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Abstract: In this paper, we revisit the formability of tube expansion by single point incremental
forming to account for the material strain hardening and the non-proportional loading paths that
were not taken into consideration in a previously published analytical model of the process built
upon a rigid perfectly plastic material. The objective is to provide a new insight on the reason why
the critical strains at failure of tube expansion by single point incremental forming are far superior
to those of conventional tube expansion by rigid tapered conical punches. For this purpose, we
replaced the stress triaxiality ratio that is responsible for the accumulation of damage and cracking
by tension in monotonic, proportional loading paths, by integral forms of the stress triaxiality ratio
that are more adequate for the non-proportional paths resulting from the loading and unloading
cycles of incremental tube expansion. Experimental and numerical simulation results plotted in
the effective strain vs. stress triaxiality space confirm the validity of the new damage accumulation
approach for handling the non-proportional loading paths that oscillate cyclically from shearing to
biaxial stretching, as the single point hemispherical tool approaches, contacts and moves away from
a specific location of the incrementally expanded tube surface.

Keywords: single point incremental forming; tube expansion; formability; fracture; stress-triaxiality

1. Introduction

The route for characterizing the sheet formability limits started in the late 1960s
when Keeler [1] and Goodwin [2] developed the circle grid analysis (CGA) technique for
determining the in-plane strains on the surface of sheet metal formed parts. The use of
principal strain space to plot these strains and to identify their critical values at the onset of
failure by Embury and Duncan [3] in the early 1980s paved the way to what they called
“formability maps”, which are nowadays known as the forming limit diagrams (FLDs) [4].

A typical FLD for a sheet metal forming material is built on three different types
of failure limit curves [5]: (i) the forming limit curve (FLC) corresponding to failure by
necking, (ii) the fracture forming limit lines corresponding to failure by cracking and
(iii) the wrinkling limit curve (WLC) delimiting the onset of wrinkling in the lower left-
hand of the second quadrant. In sheet metal forming, there are two fracture forming
lines corresponding to crack opening by tension (mode I of fracture mechanics, hereafter
referred to as FFL) and crack opening by in-plane shear (mode II of fracture mechanics,
hereafter referred to as SFFL) [6]. The experimental determination of the FFLs and SFFLs
was comprehensively explained by the authors in previous publications [4,5], who also
described the different methods and procedures to obtain the FLCs.

The route for establishing the formability limits of tube materials starts with the
determination of the onset of necking (FLC) by means of tube of hydroforming [7,8]. No
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methodologies for characterizing the crack opening modes and determining the fracture
forming lines were proposed until 2016, when Centeno et al. [9] utilized CGA to plot the
FLC and the FFL corresponding to tube cracking by tension.

Subsequent research work combining numerical methods, digital image correlation
(DIC) and making use of a broader range of tube forming processes comprising expan-
sion [10], inversion [11] and bulging [12] allowed obtaining the FLC and the FFL of tube
materials for a wider range of strain paths running from uniaxial tension up to equal
biaxial stretching (e.g., from strain ratios β = dε2/dε1 ranging between −1/2 to 1). These
efforts were recently complemented by the work of Magrinho et al. [13], who proposed an
experimental procedure to determine the SFFL of tube materials (i.e., the fracture forming
limit line corresponding to tube cracking by in-plane shear).

In view of the aforementioned work, recent developments in incremental tube expan-
sion, reduction, wall grooving and hole flanging using a single point hemispherical tool by
Wen et al. [14] and Movahedinia et al. [15] raise the question of whether their deformation
mechanics and formability limits remain the same as those of conventional tube forming
processes. The answer to this question was firstly addressed by Cristino et al. [16], who
presented an analytical model based on membrane analysis for tube expansion by single
point incremental forming (hereafter referred to as incremental tube expansion). The model
reveals the main differences between conventional and incremental tube expansion in
terms of stress/strain states and damage accumulation to explain the greater formability of
incremental tube expansion compared to that of conventional tube expansion with a rigid
tapered conical punch.

The analytical model of Cristino et al. [16] is based on a rigid, perfectly plastic tube
material and assumes near-proportional (equal biaxial stretching) experimental strain
loading paths in principal strain space to facilitate algebraic treatment.

Under these circumstances, it is important to revisit the accumulation of damage by
means of a numerical simulation model capable of accounting for material strain hardening
and for the loading/unloading cycles of incremental tube expansion. In this paper, we
provide a novel perspective on the formability and failure of incremental tube forming
processes subjected to non-proportional loading. We analyze different methodologies to
account for stress triaxiality and accumulation of damage, and discuss if the FFLs of tube
materials determined by means of conventional tube forming processes subjected to near
proportional loading paths are still valid for incremental tube expansion characterized by
non-proportional loading paths that oscillate cyclically from shearing to biaxial stretching,
as the single point hemispherical tool approaches, contacts and moves away from a specific
location of the plastically deformed tube surface.

