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Abstract: This study fabricated a thixoformed Al-7% Si alloy using the cooling slope technique and
subjected it to heat treatment before processing with severe plastic deformation to determine the
effect of this combination method on the microstructure refinement and hardness of Al-Si alloys
(300 Series). Each as-cast and thixoformed Al-Si alloy sample was subjected to equal-channel angular
pressing (ECAP) and high-pressure torsion (HPT) individually at room temperature before and after
heat treatment. ECAP was conducted in a mould with a 120◦ channel angle via route A, and HPT
was applied with 0.75 and 5 turns. The heat-treated thixoformed Al-Si alloy subjected to the HPT
process had an ultra-fine grain microstructure and showed a fine and homogeneous redistribution of
the eutectic phase in the Al matrix. For the as-cast alloy, the hardness of the heat-treated thixoformed
Al-7% Si alloy increased from 63 HV to 124 and 215 Hv after two ECAP passes and five turns of
HPT due to the reduced and redistributed eutectic phase in the Al matrix. Subjecting the Al-7% Si
alloy to a combination of semisolid and heat treatment processes before subjecting it to severe plastic
deformation resulted in microstructural refinement and improved the hardness of the Al-Si alloy. The
results indicate that HPT is a more effective method than ECAP for increasing the hardness of the
thixoformed Al-Si alloy due to microstructure refinement.

Keywords: Al-Si alloy; thixoforming; heat treatment; ECAP; HPT; hardness

1. Introduction

Al-Si alloys are extensively used to manufacture automotive components through
various casting processes. Despite its extensive use, one drawback of using hypoeutectic
Al-Si alloys is low fracture toughness and strength because of the presence of primary
α-Al in dendritic form surrounded by second-phase eutectic silicon flakes. Coarse-flake Si
particles can cause premature crack initiation during deformation and reduce the alloy’s
fracture toughness, which decreases its workability and ductility at room temperature [1–3].
The morphology and distribution of Si particles are crucial determiners of the mechanical
properties of the Al-Si alloy.

The semisolid process is a major technique in the automotive industry for refining the
microstructure of Al-Si alloys. In the semisolid processing of Al-Si alloys, the primary α-Al
phase transforms from a dendritic to a globular (spherical) shape, and eutectic Si particles
are refined into acicular-shaped particles [4]. There are several techniques for creating a
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suitable non-dendritic microstructure, and one of them is the cooling slope casting (CS)
process. CS is a simple semisolid metal casting process with minimum equipment and
operating costs [4–9]. SSM processing enhances the mechanical properties of aluminium
alloys [7–9]. Since Al-Si alloys are heat-treatable, applying heat treatment to modify eutectic
Si particles and the morphologies of intermetallic compounds increases the strength of
the aluminium alloys through a precipitation hardening process [10]. The primary reason
for good fracture elongation in the T6 solution heat treatment of cast Al-Si alloys is the
spheroidisation of eutectic silicon [11]; the T6 solution heat treatment also improves the
tensile strength elongation [12].

The combination of the T6 heat treatment and semisolid processing of Al-Si alloys
enhances their mechanical properties due to the change in eutectic Si orphology in A356
and A357 alloys [13,14]. The homogeneity and refinement of the microstructure through
deformation enhance the mechanical properties of hypoeutectic Al-Si alloys [15,16]. Plastic
deformation methods, such as ECAP and accumulative roll bonding, can refine microstruc-
tures [17–19]. The two major processes in SPD are equal-channel angular pressing (ECAP)
and high-pressure torsion (HPT). SPD enhances the mechanical properties of the Al-Si alloy
by refining the microstructure and homogeneously dispersing the eutectic phase [20–23].

