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Abstract: To meet the demand of the 10% weight reduction goal for automotive steel, the microstruc-
ture and mechanical properties of Fe-18Mn-Al-C steel with different carbon and aluminum contents
were investigated under different solid solution treatments, and the deformation mechanisms of
the experimental steels were elucidated. Aided by thermodynamic calculation, transmission elec-
tron microscopy (TEM) and in situ scanning electron microscope (SEM) analysis, it was shown
that for the 18Mn-1.5Al experimental steel with about 20 mJ/m2 stacking fault energy (SFE), the
twinning-induced plasticity (TWIP) effect always dominated in this steel after different solid solution
treatments under tensile deformation. With the 7 wt% aluminum addition, the SFE of austenite
was affected by temperature and the range of SFE was between 60 and 65 mJ/m2. The existence of
δ-ferrite obviously inhibited the TWIP effect. With the increase in the solution treatment temperature,
δ-ferrite gradually transformed into the austenite, and the n-value remained low and stable in a
large strain range, which were caused by the local hardening during the tensile deformation. Due to
the difference in the deformability of the austenite and δ-ferrite structure as well as the inconsistent
extension of the slip band, the micro-cracks were easily initiated in the 18Mn-7Al experimental steel;
then, it exhibited lower plasticity.

Keywords: low density 18Mn steel; TWIP effect; deformation mechanism; in situ SEM analysis;
n-value

1. Introduction

With the increasing requirements for environmental protection and energy conser-
vation, the global automotive light-weighting process is rapidly accelerating. Advanced
high-strength steel (AHSS) is extensively used in automotive manufacturing. Twinning-
induced plasticity (TWIP) steel is an ideal steel grade, due to its ultra-high product of
strength and elongation (PSE) [1]. However, for some key automotive parts, the required
rigidity is not achieved when the structure is thinned. Therefore, recent work has fo-
cused on low density high-manganese steel with an aluminum content of above 7 wt%.
Compared with the traditional high-strength steel, this could increase the specific PSE by
10–20% [2,3].

Many studies [4–6] showed that the effect of aluminum content on the deformation
mechanism of the steel is complicated, which might be determined by the stacking fault
energy (SFE). Generally, the transformation-induced plasticity (TRIP) effect happens during
the tensile deformation for steel with a SFE lower than 20 mJ/m2. When the SFE was
between 20 mJ/m2 and 45 mJ/m2, the TWIP effect dominated. The shear band induced
plasticity (SBIP) effect and microband induced plasticity (MBIP) effect were found in the
steel when the SFE was greater than 45 mJ/m2. For the lightweight, high-manganese steel
with a composition of Fe-22Mn-(0,3,6)Al-0.6C [7], the SFE of the steel was found to increase
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from 21.5 mJ /m2 to 50.7 mJ/m2 with the increase in the aluminum content. Then, the
PSE of steel decreased, resulting from the replacement of the twinning induced plasticity
effect by the dislocation plane sliding mechanism. For the Fe-20Mn-9Al-0.6C steel with
SFE of about 70 mJ/m2 [8], it was shown that, with the solid solution temperature increase
from 800 ◦C to 1100 ◦C, the lower tensile strength and the higher elongation were still
found when the plane slip mechanism dominated. With the increase of alloy element
contents, the SFE of steels with compositions Fe-28Mn-9Al-0.8C [9] and Fe-28Mn-10Al-
1.2C [10] increased to 85 mJ/m2 and 110 mJ/m2, respectively. Under the effect of SBIP
and MBIP, the elongation of these steel could exceed 60%, or even as higher as 100%.
However, the steel was not applicable for the manufacture automotive parts because
of the insufficient strength and excessive plasticity. Moreover, the excessive addition of
manganese, aluminum and carbon caused difficulties in the industrial production. Recently,
the Fe-18Mn-0.6C-1.5Al steel with above 900 MPa tensile strength and 50% elongation was
developed to be manufactured as automotive anti-collision beams [11–13]. However, it was
clear that the 1.5 wt% Al content could not meet the demand of the 10% weight reduction
goal for the automotive steel.