Experimental and numerical simulation results plotted in the space of effective strain
vs. stress triaxiality [17] give support to the discussion, which is of paramount importance
to infer about the FFLs of tubes being material properties, in contrast to their FLCs, which
are dependent on the applied loading paths.

2. Methods and Procedures

The investigation was carried out in AA6063-T6 extruded aluminum tubes with an
outer radius r0 = 20 mm and a wall thickness t0 = 2 mm. The first part of this section
summarizes the methods and procedures that were utilized to determine the material flow
curve and the formability limits by necking (FLC) and by fracture under tension (FFL)
using conventional tube forming processes. The data provided in the figures were retrieved
from previous publications of the authors [9–12].

In the second part of this section, we present the experimental testing conditions
of incremental tube expansion, describe the methodology that was used to determine
the strain paths using circle grid analysis (CGA), provide an analytical framework to
transform the formability limits from principal strain space into the effective strain vs.
stress-triaxiality space and summarize the numerical modelling conditions utilized in finite
element analysis.
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2.1. Flow Curve

The flow curve of the AA6063-T6 tubes is shown in Figure 1 and was obtained by
merging the stress–strain evolutions that were previously obtained by the authors using
tensile and stack compression tests [9]. Tensile tests were carried out in specimens machined
out from the tube longitudinal direction and provided the material stress response for
values of effective strain below 0.23 (refer to the vertical dashed line). Stack compression
tests were performed in cylindrical specimens that were assembled by pilling up disks
that were also machined out from the supplied tubes and allowed characterizing the strain
hardening behavior of the tube material for the remaining values of effective strain.
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Figure 1. Flow curve of the aluminum AA6063T6 tubes (adapted from [9]).

2.2. Formability Limits by Necking and Fracture

Figure 2 shows the formability limits of the aluminum AA6063-T6 tubes by necking
(FLC) and by fracture under tension (FFL) in principal strain space. Determination of the
FLC required measuring the strain paths of conventional tube expansion, inversion and
bulging by means of digital image correlation (DIC) and combining these results with time-
dependent and force-dependent methodologies that were specifically developed by the
authors for tube materials [11,12]. Determination of the FFL required measuring the wall
thickness of the tube cracked regions by optical microscopy (D software version 5.11.01, NIS-
Elements, Tokyo, Japan)to obtain the “gauge length” strains at fracture. Information about
the different tests, methods and procedures that were used by the authors to determine the
FLCs and FFLs of tube materials is given in Magrinho et al. [12].

Figure 2 also includes the strain loading path obtained in conventional tube expansion
with a rigid tapered conical punch having a semi-angle of 15◦, which was previously
obtained by the authors [12] and will be used for reference purposes throughout this
paper. As seen, the in-plane strains of conventional tube expansion at the onset of necking
(ε1n, ε2n) = (−0.25, 0.41) are very close to the FLC, and the in-plane fracture strains
(ε1 f , ε2 f ) = (−0.25, 0.71) are exactly on top of the FFL.

The formability limits shown in Figure 2 can alternatively be plotted in the effective
strain vs. stress triaxiality space (Figure 3). The transformation of the formability limits
from principal strain space into this other space can be carried out analytically by assuming
linear, proportional strain paths under plane stress loading conditions (σt = σ3 ≈ 0). Plane
stress loading conditions are commonly assumed in the analytical modelling of sheet and
thin-wall tube forming [12,18].
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Figure 2. Forming limit curve (FLC) and fracture forming limit (FFL) line of the aluminum AA6063-
T6 tube in principal strain space. The red line represents the experimental strain loading path of
conventional tube expansion with a rigid tapered conical punch having a semi-angle of 15◦ (adapted
from [12]).

For this purpose, let us consider, for example, the tube material to be isotropic and to
follow the von Mises yield criterion, so that its effective stress σ and effective strain dε are
given by:

σ =
√

σ2
1 − σ1σ2 + σ2

2 (1)

dε =
2√
3

√
dε2

1 + dε1dε2 + dε2
2 (2)

Then, applying the Levy–Mises constitutive equations, one obtains the following
relation between the stress triaxiality ratio η = σm/σ and the slope β = dε2 /dε1 of the
strain path [9]:

η =
1 + β√

3
√

1 + β + β2
(3)

The above equation together with the following modified version of Equation (2) to
include the slope β in the effective strain,

ε =
2√
3

√
1 + β + β2ε1 , (4)

allows accomplishing the above-mentioned transformation of the FLC from principal strain
space into the effective strain vs. stress triaxiality space (Figure 3).
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T6 tube in the effective strain vs. stress triaxiality space, obtained from analytical transformation
assuming material isotropy, linear strain paths and plane stress loading conditions.