There is a lack of investigations on the outcomes of combining heat treatment with
the refining process and severe plastic deformation. Several studies combined semisolid
and ECAP processes to improve mechanical properties [21,23,24]. The combination of
annealing heat treatment and ECAP enhances the wear resistance and hardness of the A356
alloy [22], while combining annealing with ECAP improves the corrosion resistance of 6061
aluminium alloy [25]. Combining T6 heat treatment with HPT increases the hardness and
corrosion resistance of A356 alloy [26]. The present study describes how microstructure
refinement methods that use a combination of thixoforming and T6 heat treatment, followed
by severe plastic deformation via ECAP and the HPT process, affect the Al-Si alloy and its
hardness. This study is significant because it discusses the effect of applying thixoforming
and heat treatment to as-cast flaky Si particles before subjecting them to severe plastic
deformation.

2. Materials and Methods

The Al-Si alloy used in this study is the as-cast commercial Al-Si alloy (Si-7 wt.%,
Mg-0.26 wt.%, Fe-0.243 wt.%, Cu-0.05 wt.%, Mn-0.002 wt.% and Zn-0.002 wt.%). This
study used a semisolid process to melt the alloy in a 750 ◦C graphite crucible under
an argon atmosphere to prevent oxidation. The researchers used differential scanning
calorimetry (DSC) to determine the pouring temperature of molten metal, solidus and
liquidus temperatures and the liquid fraction profile in the semisolid transition range. In
the cooling slope casting process, the alloy is heated to a semisolid temperature, and the
molten metal is poured on a 250 mm stainless steel slope with a 60◦ tilt angle into a mould
with a vertical surface. The reason for selecting these conditions was based on our team’s
work [27]. The equipment used for this process is shown in Figure 1a. This study chose
a 620 ◦C pouring temperature for the molten metal to limit overheating [27]. The molten
metal was poured down the stainless steel slope into a mould with a 30 mm diameter and
155 cm high vertical surface before quenching it in water. Cylindrical ingots were cut into
120 mm lengths. The samples for thixoforming had a dimension of Ø 30 × 20 mm. The
samples were rapidly heated for five minutes at 585 ◦C to obtain spheroidised α-Al grains,
after which the samples were compressed using a hydraulic cylinder press with a 20 kN
load and 85 mm/s maximum compression speed.

The heat treatment of the as-cast and thixoformed samples followed the T6 procedure,
where the solution treatment was carried out at 540 ◦C for eight hours, followed by water
quenching, and the samples were aged at a 180 ◦C temperature for three hours [28]. After
the heat treatment, the as-received and thixoformed cast samples were machined to obtain
rods with a 10 mm diameter. Some as-cast and heat-treated rod bars were subjected to
ECAP at room temperature via route A without rotation between successive passes, as
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shown in Figure 1b. The samples were pressed through a circular cross-section die channel
with a 120◦ inner angle. For HPT samples, the 10 mm diameter rods were cut into discs
with 1 mm thickness using an electric discharge wire cutting machine (EDM). HPT was
carried out under a 6.0 GPa pressure for 0.75 and 5 revolutions at a 1 rpm rotation speed
at room temperature to reduce the sample thickness to 0.81–0.85 mm. This study used a
Vickers hardness tester (micro Vickers hardness tester, Zwick, Germany, ZHVµ) to measure
the average hardness of three samples per case at a 100 g applied load and 15 s dwell time
along the four radial directions. Figure 2 shows that each notch was the same distance from
the centre of the disc to the edge.
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Figure 2. Schematic representation of the HPT disc and the location for measuring the disc hardness
and the TEM area.

The as-cast, ECAPed, and HPTed sample preparation for microstructure analysis
used silicon carbide (SiC) papers with grits between 180 and 2000 to polish the samples
using 3 µm and 1 µm diamond paste (Al2O3). The etchant used in the etching process
was Keller’s reagent (1% HF, 1.5% HCl, 2.5% HNO3, H2O solution). The microstructural
characterisation of the samples was performed under a field-emission scanning electron
microscope (FESEM, Zeiss, Oberkochen, Germany), field-emission scanning transmission
electron microscope (FETEM, JEOL, JEM-2100F, Tokyo, Japan), and optical microscope
(OM, Olympus Corporation, Tokyo, Japan). The microstructure was observed at the centre
and close to the edge of the disc. The researchers conducted a quantitative metallography
analysis to measure the grain size following ASTM E112 and used the Smart Tiffv2 software
to measure the Si particle size (the length and width) using a minimum of 200 particles
each time.
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3. Results and Discussion
3.1. Microstructure of the As-Cast and Semisolid Al-Si Alloy Pre/Post T6

