
metals

Article

Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated
Composites: Experimental and Numerical Investigation

Jian Ma, Meini Yuan *, Lirong Zheng, Zeyuan Wei and Kai Wang

����������
�������

Citation: Ma, J.; Yuan, M.; Zheng, L.;

Wei, Z.; Wang, K. Dynamic

Mechanical Properties of Ti–Al3Ti–Al

Laminated Composites: Experimental

and Numerical Investigation. Metals

2021, 11, 1489. https://doi.org/

10.3390/met11091489

Academic Editor: Emin Bayraktar

Received: 28 August 2021

Accepted: 16 September 2021

Published: 19 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Mechatronic Engineering, North University of China, Taiyuan 030051, China;
m821207588@163.com (J.M.); lrzheng1024@163.com (L.Z.); s1901010@st.nuc.edu.cn (Z.W.);
s1901008@st.nuc.edu.cn (K.W.)
* Correspondence: mnyuan@nuc.edu.cn; Tel.: +86-035-1392-1795

Abstract: The Ti–Al3Ti–Al laminated composites with different Al contents were prepared by vacuum
hot pressing sintering technology. The effects of Al content on the dynamic mechanical properties of
the composites were studied using the combination of Split Hopkinson Pressure Bar experiment and
finite element analysis. The results showed that different Al content changes the fracture mode of
the composites. The laminated composites without Al have higher brittleness and lower fracture
strain. The Ti–Al3Ti–Al laminated composites containing 10–15%Al have better dynamic mechanical
properties than those without Al, but the subsequent increase of Al content is not conducive to the
improvement of strength. However, when the Al content in the specimen reaches 30%, the dynamic
mechanical properties of the composites decrease, multi-crack phenomenon and relatively large
strain occur, and the Al extruded from the layers fills the crack.

Keywords: laminated composites; dynamic compression performance; SHPB; fracture modes

1. Introduction

Ti–Al3Ti laminated composites, as a kind of lightweight high performance structure
material, are composed of ductile Ti layers and intermetallic compound Al3Ti layers. Their
unique laminated structure and special failure modes make these composites possess
excellent dynamic impact resistance. Therefore, the laminated composites are usually used
in armor protection, aviation aerospace engineering, and other fields, and have a promising
application prospect [1–6].

At present, scholars have researched into the mechanical properties of Ti–Al3Ti lam-
inated composites, including: three-point bending [7,8], quasi-static compression [9,10],
and anti-penetration performance [11–17], etc. Adharapurapu [18] et al., reported that
the toughness and fatigue properties of Ti–Al3Ti laminated composites were improved
obviously due to the bridging effect of ductile titanium. Cao [19] et al., through the combi-
nation of experiment and simulation, found that the damage modes of Ti–Al3Ti laminated
composites include traverse cracks, crack deflection, and delamination, which enabled the
composites to absorb more energy. Zhou [20] et al., found that the fracture modes of the
Ti–Al3Ti interface in the composites varied as a function of strain rate.

It is noted that during the vacuum hot-pressing sintering, different preparation pro-
cesses would lead to a certain degree of Al still remaining, and form Ti–Al3Ti–Al laminated
composites. Yuan [21] et al., reported that compared to Ti–Al3Ti laminated composites,
Ti–Al3Ti–Al laminated composites have better static and dynamic compression strength.
Price R.D. [22] prepared Ti–Al3Ti–Al laminated composites by controlling the reactive foils
sintering process. The dynamic compression study showed that the composites with 3–15%
Al have the best mechanical properties. Du [23] et al., carried out multiple hot rolling
of Ti–Al laminated plates at 500 ◦C and found that the tensile strength of this composite
increase with the increasing of the volume fraction of Al. Patselov [24] et al., prepared
Ti–Al3Ti–Al laminated composite with 15% volume fraction Al. Through the three-point
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bending experiment, they found that the fatigue signs in the form of grooves were clearly
visible in the aluminum layer at the end of the fatigue fracture zone.

The current research mainly focuses on their influence on the overall mechanical
properties of laminated composites [25–30], but the systematic studies on the strengthening
mechanism of Al are rare. In this study, Ti–Al3Ti–Al laminated composites were prepared
by endothermic semi-solid reaction [31]. The compression behavior and crack propagation
of Ti–Al3Ti–Al laminated composites under high strain rate were studied. The influences
of Al layer on the fracture properties were analyzed emphatically. Finally, through finite
element simulation, the influences of different Al contents on the dynamic mechanical
properties of Ti–Al3Ti–Al laminated composites were analyzed.