In the present work, the microstructure and mechanical property of Fe-18Mn-Al-0.7C
with different aluminum content under different solution treatment processes were com-
paratively studied. The microstructure evolution of the steel under different deformation
stage was also studied by in situ analysis in order to elucidate the deformation mechanism,
which would be in favor to the further study of low density high-manganese automotive
steel.

2. Experimental Materials and Methods

The chemical compositions of experimental steels are shown in Table 1. Ingots were
prepared by purity raw material and vacuum induction melting at 10−1 Pa vacuum value.
Slabs were hot-rolled after reheating at 1150 ◦C to produce a 3.8 mm-thick sheet. The
hot-rolled steel plates were then pickled and cold rolled to a 53 pct reduction. The solid
solution treatments for the specimens were processed at the temperatures of 650, 750, 800,
850, 900, and 1050 ◦C for 6 min, respectively.

Table 1. Chemical composition of experimental steels (wt%).

Steel Mn Si Al C Fe

1# 17.48 0.40 7.36 0.75 Bal.
2# 18.40 0.46 1.50 0.70 Bal.

The uniaxial tensile test was conducted with the standard specimen (according to the
GB/T228.1-2010 standard, gauge length 50 mm, width 12.5 mm, thickness 1.8 mm), of
which the tensile direction was parallel to the rolling direction. The tests were performed
by the MTS C45.305E electron mechanical universal testing machine (MTS Systems Corp.,
Eden Prairie, MN, USA) with a strain rate of about 1 × 10−3 S−1 at room temperature.
An extensometer was used to measure the strain of the gauge length of the samples. The
experimental results were determined by the average value of three tensile samples. Mi-
crostructures of the samples etched with 10% nitric acid and 90% methanol were observed
by means of optical microscope (OM) and scanning electron microscope (SEM) analyses.

The samples for transmission electron microscopy (TEM) were sliced from bulk spec-
imens and mechanically polished to about 50 µm-thick discs with a diameter of 3 mm.
Electrolytic polishing was conducted, using 10 vol% perchloric acid in ethanol at −35 ◦C in
a Struers Tenupol-5 twin-jet electrolytic polisher (Struers (Shanghai) Ltd., Shanghai, China).
Then, the samples analysis was performed in a JEM-2010F microscope (JEOL Ltd., Tokyo,
Japan) with an accelerated voltage of 200 kV. The phase analysis of the experimental steel
was performed in a D/max-2550 X-ray diffractometer with Cu–Kα radiation (Rigaku Corp.,
Tokyo, Japan). Scanning was carried out with a 0.02◦ step and 3 s stay for each step over a
2θ range from 40◦ to 100◦. A thermal field emission scanning electron microscope (Apollo
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300, Obducat CamScan Ltd., Cambridge, UK) equipped with a 2 kN tensile test bench was
used for in situ observation analysis. The tensile stress direction was parallel to the original
rolling direction of the sample. The accelerated voltage was 20 kV, and the stretching rate
was 0.1 mm/min. The dimensions of tensile samples with 0.8 mm thickness are shown in
Figure 1.
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Figure 1. Schematic diagram of the tensile sample for in situ observation (unit: mm).

3. Experimental Results
3.1. Microstructure of Experimental Steels after Solid Solution Treatment under Different
Temperatures

Combined with the SEM and XRD analyses, as shown in Figures 2–4, it could be seen
that the microstructure of experimental steel 1# after solid solution treatment was mainly
composed of δ-ferrite and austenite. With the increase in the solid solution temperature,
the band-like δ-ferrite was gradually broken and decomposed into a bamboo-shaped or
discontinuous island-shaped structure. In addition, with the increase in the solid solution
temperature, annealing twins could be found in the austenite grains. At the solid solution
temperature of 1050 ◦C, the length and width of the annealing twins apparently increased
with the growth in the austenite grain. When the solid solution temperature was 650 ◦C
as shown in Figure 2a, κ carbides were confirmed to precipitate at the austenite grain
boundaries by Energy Dispersive Spectrometer (EDS) analysis indicated as EDS1; its
diffraction peak can be found as shown in Figure 4a.
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Figure 4. X-ray diffraction patterns of steels under different solid solution temperatures: (a) steel 1#
and (b) steel 2#.