Optical micrographs of the as-cast sample in Figure 3a show the typical microstructure
of an unmodified hypoeutectic Al-Si alloy, the primary α-Al phase, surrounded by coarse Si
particles in the initial solidification phase in the eutectic (dark) phase. The dendritic grains
are approximately 172 µm coarse eutectic Si particles. Figure 3b,c show the non-dendritic
microstructure of the as-cast Al-Si alloy sample that resulted from shearing during the
cooling slope and thixoforming process, where the primary α-Al phase was transformed
into an almost spheroid shape with a size of 54 µm, while the Si particles transformed into
fine needle-like particles. Figure 3d shows that the T6 heat treatment transformed the flake
and needle-like morphology of the Si particles in the as-cast and thixoformed samples into
angular and spherical shapes. During the solution heat treatment, the coarsening process
fragmented and spheroidised the eutectic Si particles [11,29]. After the T6 heat treatment,
the eutectic Si particles were refined, and their angular edges were not as sharp as in the
as-cast alloy. Previous studies reported similar behaviour, where the T6 heat treatment
process initiates the spheroidisation of Si particles [20,30].
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Figure 3. Optical micrographs of the pre-T6 (a) as-cast and (b) thixoformed samples. SEM micrograph
of the thixoformed (c,d) post-T6 Si particles of thixoformed samples.

3.2. Microstructure of the ECAPed As-Cast and Thixoformed Samples after Two Passes
Pre-/Post-T6

Figure 4a,b show the microstructure of the ECAPed as-cast sample and the heat-
treated as-cast sample after two ECAP passes via route A, where the primary α-Al grain
size of the AL-Si alloy is elongated, with some grains more elongated than others, and
the grain boundaries are at approximately 45◦. The microstructure is non-homogeneous,
and the eutectic phase is erratically distributed in the matrix. The second ECAP pass
significantly reduced the initial grain size in the as-cast and heat-treated as-cast samples
from ~172.31 µm to ~105.1 and 62.9 µm, respectively. Figure 4a,b and Table 1 show that the
Si particles and α-Al phase were refined after two ECAP passes, while the microstructure
in the heat-treated sample was refined even further. The strain in the two ECAP passes
elongated the α-Al phase. Figure 4c,d show the low and high magnification of the ECAPed
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heat-treated thixoformed alloy samples after two passes, where the primary α-Al grains
are enclosed by the Si eutectic phase in a heterogeneous microstructure. The α-Al grains
remain agglomerated with a few longitudinal-shaped grains, which can be attributed to
the material strength and the lack of elasticity of the thixoformed samples. There is some
fragmentation of the Si particles among the elongated α-Al grains, as shown in Figure 4d. A
higher number of ECAP passes caused crack formations on the surface of the thixoformed
samples due to the high strength of the thixoformed alloy, as shown in Figure 4e.

Metals 2022, 12, x FOR PEER REVIEW 5 of 15 
 

 

remain agglomerated with a few longitudinal-shaped grains, which can be attributed to 

the material strength and the lack of elasticity of the thixoformed samples. There is some 

fragmentation of the Si particles among the elongated α-Al grains, as shown in Figure 4d. 

A higher number of ECAP passes caused crack formations on the surface of the 

thixoformed samples due to the high strength of the thixoformed alloy, as shown in Figure 

4e.  

 

Figure 4. Optical micrograph of ECAPed Al-Si alloy samples after two passes. The (a) as-cast, (b) 

heat-treated as-cast, (c) heat-treated thixoformed, and (d) SEM enlargement of heat-treated 

thixoformed sample after two passes and (e) cracks on the thixoformed sample surface. 

