm/s),
(b) LPBF single track (P = 200 W, v = 750 mm/s).

A more detailed analysis of the morphology and the depth value of the melting pool
depending on the laser beam absorption ratio has been carried out in a previous study [58].



Metals 2022, 12, 1976 14 of 18

Table 6. Data for the formation of the area of limitations.

No. Characteristic Type Value

1 Yield strength (MPa) Min 1020
2 Relative elongation Min 20
3 Layer thickness, t (mm) Min 0.05
4 Layer thickness, t (mm) Max 0.06
5 Hatch spacing, h (mm) Min 0.1
6 Hatch spacing, h (mm) Max 0.15
7 Laser power, P (W) Min 200
8 Laser power, P (W) Max 300
9 Scanning speed, v (mm/s) Min 500
10 Scanning speed, v (mm/s) Max 640
11 Roughness, Ra (µm) Min 12
12 Melting pool depth, c (mm) Approximately 0.5
13 Hatch spacing, h0 (mm) Base * 0.12
14 Scanning speed, v0 (mm/s) Base * 540
15 Layer thickness, t0 (mm) Base * 0.06
16 Laser power, P0 (W) Base * 218

Base * is the mode with the most favorable microstructure in terms of continuity parameters (no pores and cracks).

According to Table 6, we can determine the objective function with calculated coeffi-
cients using Equation (27):

FΣ(p,h,v,t) = 0.115608064ln(P) + 0.055728722ln(v) − 0.05025458ln(h) − 0.06581634ln(t)
FΣ(p,h,v,t)→max

(31)

Numerical values of the Amin and Amax coefficient matrices and the Bmin and Bmax
constraint matrices are given in Table 7.

Table 7. Solving the optimization problem using linear programming.

Amin Amin·X Bmin

0.75506 −0.75506 −1.44727 −1.54890 = 6.927558 ≥ 6.927558
0.353741 −0.353741 −0.763524 −0.619330 = 3.096988 ≥ 2.995732

0 0 1 0 = −1.988349 ≥ −2.302585
0 0 0 1 = −2.995732 ≥ −2.995732
1 0 0 0 = 5.679789 ≥ 5.298317
0 1 0 0 = 6.461468 ≥ 6.214608
−1 1 1 1 = −4.202402 ≥ −4.202402

Amax Amax·X Bmax
0 0 0 0.075 = 1.258208 ≥ 2.484907
0 0 1 0 = −1.988349 ≥ −1.89712
0 0 0 1 = −2.995732 ≥ −2.813411
1 0 0 0 = 5.679789 ≥ 5.703782
0 1 0 0 = 6.461468 ≥ 6.461468
−1 1 1 1 = −4.202402 ≥ −4.0266

Table 7 also contains the components of the product matrices Amin·X and Amax·X with
the optimal vector X = Xopt. The values of the desired optimal components of the vector
(Table 8) were obtained by jointly solving Equation (27) and the constraints from Table 7
using the simplex method.

Table 8. Optimal components of vector Xopt.

Xopt

ln(P) ln(v) ln(h) ln(t)

5.679788803 6.461468176 −1.988349345 −2.995732274
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Using the exponential function with arguments from Table 5, we obtain the vector of
the optimal technological modes (Table 9).

Table 9. Optimal values of technological conditions for LPBF with HN58MBYu.

Laser Power, Р (W) Scanning Speed, v
(mm/s)

Scanning Step, h
(mm)

Layer Thickness, t
(mm)

293 640 0.14 0.05

4. Conclusions

1. A generalized LP optimization model for determining the technological parameters
of LPBF was proposed, containing:

• An objective function in the form of additive normalized performance parameters
and one of the key quality characteristics;

• The domain of definition, formed by constraints on the limiting values of the
quality characteristics (mechanical properties, surface roughness, parameters of
the continuity of the material structure), which were presented as polynomial
dependencies of the quality characteristics for technological parameters.

2. The initial data for the LP optimization process should be grouped according to the
recommended base values of layer thickness (t), scanning speed (v), laser power (P),
and hatch spacing (h). The lower and upper limits of deviations from the recom-
mended values were also calculated from Equation (2) and are indicated in the matrix
of constraints. The recommended values P, v, h, and t (base point) can be obtained
from previous tests or known data.

3. The optimization model for determining the technological parameters of LPBF was
tested with LPBF specimens from HN58MBYu. The results of the optimization made
it possible to determine the optimal technological AM regimes for the formulated
objective function and the assigned constraints. Since the area of constraints regarding
the variation of technological parameters was rather narrow, this was justified by
the use of the chosen optimization method—linear programming. Then, most of the
optimal parameters took on the value of constraints. Thus, the optimal scanning
speed corresponded to the maximum vopt = vmax = 640 mm/s, which is explained by
the requirements of maximum productivity; and the deposited layer thickness was
the minimum t = 0.05 mm, which is explained by the requirements of minimizing
the roughness. The optimum values of the laser power P = 293 W and hatching
step h = 0.14 mm provide a balanced value for the fusion volume energy density
E = 65.4 J/mm3, which, according to the data in Table 2, should correspond to the
required mechanical properties.
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