The microstructure of experimental steel 2# was composed of the uniform equiaxed
austenite grains. With the increase in the solid solution temperature, the austenite grain
coarsened, and the annealing twins gradually grew and extended to all the austenite grains.

TEM analysis of the microstructure of annealing twins in the experimental steels under
the solid solution temperature of 850 ◦C is shown in Figure 5. There were a few annealing
twins with a big inter-space in the microstructure of steel 1#, while steel 2# showed many
tightly arranged annealing twins.
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Figure 5. TEM (transmission electron microscopy) micrographs of annealing twins microstructure
of steels: (a–c) steel 1# and (d–f) steel 2# under the solid solution temperature of 850 ◦C with (a,d)
bright-field images, (b,e) dark-field images and (c,f) corresponding selected area electron diffraction
(SAED) patterns.
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3.2. Tensile Properties at Room Temperature of Experimental Steels under Different Solid Solution
Treatments

The engineering stress–strain curves of the two experimental steels at different tem-
peratures are shown in Figure 6.
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atures for 6 min: (a) steel 1# and (b) steel 2#.

Mechanical properties of 1# and 2# experimental steels after solid solution at different
temperatures are shown in Table 2. It is obvious that with the increase in the solid solution
temperature, the yield strength and tensile strength of the two steels gradually decreased,
but the elongation increased. At the temperatures of 850 ◦C and 900 ◦C, the tensile strength
of steel 1# could exceed 1000 MPa, and the elongation was close to 40%. The tensile strength
of steel 2# was lower than that of steel 1#, but its elongation was higher than 60%, so its
PSE was the best and kept stable with the increase in the solid solution temperature.

Table 2. Mechanical properties of steel 1# and steel 2# after different solid solution, temperatures for
6 min. (YS: yield strength; TS: tensile strength; TE: total elongation.)

Temperature/°C Sample YS/MPa TS/MPa TE/% TS × TE/GPa·%

650
1# 1319 ± 10 1439 ± 16 10.8 ± 0.7 15.5
2# 519 ± 8 1107 ± 10 57.9 ± 1.5 64.1

750
1# 901 ± 11 1106 ± 10 27.7 ± 0.5 30.6
2# 506 ± 10 1079 ± 9 59.2 ± 0.6 63.9

800
1# 813 ± 11 1069 ± 19 34.1 ± 0.7 36.5
2# 489 ± 14 1051 ± 19 61.1 ± 0.9 64.2

850
1# 805 ± 14 1061 ± 16 38.3 ± 0.8 40.6
2# 473 ± 10 1049 ± 13 63.1 ± 1.4 66.2

900
1# 757 ± 11 1047 ± 19 38.9 ± 0.7 40.7
2# 413 ± 14 964 ± 14 67.2 ± 1.2 64.8

1050
1# 494 ± 9 919 ± 14 47.2 ± 0.9 43.4
2# 363 ± 8 855 ± 10 70.6 ± 1.4 60.4

4. Discussion

Relationship between equilibrium phases and temperature in steel 1# and steel 2#
were calculated by Thermo-Calc software (Thermo-Calc 2020b, Thermo-Calc Software AB,
Solna, Sweden) with the database TCFE9 [14] as shown in Figure 7. The equilibrium phases
consist of FCC_A1 (austenite), BCC_A2 (δ-ferrite), LIQUID, CEMENTITE, KAPPA_E21
(κ carbide) and M23C6 (M23C6 carbide). As demonstrated in Figure 7, δ-ferrite would
precipitate at temperatures above 1000 ◦C. It only dominated the austenite phase in the
matrix of steel 2# at the temperatures between about 700 ◦C and 1300 ◦C, and there was no
precipitation of δ-ferrite.
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Figure 7. Relationship between equilibrium phases and temperature in steels: (a) steel 1# and (b) steel 2#. FCC_A1:
austenite. BCC_A2: δ-ferrite. LIQUID: cementite. KAPPA_E21: κ carbide.M23C6: M23C6 carbide.