Table 1. Average grain size and Si particle size of ECAPed heat-treated as-cast and thixoformed Al-

Si alloy. 

Number of Passes 
Si Particles Size 

(µm) 

Grain Size 

(µm) 

As-cast 4.22 172.31 

As-cast, 2 passes 2.68 105.1 

Heat treated as-cast, 2 passes 1.74 62.85 

Thixoformed, 2 passes 3.10 72.12 

Heat-treated thixoformed, 2 passes 1.21 47.50 

3.3. Microstructure of the HPTed As-Cast and Thixoformed Al-Si Alloy Pre-/Post-T6 after 0.75 

Turns 

The researchers took an optical micrograph of the microstructure to evaluate the as-

cast and thixoformed samples processed by HPT under a 6GPa pressure and 0.75 turns at 

two locations. Figure 2a,c show the optical micrograph at the disc centre, and Figure 2b,d 

are the optical micrograph for the location near the edge of the as-cast and thixoformed 

sample discs. Figure 5 is the optical micrograph of the centre and edge of the HPTed as-

cast and thixoformed Al-Si alloy before T6. The centre of the as-cast sample shows the 

presence of a large grain size in the primary α-Al phase, and the sample edge, which ex-

perienced the strain, shows the presence of a deformed dendrite shape. The morphology 

of the broken α-Al phase and eutectic phase is elongated in the shear flow direction, and 

the primary α-Al phase shows reduced thickness. The eutectic phase and Si particles are 

non-homogeneously distributed. Figure 5a,b show that, after 0.75 turns, the grains at the 

Figure 4. Optical micrograph of ECAPed Al-Si alloy samples after two passes. The (a) as-cast, (b) heat-
treated as-cast, (c) heat-treated thixoformed, and (d) SEM enlargement of heat-treated thixoformed
sample after two passes and (e) cracks on the thixoformed sample surface.

Table 1. Average grain size and Si particle size of ECAPed heat-treated as-cast and thixoformed
Al-Si alloy.

Number of Passes Si Particles Size
(µm)

Grain Size
(µm)

As-cast 4.22 172.31
As-cast, 2 passes 2.68 105.1

Heat treated as-cast, 2 passes 1.74 62.85
Thixoformed, 2 passes 3.10 72.12

Heat-treated thixoformed, 2 passes 1.21 47.50

3.3. Microstructure of the HPTed As-Cast and Thixoformed Al-Si Alloy Pre-/Post-T6 after
0.75 Turns

The researchers took an optical micrograph of the microstructure to evaluate the as-
cast and thixoformed samples processed by HPT under a 6GPa pressure and 0.75 turns at
two locations. Figure 2a,c show the optical micrograph at the disc centre, and Figure 2b,d
are the optical micrograph for the location near the edge of the as-cast and thixoformed
sample discs. Figure 5 is the optical micrograph of the centre and edge of the HPTed
as-cast and thixoformed Al-Si alloy before T6. The centre of the as-cast sample shows
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the presence of a large grain size in the primary α-Al phase, and the sample edge, which
experienced the strain, shows the presence of a deformed dendrite shape. The morphology
of the broken α-Al phase and eutectic phase is elongated in the shear flow direction, and
the primary α-Al phase shows reduced thickness. The eutectic phase and Si particles are
non-homogeneously distributed. Figure 5a,b show that, after 0.75 turns, the grains at the
edge of the disc are finer than in the centre. The initial large coarse as-cast primary α-Al
phase could be the reason for the big α-Al phase size in the as-cast sample. Figure 5c,d
show there is no significant microstructural change in the centre of the thixoformed alloy
relative to before applying HPT, while the edge of the alloy is elongated. The shape of
the thixoformed alloy remained unchanged due to its high strength, and the low strain
imposed on its centre reduces deformation. The eutectic Si particles at the edge of the alloy
are non-homogeneous and less distributed.
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Figure 6a–d show the microstructure of the HPTed heat-treated as-cast and thixo-
formed Al-Si alloy after 0.75 turns.