2. Experimental Method
2.1. Materials Preparation

Ti–Al3Ti–Al laminated composites were prepared by the hot-pressing sintering method.
Al alloy foils and TC4 alloy foils of different thickness were used as the initial components
of the Ti–Al3Ti–Al laminated composites. The compositions of TC4 alloy foils and Al
alloy foils are shown in Table 1. The processed and cleaned TC4 foils and Al foils were
stacked alternately, then placed in the hot-pressing sintering furnace (ZT-40-21Y, Shanghai
Chenhua Science Technology CO. Ltd, Shanghai, China). The temperature was then raised
to 600–710 ◦C. The Ti–Al3Ti–Al laminated composites with residual Al were obtained
by adjusting the thickness ratio of the laminates and controlling the heat preservation
time. The prepared materials were cut into ϕ8 mm cylindrical specimens through the line
cutting process.

Table 1. TC4 and Al alloy composition (mass fraction) %.

Alloy TC4 Alloy Al

Al 5.50–6.75 Si ≤0.5
V 3.5–4.5 Fe ≤0.5
Fe ≤0.5 Cu 3.8–4.9
C ≤0.1 Mn 0.30–0.9
O ≤0.2 Mg 1.2–1.8
N ≤0.05 Ni ≤0.1

2.2. Mechanical Experiment

The Split Hopkinson Pressure Bar (SHPB) (Harbin Institute of Technology, Harbin,
China) experiment is one of the most important research methods to investigate the dy-
namic mechanical properties of the material at strain rates of 102−104 S−1. The diameter
and the length of the bar were 12 mm and1200 mm, respectively. The specimen was 8 mm
in diameter and 6 mm in thickness. The SHPB apparatus consists of a high pressure air
gun, a striker bar, an incident bar, and a transmitter bar as shown in Figure 1.

The impact bar launched by the high-pressure air gun impacted the input bar axially
and resulted in the formation of loading pulse, which propagated along the bar to the
specimen. The specimen then deformed under the action of the pulse. Meanwhile, the
reflection pulse was transmitted back to the incident bar, and the transmission pulse was
transmitted to the transmission bar. The gauge at the center of the bar was used to record
the strain. The incident, reflected, and transmitted signals were recorded on the oscilloscope
in the form of voltage, and the voltage was converted to the actual incident εi, reflected εr
and transmitted εt.
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Then the pattern strain rate
.
εs, strain σs, and stress εs were:

.
εs =

dεs

dt
=

C0

l0
(εi − εr = εt) (1)

σs =
EA
2As

(εi + εr + εt) (2)

εs =
C0

ls

t0∫
0

(εi − εr − εt)dt (3)

where: AS is the cross-sectional area of the test piece, and lS is the thickness of the test
piece. C0 is the elastic longitudinal wave velocity of the waveguide rod.

The main equipment parameters are: high-strength steel was selected for all the bars,
the elastic modulus is 200 GPa, the density is 7800 cm/m3, and Poisson’s ratio is 0.29. The
length of the impact bar is 200 mm, and the length of the incident bar and transmission bar
is 1200 mm. The impact rate is 35 m/s.

2.3. Numerical Simulation Method

Ansys LS-DYNA (Ansys 17.0 LS-DYNA, Ansys Inc., Pittsburgh, PA, USA) was used to
simulate the Split Hopkinson Pressure Bar experiment and study the dynamic mechanical
properties of Ti–Al3Ti–Al laminated composites. Both the Split Hopkinson Pressure Bar
and the impacted specimen are cylindrical, so the three-dimensional axisymmetric finite
element model was established (Figure 2) using the APDL command stream. As shown in
Figure 2b, the laminated composite model consists of Al layers, Ti layers, and Al3Ti layers.
To make the calculation process smoother and the calculation results more accurate, SOLID
185 elements were selected to represent Al layers, Ti layers, and Al3Ti layers. A common
node setting was adopted to simulate the interface combination. Ti layers, Al3Ti layers, and
Al layers in laminated composites were meshed with different amounts of quadrilateral
elements in terms of their thickness. The total number of elements was around 43,200, the
time per step is 1µs.

The bar and specimen were simplified into coaxial cylinders. To reduce errors, mesh
encrypted treatment was carried out on the bar near the specimen. The diameter of the
bullet was 12 mm and its length was 20 mm, and the speed was set to 30 m/s. The diameter
and the length of the bar were 12 mm and1200 mm, respectively. The specimen was 8 mm
in diameter and 6 mm in thickness. The dimensions of each layer of the model are shown
in Table 2. The model without Al contains 25 TC4 layers and 24 Al3Ti layers (Model 1), the
other models contain 24 layers of Al, 25 layers of TC4, and 48 layers of Al3Ti.
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Table 2. Size parameters of the target model containing different percentages of Al.