According to thermodynamic analysis, the δ-ferrite phase would remain in the mi-
crostructure after hot rolling for steel 1#. Therefore, it could be found at the temperature of
650 ◦C after solid solution treatment for 6 min, as shown in Figure 8.

Metals 2021, 11, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 8. Optical microscopy of steel 1# under solid solution treatment at the temperature of 650 
°C. 

The volume percent of δ-ferrite was determined as 11.3% in the matrix of steel 1# by 
the quantitative metallographic analysis. With the increase in the solid solution tempera-
ture, the δ-ferrite gradually transformed to the austenite phase, which was in accordance 
with the SEM and XRD analyses shown in Figures 2–4. In addition, for steel 1#, κ carbide 
was in the equilibrium phase with a relatively high content, so it could be found in the 
matrix at the solid solution temperature of 650 °C. 

The modified Olsen–Cohen thermodynamic model could be used to calculate the SFE 
of the two experimental steels [15]. The calculation formula is as follows: 𝛾ௌிா = 2𝜌∆𝐺ఊ→ఌ + 2𝜎 (1)

where 𝜌 is the packing density of ሼ111ሽ close-packed plane atoms, σ is the interface en-
ergy of the 𝛾 𝜀⁄  phase, which was 9 mJ/mol, and 𝛾௙௖௖ → 𝜀௛௖௣ is the Gibbs free energy dif-
ference between the phases. 

The 𝜌 can be expressed as follows: 

𝜌 = ൬ 4√3൰ ൬ 1𝛼ଶ𝑁൰ (2)

where α is the lattice constant of austenite, and N is the Avogadro constant. 
The expression of Gibbs free energy is as follows [16]:  

∆𝐺ఊ→ఌ = ෍ 𝑋௜∆𝐺௜ఊ→ఌ + ෍ 𝑋௜𝑋௝Ω௜௝ఊ→ఌ + ∆𝐺௠௚ఊ→ఌ (3)

𝑋௜ = 𝑤௜ 𝑀௜ൗ∑ ቀ𝑤௜ 𝑀௜ൗ ቁ (4)

where Xi is the mole fraction of component i; ∆𝐺௜ఊ→ఌ represents the Gibbs free energy dif-
ference between 𝛾௙௖௖ → 𝜀௛௖௣ phase of component i; Ω௜௝ఊ→ఌ is the difference in free energy 
formed by the interaction of components i and j; ∆𝐺௠௚ఊ→ఌ is the value of magnetic free en-
ergy, and its magnitude is related to the Neel transition temperature of each phase. The 
calculation formulae are as follows [17]: ∆𝐺௠௚ఊ→ఌ = ∆𝐺௠ఌ − ∆𝐺௠ఊ  (5)

Figure 8. Optical microscopy of steel 1# under solid solution treatment at the temperature of 650 ◦C.

The volume percent of δ-ferrite was determined as 11.3% in the matrix of steel 1# by the
quantitative metallographic analysis. With the increase in the solid solution temperature,
the δ-ferrite gradually transformed to the austenite phase, which was in accordance with
the SEM and XRD analyses shown in Figures 2–4. In addition, for steel 1#, κ carbide was in
the equilibrium phase with a relatively high content, so it could be found in the matrix at
the solid solution temperature of 650 ◦C.

The modified Olsen–Cohen thermodynamic model could be used to calculate the SFE
of the two experimental steels [15]. The calculation formula is as follows:

γSFE = 2ρ∆Gγ→ε + 2σ (1)

where ρ is the packing density of {111} close-packed plane atoms, σ is the interface energy
of the γ/ε phase, which was 9 mJ/mol, and γ f cc → εhcp is the Gibbs free energy difference
between the phases.