The refined eutectic phase after heat treatment gives the microstructure of the Al-Si
alloy higher workability, which has positive effects during HPT and further deforms and
refines the microstructure. The α-Al phase is smaller, and the flake- and lamellar-shaped Si
particles in the Al-Si alloy are finer. However, some large α-Al phase is still present, with a
uniform spread of the Si particles and eutectic phase in the HPTed heat-treated samples
compared to the A-Si alloy samples processed by HPT without heat treatment. After 0.75
turns, the α-Al phase surrounded by the eutectic phase was still present in the centre of the
pre-treated and post-heat-treated samples. The eutectic Si particles and eutectic phase are
more homogeneously distributed at the edge than at the centre.
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Figure 6. Optical micrograph of the centre and the edge of heat-treated (a,b) as-cast and (c,d) thixo-
formed Al-Si alloy after 0.75 turns.

3.4. Microstructure of the HPTed As-Cast and Thixoformed Pre-/Post-T6 after Five Turns

Figure 7 shows the mapping of the centre and the edge of the HPTed as-cast and
thixoformed Al-Si alloy sample subjected to 6.0 GPa pressure after five turns. The mappings
are for two locations, where (a,c) are the mapping of the disc centre, and (b,d) are the disc
edge. During the HPT processing of the as-cast and thixoformed alloys, the primary α-Al
phase was observed about 1 mm from the centre of the disc to the edge of the HPT disc,
while the primary α-Al phase in the edge position completely disappeared. The higher
number of turns increased the shear strain and resulted in a homogeneous and uniform
Si particle distribution, as illustrated in Figure 7b,d. The eutectic Si particles at the edge
of the as-cast sample are large relative to those in the thixoformed alloy. The eutectic Si
particles are relatively homogeneously distributed in the aluminium matrixes in favour
of fine Si particles in thixoformed, as observed at the edge, where the microstructure is
homogeneous across the disc. The Si particles are broken into significantly smaller particles,
thus considerably reducing the size of the Si particles. There is a much higher proportion
of small Si particles and a much more homogeneously distributed microstructure, as
demonstrated by [31].

Figure 8 shows the morphological map of the HPTed heat-treated as-cast and thixo-
formed Al-Si alloy at the centre and the edge of the sample after five turns.

The combination of heat-treated thixoforming and the HPT process resulted in a
smaller Si particle size, and subsequent processing via HPT fragmented the Si particles
because of the high imposed strain. The heat-treated thixoformed samples have more
homogeneously distributed eutectic Si particles than the as-cast samples. The edge region
has a finer microstructure than the central region in each processing revolution because
of the higher torsional strain in the HPT process. The edges of the two alloys subjected to
heat treatment have a very fine microstructure, and the alloying element is homogeneously
distributed in the thixoformed sample than in the as-cast alloy after five turns. The higher
torsional strain during HPT resulted in the edge region having a finer microstructure
than the central region in each processing revolution. The following paragraph discusses
in detail the distribution of eutectic Si particles and alloying elements at the edge of
the as-cast and thixoformed alloys after T6. Figures 9 and 10 show the mapping of the
intermetallic phase at the edge of the HPTed heat-treated as-cast and thixoformed Al-Si
alloy sample after being subjected to a 6.0 GPa pressure for five turns. A comparison of the
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two figures showed that the distribution, homogeneity, and refinement of the eutectic Si
particles and the alloying elements at the edge of the heat-treated thixoformed alloy are
more appropriate than as-cast alloy, indicating that applying heat treatment before HPT
processing significantly influences the final size and distribution of large silicon particles
after straining. The breakdown of intermetallic phases of the Al-Si alloy is due to the
high strains imposed on the Al-Si alloy during HPT processing through higher rotational
revolutions, which reduces the Si particle size and the homogeneous dispersion of the
fragmented particles.
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Figure 11 shows FETEM micrographs of the heat-treated thixoformed Al-Si alloy
samples processed by HPT after five turns. The FETEM micrograph shows the presence of
many dislocations and subgrains.