-
Thickness and

Number of Al Alloy
Layers (µm/n)

Thickness and
Number of TC4 Alloy

Layers (µm/n)

Thickness and
Number of Al3Ti

Alloy Layers (µm/n)

Proportion of Al
Content (%)

Model 1 0/0 48/25 200/24 0
Model 2 25/24 48/25 87.5/48 10
Model 3 50/24 48/25 75/48 20
Model 4 75/24 48/25 62.5/48 30

The JOHNSON–COOK constitutive model and Mie–Gruneisen state equation were
used to model TC4 and Al plates. Detailed parameters are shown in Table 3 [32,33].

Table 3. Material parameters of TC4 and Al layers [32,33].

- P
(g/cm3)

E
(GPa) ν

A
(GPa)

B
(GPa) C m n T melt

(K)

Al 2.71 71 0.34 265 426 0.015 1.1 0.93 -
TC4 4.428 113.8 0.342 1098 1092 0.014 1.1 0.93 1878

The Johnson–Holmquist–Ceramics (JH-II) [34] constitutive model was used to describe
the brittle Al3Ti material; the specific parameters are shown in Table 4 [32].
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Table 4. Material parameters of Al3Ti layers [32].

P (g/cm3) E (GPa) ν A B C M N T PHEL
(GPa)

3.35 216 0.17 0.85 0.31 0.013 0.21 0.29 0.2 1.842
D1 D2 K1 (GPa) K2 (GPa) K3 (GPa) - - - - -
0.02 1.85 2.01 2.6 0 - - - - -

3. Results and Discussion
3.1. Dynamic Mechanical Properities

Figure 3 shows the dynamic compressive stress–strain curves of Ti–Al3Ti–Al laminated
composites with different Al contents. The maximum peak stresses of 0%, 15%, and 30%Al
content are 1156 MPa, 1175 MPa, and 927 MPa, respectively, and the fracture strain is 0.094,
0.103, and 0.122 respectively. It can be seen that Ti–Al3Ti–Al laminated composite with 15%
Al content shows a higher compressive strength. When Al contents increase from 0% to
15%, the fracture strain increases by 9.6%. While when Al contents increase from 15% to
30%, the fracture strain increases by 18.4%.
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Figure 3. Dynamic compressive stress–strain curves of Ti–Al3Ti–Al laminated composites with
different Al contents.

In the strain range of 0–0.01, the stress growth rate gradually decreases with the
increase of Al contents, indicating that the presence of Al makes the specimen need more
strain to achieve compactness. In the strain range of 0.02–0.08, the stress–strain curves of
the specimens are relatively flat due to the significant thermal softening effect of Al that
counteracted the effect of strain hardening [35,36]. Some studies [37] have shown that
the plastic deformation of aluminum alloys at high strain rates is mainly characterized by
adiabatic heating and shear strain localization.

The fracture characteristics of the specimens with different Al contents impacted
by SHPB are shown in Figure 4. For the specimen without Al (Figure 4a), the obvious
brittleness fracture is occurred, and three cracks appear on the surface.
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For the specimen containing about 15% Al (Figure 4b), it can be seen that there is
only one main crack on the surface, about 45◦ to the axis, which means the shear fracture
occurred in the specimen. A small amount of Al extrudes from the layer.

For the specimen containing about 30% Al (Figure 4c), the multi-cracks phenomenon
appeared in the specimen and caused the whole specimen to fracture. Large amounts of Al
are squeezed out of the cracks. The deformation degree of the specimen is large.

By contrast, the brittleness of the specimen without Al is relatively large. The speci-
men with 15% Al has the best impact resistance. Huang’s research [30] found that local
plastic deformation of the Al layer slows down excessive interlayer residual stress. Price’s
research [22] also showed that residual Al can slow down Al3Ti damage and prevent
separation.