The ρ can be expressed as follows:

ρ =

(
4√
3

)(
1

α2N

)
(2)
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where α is the lattice constant of austenite, and N is the Avogadro constant.
The expression of Gibbs free energy is as follows [16]:

∆Gγ→ε = ∑ Xi∆Gγ→ε
i + ∑ XiXjΩ

γ→ε
ij + ∆Gγ→ε

mg (3)

Xi =

wi
Mi

∑
(

wi
Mi

) (4)

where Xi is the mole fraction of component i; ∆Gγ→ε
i represents the Gibbs free energy

difference between γ f cc → εhcp phase of component i; Ωγ→ε
ij is the difference in free energy

formed by the interaction of components i and j; ∆Gγ→ε
mg is the value of magnetic free

energy, and its magnitude is related to the Neel transition temperature of each phase. The
calculation formulae are as follows [17]:

∆Gγ→ε
mg = ∆Gε

m − ∆Gγ
m (5)

Gφ
mg = f (τ)RT ln(β + 1) (6)

where φ represents γ phase or ε phase; R is the gas constant; τ = T/Tnell , T is the ambient
temperature, which was 25 ◦C in the present work; Tnell is the Nell temperature; and β is
the magnetic parameter related to the composition.

The expression of f (τ) is as follows.
When τ < 1,

(τ) = 1−
(
79τ−1/140p

)
+ (474/497)(1/p− 1)

(
τ3/6 + τ9/135 + τ15/600

)
D

(7)

When τ > 1,

f (τ) = −−τ5/10 + τ15/315 + τ−25/1500
D

(8)

where p was 0.28 and D was 2.34.
The compositions in austenite of steel 1# under solid solution treatment at different

temperatures were determined by SEM and EDS analyses. For the calculation of steel 2#, the
matrix composition was adopted. The equilibrium carbon content could be calculated by
Thermo-Calc software. The calculation formulae and parameters involved in the stacking
fault energy model are listed in Tables 3 and 4. Then, the stacking fault energy of steel
1# and steel 2# could be calculated. The value of SFE for steel 2# was 24.70 mJ/m2. The
values of SFE for steel 1# under solid solution treatment at different temperatures were at
the range of 60 mJ/m2 and 65 mJ/m2, as shown in Table 5. As above mentioned, the steels
with the SFE between 20 mJ/m2 and 45 mJ/m2 should exhibit the TWIP effect during the
tensile deformation process. So, the twinning-induced plasticity effect would be dominated
in steel 2#.

In order to further analyze the deformation mechanism of the experimental steels,
the variation of instantaneous strain hardening exponent (n-value) with true strain was
studied. The n-value, ni, can be deduced from Equation (9) as follows [21]:

ni = (εt/σt)(dσt/dεt) (9)

where σt and εt are the true stress and true strain, respectively.
As shown in Figure 9, the n-value of steel 2# fluctuated significantly in the high-

strain stage. With the increase in deformation, the higher efficiency of grain refining
resulting from the formation of twining was obtained. So, the n-value was constantly
increased, due to the effect of grain refinement strengthening. Accordingly, the gradual
stress concentration produced by grain boundary interaction would suppress the twinning
formation at higher strain. At the higher strain stage, the motion of dislocation dominated
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in the matrix, and the interaction between dislocation and solute atoms led to an effect of
continuous dynamic strain aging (DSA) [22,23], and then the n-value obviously fluctuated.
It was noted that when the temperature increased from 650 ◦C to 1050 ◦C, the fluctuation
of n-value decreased and delayed because of the better TWIP effect in austenite with a
bigger grain size.

Table 3. Calculation formulae involved in the stacking fault energy model [18–20]. ∆Gγ→ε
i represents

the Gibbs free energy difference between γ f cc → εhcp phase of component i. β is the magnetic
parameter related to the composition. Tnell : the Nell temperature.