The dislocations are present in many grains, particularly those close to the grain bound-
aries. The large grains indicate that gallium (Ga) irradiation during ion milling causes
significant static recrystallisation. It is worth noting that ion milling using 30 keV (Ga) ions
for 180 min resulted in considerable dynamic recovery and smooth grain boundaries. These
observations suggest that ultrafine-grained materials must be handled carefully before
evaluation [32]. A high number of HPT processing cycles produces high shear strains
because of the high dislocation density attributable to grain refinement and higher micro-
hardness [33–35]. The microstructure, comprising subgrains and a dislocation cell structure,
is due to the severe plastic deformation during the HPT process. However, the FETEM
micrograph of the HPTed heat-treated thixoformed Al-Si alloy showed a high dislocation
density and ultrafine-grained structure. The dislocations can move and interact with each
other during the shear strain process, forming a dislocation cell structure having a high
dislocation density. The imposition of further strain resulted in the formation of subgrain
boundaries due to the dislocation agglomeration. The coarse grains are fragmented into a
lamellae microstructure, as shown in Figure 10b. Cu produced by HPT processing shows a
similar trend [36].
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Figure 11 shows the formation of many dislocations and subgrains. The micrographs
show a markedly smaller grain size of the undeformed material. Previous research has de-
scribed similar dislocation clustering in semisolid cast alloys when using the cooling slope
method [37]. However, using severe plastic deformation in the subsequent processing of
the thixoformed alloys produced a higher dislocation density and finer subgrains. Figure 12
shows that the edge of the heat-treated thixoformed Al-Si alloy processed by HPT after five
turns has very fine grains separated by low misorientation angles and well-defined grains
with an average size of ~130 nm within the aluminium matrix. Further strain on the sample
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caused the aggregation of dislocations and the formation of subgrain boundaries. Increas-
ing the number of turns in the HPT process causes higher deformation, which increases
their misorientation gradually until the final transformation into high-angle boundaries
under high strain [38,39]. As anticipated, most dislocations are due to the normal deforma-
tion mode, resulting in the dislocations coalescing to form subgrains. The grain refinement
of this alloy can be achieved in a manner similar to earlier observations [36,40]. Significant
strain hardening occurs due to the higher accumulated strain energy through the increased
dislocations. As the strain increases, the subgrains become finer, while the dislocation
density in the subgrains increases. The subgrain boundaries become better defined by
increased misorientation angles between adjacent grains.
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3.5. Hardness of ECAPed and HPTed As-Cast and Thixoformed Pre-/Post-T6