3.2. Simulation Calculation
3.2.1. The Simulated Dynamic Stress-Strain Curves

Figure 5 shows the simulated dynamic stress–strain curves of Ti–Al3Ti–Al laminated
composites with different Al contents. The compressive strength of the material with 0%,
10%, 20%, and 30% Al content is 1166.0 MPa, 1181.4 MPa, 1025.2 MPa, and 913.3 MPa
respectively, and the fracture strain is 0.090, 0.095, 0.113, and 0.145 respectively. For the
Ti–Al3Ti–Al laminated composites with 10% Al content (Ti:Al3Ti:Al = 2:7:1), its fracture
strain is greater than that of the materials without Al, and its compressive strength is the
highest. It has a good balance between brittleness and toughness. When the Al content
is 20%, the compressive strength of the material decreases by 13.2% compared with that
of 10% Al, but the fracture strain increases by 18.9%. When the Al content increases to
30%, the compressive strength continues to decrease and the fracture strain continues to
increase. Konieczny [38] also pointed out that the amount of residual aluminum on the
intermetallic compound centerline increased the ductility of the composites.

3.2.2. Energy Analysis

Figure 6a shows the energy variation curves of the specimens with different Al con-
tents during the SHPB experiment. The time of 0 µs is the time when the incident wave
just contacts the specimen. The total energy absorbed by the specimens with 0%, 10%,
20%, and 30% Al content is 29.03 J, 30.29 J, 35.49 J, and 39.88 J, respectively. It can be
seen that with the increase of Al content, the energy absorbed by the specimen increases
gradually. This indicates that the higher the Al content, the stronger the energy absorption
capacity of the laminated composites. After the energy absorption reaches the peak, there
is a small decline. This is due to the recovery of elastic deformation and energy release of
the specimen.
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Figure 5. The simulated dynamic stress-strain curves of Ti–Al3Ti–Al laminated composites with
different Al contents.
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Figure 6. Energy absorption–time curves of Ti–Al3Ti–Al laminated composites with different Al contents: (a) the whole;
(b) Ti layers.

For the Ti layers of the composites (Figure 6b), with the increase of Al content, the
energy absorption of the Ti layer is 18.38 J, 16.88 J, 17.02 J, and 19.30 J, respectively. It can
be seen that the energy absorbed by the Ti layers in the Ti–Al3Ti–Al laminated material
containing 10% Al is the lowest. However, the energy absorption of Ti layers in the
laminated composites without Al is higher than that of 10% Al and 20% Al. In addition,
although the volume fraction of the Ti layer only accounts for 20%, its energy absorption is
about half of the total energy absorption, which indicates that the ductile layer Ti is the
main energy absorption layer, increasing the toughness of laminated composites.

Figure 7 shows the deformation degree of the Ti layer of Ti–Al3Ti–Al laminated
composites with different Al contents. It can be seen that with the increase of Al content, the
maximum strain of the Ti layer in each sample is 0.498, 0.434, 0.445, and 0.537, respectively.
The strain of Ti is the lowest at 10% Al content, indicating that the risk of fracture of the
composites is low. This corresponds to the result of Figure 7b above.
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3.2.3. Comparison of Failure Morphology

Figure 8 shows the stress nephogram of the longitudinal section of the specimen after
impact. Different Al contents lead to different deformation degrees and failure mode of the
specimen. It can be seen that Ti–Al3Ti–Al laminated composites containing 10% Al have
the best protective performance under dynamic impact.
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For the specimen without Al (Figure 8a), the stress distribution is not uniform and a
large number of microcracks are generated. However, the Ti layer can effectively prevent
the propagation of microcracks, thus the specimen has no overall failure.

For the specimen containing 10% Al (Figure 8b), the whole specimen is relatively
intact with few failure units, indicating that Al plays a positive role in it. The overall
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stress distribution of the specimen is uniform, and there is no high-stress concentration
phenomenon.

When the Al content reaches 20% (Figure 8c), the interlayer stress increases, and the
phenomenon of stratification occurs.

When the Al content reaches 30% (Figure 8d), more failure elements appear in the
specimen, indicating that large cracks have formed, because with the increase of Al content,
the strength and stiffness of the material decrease, and the ability of resisting impact
load weakens.

4. Conclusions

The dynamic mechanical properties of Ti–Al3Ti–Al laminated composites were studied
by SHPB experiment and numerical simulation. The conclusions can be summarized
as follows:

(1) The Ti–Al3Ti–Al laminated composites with Al content of 10–15% had excellent
compressive strength and failure strain.

(2) The laminated composites without Al showed brittle fracture; there were three main
cracks on the surface of the specimen. The laminated composites containing 15%
Al had only one main crack, and ruptured in a direction approximately 45◦ from
the vertical axis. When the Al content reached 30%, the specimen revealed multiple
cracking properties, and the deformation was large.

(2) When the Al content was 10%, the overall stress distribution of the specimen was
uniform and had the best impact resistance.
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