Parameters Calculation Formula and Value

∆Gγ→ε
Fe −431.97 (J/mol)

∆Gγ→ε
Mn 3473.32T (J/mol)

∆Gγ→ε
Al 4944.9T (J/mol)

∆Gγ→ε
Si −2994 (J/mol)

∆Gγ→ε
C −22,166 (J/mol)

∆Gγ→ε
FeAl 3326.28 (J/mol)

∆Gγ→ε
FeSi 1780 (J/mol)

∆Gγ→ε
FeC 42,500 (J/mol)

∆Gγ→ε
MnSi 1780 (J/mol)

∆Gγ→ε
MnC 26,910 (J/mol)

∆Gγ→ε
FeMn −9135.5 + 15,282.1XMn (J/mol)

βγ 0.7XFe + 0.62XMn − 0.64XFeXMn − 4XC

βε 0.62XMn − 4XC

Tγ
nell 580XMn (K)

Tε
nell 250 ln(XMn)− 4750XMnXC − 6.2XAl + 13XSi + 720 (K)

Table 4. Parameters related to temperature adopted for the SFE (stacking fault energy) calculation of experimental steels.
Xi” the mole fraction of component i. τ = T/Tnell

Steel T/◦C XMn XC XAl XSi XFe βγ βε Tγ
nell Tε

nell τ f(τ) ∆Gγ→ε

1#

650 0.170 0.022 0.128 0.008 0.672 0.415 0.017 153.0 98.61 1.948 −42.22 770
750 0.168 0.033 0.130 0.008 0.661 0.364 −0.028 152.8 97.44 1.951 −43.25 850
850 0.165 0.033 0.132 0.007 0.663 0.364 −0.030 152.7 95.72 1.951 −43.39 864

1050 0.163 0.033 0.134 0.007 0.663 0.364 −0.031 152.7 94.54 1.951 −43.55 877
2# - 0.179 0.029 0.030 0.008 0.753 0.434 −0.005 153.6 103.8 1.939 −39.91 99.6
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Table 5. SFE of 1# steel under solid solution treatment at different temperatures (mJ/m2).

Steel 650 ◦C 750 ◦C 850 ◦C 1050 ◦C

1# 60.56 64.18 64.94 65.61
2# 24.70 24.70 24.70 24.70

As shown in Figure 8, about 10 vol% of strip-like δ-ferrite could be observed in the
matrix for steel 1# treated at the temperature of 650 ◦C. The difference in deformation
between δ-ferrite and austenite led to crack initiation. So, the n-value hardly changed with
the increase in true strain until fracture. When the temperature increased from 750 ◦C
to 1050 ◦C, δ-ferrite was gradually decomposed and replaced by austenite and a slowly
increasing platform was exhibited on the n value true strain curve. Especially, the value of
n increased significantly at the temperature of 1050 ◦C. Although the existence of κ carbides
in steel 1# increased the yield strength resulting from the interaction of nano-scale particles
and dislocation, the n-value dropped even faster, due to the inhomogeneous deformation
of the ferrite phase in the matrix. For steel 1# with the higher Al content, the n-value did
not fluctuate sharply during the high strain stage. This was due to a significant decrease in
the C diffusivity when the aluminum content was high, reducing the tendency of the Mn-C
short-range ordering, resulting in the suppression of serrated flow caused by DSA [24].

TEM images of the microstructure near the fracture surface of the experimental steels
are shown in Figure 10. Coarser deformation twins were distributed in the matrix of steel
2#. A positive correlation between the critical stress required for twin formation and the
stacking fault energy was reported [25]. The stacking fault energy of steel 2# was so low that
the deformation twins were easily formed, and the performance of the steel was improved.
For steel 1#, due to its higher stacking fault energy, deformation twins were not easily
produced under tensile load. During the tensile deformation of steel 1#, the multiplication
and pile up of dislocation resulted in the increase in the n-value. It can be seen from
Figure 10 that deformation twins only generated locally in a small amount, surrounded by
high-density dislocations. Because the hardening resulting by the concentration of pile up
of dislocation and the softening resulting from the twin induced plasticity coexisted in the
matrix of steel during the deformation, a slowly increasing platform on the n-value strain
curve was exhibited. When the temperature increased to 1050 ◦C, the austenite dominated
in the matrix, and the effect of grain refinement strengthening by the twin boundary was
added, so the value of n increased obviously.