Figure 13a presents the Vickers microhardness of the as-cast and thixoformed samples;
the measurements were made after subjecting the Al-Si alloy samples to a combination of
heat treatment and ECAP via route A. The Al-Si alloys showed higher hardness after the
thixoforming process because the microstructure was transformed into a globular structure.
The heat treatment by thixoforming increases the hardness of the Al-Si alloys from 61 HV
to 99.85 Hv. The shear force breaks the dendrite arms of the primary α-Al phase and refines
the grains. The Al-Si alloys show a smaller and denser microstructure after the cooling
slope condition, having a higher microhardness than the as-cast Al-Si alloy sample [41].
The transformation of the morphology of Si particles in the as-cast Al-Si alloy sample from
flake-shaped into lamellar and acicular shapes during the thixoforming process increases
its microhardness. The thixoforming process applies a high pressure that increases the
cooling rate, refines the α-Al grains, and transforms the Si morphology into a fine circular
grain. The casting process in thixoforming eliminates porosity and causes shrinkage, thus
increasing the alloy’s hardness. The shape and distribution of the eutectic Si particles
are much more uniform than in the as-cast samples. Spheroidised eutectic Si after the
T6 heat treatment increases the sample hardness. Generally, the spheroidised Si particles
subsequent to the T6 heat treatment and the precipitation of magnesium silicide (Mg2Si)
particles in the ageing process enhance the Al-Si alloy’s ultimate tensile strength and
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hardness [8,42]. This increases the dislocation density, grain refinement, and fragmentation
of eutectic Si particles during the ECAP process, thereby significantly increasing hardness;
this result is consistent with the findings of previous studies [43–45].
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Figure 13b,c show the average Vickers microhardness across the diameter of each
as-cast and thixoformed disc before and after T6 heat treatment and 0.75 and 5 turns of HPT
under a 6.0 GPa pressure. The researchers examined the change in hardness along the disc
diameter at a constant distance of 0.5 mm from the axes of each processed disc. The disc
hardness increases significantly after 0.75 turns, where the increase in hardness in the disc
periphery is higher than at the centre of the discs. The HPT process considerably increases
the hardness of the as-cast Al-Si alloy from the initial 60.7 Hv microhardness. The hardness
between the centre and the edge of the disc varies depending on the number of turns. The
increase in hardness is more marked after 5 turns than after 0.75 turns. Figure 13 shows
the increase in hardness along the disc axis from the centre to the perimeter. After five
turns, the edge of the disc shows a homogeneous distribution of eutectic Si particles and
intermetallic compounds and grain refinement, which contribute to the increased hardness.
This result is similar to the microstructures shown in Figures 6–9, where the eutectic Si
particles and intermetallic compounds in the treated sample are smaller and more evenly
distributed after 5 turns than after 0.75 turns of HPT. A higher number of turns in the HPT
process leads to a high shear strain associated with the high dislocation density related
to grain refinement and increased microhardness [31,33,34,46,47]. Most discs showed a
typical hardness gradient due to strain hardening behaviour [48], where hardness was
lower in the centre of the disc and gradually increased towards the edge of the disc with a
corresponding strain increase in the HPT process.

The application of ECAP or HPT after heat treatment to semisolid materials resulted in
a more refined microstructure and the redistribution of Si and the intermetallic phase. The
increasing hardness is associated with the fragmentation and redistribution of eutectic Si
and intermetallic compounds because the high strain during the ECAP and HPT processes
increases the dislocation density and grain refinement. The thixoformed sample has a
higher microhardness than the as-cast sample as the semisolid microstructure becomes
smaller and denser [41], and the morphology of Si particles in the as-cast sample changes
from flake-like into a fine needle-like shape, as in the thixoformed sample. Increasing the
number of revolutions in HPT processing produces high shear strains associated with the
high dislocation density associated with grain refinement and higher microhardness [33–35].
These results are consistent with the earlier report on an aluminium alloy with a higher
hardness after processing with a combination of heat treatment and semi-hard treatment
followed by ECAP processing. The results are congruent with previous findings that
aluminium alloys have a higher hardness after being subjected to heat treatment and
semisolid processing, followed by ECAP [21,22].

4. Conclusions

This study investigated the impact of microstructural refinement on the hardness of
the Al-Si alloy processed by a combination of T6 heat treatment and HPT. Based on the
investigation results, the researchers have made the following conclusions.

1. Refining the microstructure of the Al-Si alloy through a combination of thixoforming
and heat treatment before SPD produces a more homogeneous and finer microstruc-
ture than without heat treatment.

2. The thixoformed samples after T6 heat treatment followed by ECAP reach up to two
passes. Increasing the number of ECAP passes resulted in crack formation on the
surface of the thixoformed samples due to the high strength of the thixoformed alloy.

3. Combining thixoforming and heat treatment followed by five revolutions of HPT
processing at a pressure of 6.0 GPa and room temperature produces a hypoeutectic
Al-Si alloy with an ultrafine microstructure and a homogeneous distribution of the
eutectic Si particles and intermetallic compounds.

4. Increasing the number of ECAP passes and the number of turns in HPT after the
combination of thixoforming and heat treatment resulted in the significantly higher
hardness of the hypoeutectic Al-Si alloy.
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