In situ SEM analysis for tensile samples was performed on steel 1# and steel 2# to
study the deformation behavior of the matrix under different deformation stages. Figure 11
shows the load-displacement relationship curve of steel 1# and the SEM analysis of the
microstructure under different displacements.

In Figure 11, the band-shaped δ-ferrite and annealing twins are distributed in the
austenite matrix. The size of the δ-ferrite and austenite was measured under different
displacements in order to analyze their deformation ability. Austenite and δ-ferrite were
marked as Lγ and Lδ, as shown in Figure 11. The different deformation of the two phases
can be determined by the following equation:

εi = (Ii − I0)/I0 (10)

where εi is the deformation of the phase at the given displacement, Ii the size of the phase
at the given displacement, and I0 the initial size of the phase.

The relationship between the deformation of austenite or δ-ferrite and tensile dis-
placement could be calculated and is shown in Figure 12, in which, with the increase in
the tensile displacement, the deformation of the phase increased accordingly and more
obviously for austenite. Due to the difference in the deformability between austenite
and δ-ferrite, the stress concentration would likely happen at the phase interface between
austenite and δ-ferrite during the deformation, resulting in the phase interface microcracks
initiation.
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As show in Figure 13, many dislocation slip bands were produced during deformation.
It can be seen that, even within the same grain, slip bands with different orientations might
be formed, as shown in the yellow box. When the displacement was small, due to the
high stacking fault energy of steel 1#, the extended dislocations, which were not easy to
separate, had low three-dimensional mobility and were prone to cross-slip. As a result,
with the displacement increased, the slip band inside the austenite grains was gradually
elongated, then twisted, which led to the obvious interaction of the slip band [26]. The
uneven deformation of adjacent austenite resulting from the extension of slip band caused
stress concentration at the grain boundaries, which led to the formation and propagation
of micro-cracks, as shown in the red circle area of Figure 13.

The load-displacement relationship curve of steel 2# and the SEM analysis of mi-
crostructure under different displacements are shown in Figure 14. The microstructure
of this steel was composed of polygonal and equiaxed austenite. Due to its low stack-
ing fault energy, austenite in steel 2# was prone to induce deformation twins instead of
slip band during tensile deformation. Compared with steel 1#, the slip band could be
found under the condition of a large displacement. As shown in the black circle area of
Figure 14, the slip band with the same orientation distributed in the local area was hardly
intersected. Therefore, the deformation of steel 2# was relatively uniform, and there were
no micro-cracks in the matrix when the displacement reached the maximum. However, the
deformability difference between austenite and δ-ferrite in the microstructure of steel 1#,
and the uneven deformation of adjacent austenite resulting from the extension of slip band
were the main reasons for its lower plasticity in comparison with steel 2#.
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5. Conclusions

1. Aided by thermodynamic calculation, the stacking fault energy of the experimental
steels treated by different solid solution temperatures was compared. For the 18Mn-
1.5Al steel, due to about 20 mJ/m2 stacking fault energy and uniform austenite matrix,
deformation twins were produced in the steel matrix at lower tensile deformation. Because
of the dominated TWIP effect, there was no obvious variation for the mechanical properties
of samples under different solid solution treatments.
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2. With the addition of about 7 wt% aluminum content and after solid solution
treatment at 650 ◦C, over 10 vol% δ-ferrite was distributed in the austenite matrix of the
experimental steel. The SFE was increased with the increase in the aluminum content and
heat treatment temperature. The κ carbides could be precipitated and the yield strength
could be improved by the interaction of the nano-scale carbide and dislocation.

3. As the solution treatment temperature increased from 750 ◦C to 1050 ◦C, δ-ferrite
in the 18Mn-7Al experimental steel gradually transformed into austenite, and the SFE
of 18Mn-7Al steel exceeded to 60 mJ/m2. The n-value was kept lower and stable in a
larger strain range, which was caused by the local hardening during tensile deformation.
Because of the difference in deformability between the austenite and δ-ferrite, as well as the
inconsistent extension of the slip band, the crack was easily initiated. For the 18Mn-1.5Al
experimental steel, the n-value constantly increased with the strain increase, resulting from
the effect of grain refinement strengthening.
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