The transformation of the FFL from principal strain space into the effective strain vs.
stress triaxiality space requires consideration of the experimentally observed strain path
deviation towards plane strain deformation conditions at the onset of necking (FLC); see,
for instance, Martinez-Donaire et al. [19]. In case of the effective strain ε, this is realized
by modifying Equation (4) to account for the two piecewise linear strain paths involving
the initial path (up to necking) with a given slope β and the final path (from necking to
fracture) with a slope β = 0 resulting from strain localization in the tube material:

ε f =
∫ εn

0
dε +

∫ ε f

εn
dε =

2√
3

[
ε1 f +

(√
1 + β + β2 − 1

) (
ε2 f /β

)]
(5)

In the above equation, ε1 f and ε2 f are the major and minor in-plane strains at fracture,
and ε f is the effective strain at fracture.

In case of the stress triaxiality η, the transformation is carried out in accordance with
Martinez-Donaire et al. [19], who introduced an integral form η f , named average-stress
triaxiality at fracture, that accounts for stress triaxiality in an average sense over the two
piecewise linear strain paths:

η f =
1
ε f

∫ ε f

0

σm

σ
dε =

1
ε f

(∫ εn

0

σm

σ
dε +

∫ ε f

εn

σm

σ
dε

)
=

√
3

3

 ε1 f + ε2 f

ε1 f +
(√

1 + β + β2 − 1
) (

ε2 f /β
)
 (6)

The FLC and FFL resulting from the above-mentioned analytical transformation
procedure are shown in Figure 3 and are slightly different from those obtained by Magrinho
et al. [12] due to the following two main reasons. First, the authors made use of the von
Mises yield criterion instead of the Hosford yield criterion that was utilized by Magrinho
et al. [12]. Second, Magrinho et al. [12] transformed the FFL from principal strain space into
the effective strain vs. stress triaxiality space by replacing the strains at fracture directly on
Equations (3) and (4) instead of using the two piecewise linear strain path approach given
by Equations (5) and (6), i.e., without considering the kink in the strain loading path from
necking towards fracture.
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To conclude, it is worth mentioning that the main reason why the Hosford yield
criterion was not utilized in this work was due to its unavailability in the commercial
finite element computer program utilized by the authors. Hill’s 48 yield criterion was not
considered as well because of the difficulty in obtaining the Lankford’s coefficient at 45◦ in
a tube, and because Cristino et al. [16] achieved good analytical estimates of material flow
neglecting anisotropy.

2.3. Incremental Tube Expansion

The experiments in incremental tube expansion were performed in a Deckel Maho
CNC machining center equipped with a single point hemispherical tool (rtool = 5 mm)
made from a cold working tool steel (120WV4-DIN) hardened and tempered to 60 HRc. The
bottom tube end of the specimens was fixed to prevent sliding and rotation, and the tool
path was programmed to perform a multi-stage incremental forming sequence consisting
of an upward helical trajectory with a constant semi-angle Ψ = 15◦ (Figure 4a). The pitch p
between two consecutive stages was set to 2 mm and the initial tool depth at the beginning
of the first stage was set to 2 mm with respect to the upper tube end (Figure 3b). Table 1
summarizes the main process parameters.

Three different tests were performed under the above-mentioned experimental con-
ditions and a total of eight forming stages were needed for each test to observe of an
incipient failure by fracture close to the plastically deformed tube end (Figure 3c), as is later
discussed in the paper.
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a detail showing the final cracked surface.

Table 1. Main parameters used in the incremental tube expansion tests.

Parameter Value

Tool radius rtool 5 mm
Pitch p 2 mm

Step down ∆z 0.2 mm
Semi-angle of inclination Ψ 15◦

Feed rate 1000 mm/min

2.4. Strain Measurement Using Circle Grid Analysis

The in-plane strains of the incrementally expanded tubes were determined by CGA
using the automatic measurement system ARGUS® v.6.2 by GOMTM equipped with a
camera having a resolution of 1624 × 1236 pixels. For this purpose, the outer tube surfaces
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were electrochemically etched with a grid of circles with 0.75 mm of diameter and a distance
between centers of 1.5 mm.

Measurement and classification of the deformed circles into different colors by ARGUS
at the end of incremental tube expansion (Figure 5a) allowed determining the in-plane
distribution of strains along the longitudinal direction from the undeformed lower tube
region to the upper end of the plastically expanded tube surface (Figure 5b). The results
for a typical longitudinal cross section marked with a black line in Figure 5a are given by
the corresponding black line in principal strain space (Figure 5b).
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2.5. Numerical Modelling

Numerical modelling of the conventional and incremental tube expansion processes
was carried out with the commercial finite element computer program DEFORM™-3D.
DEFORM™-3D was chosen due its capability to obtain a good agreement between numeri-
cal and experimental strains in incremental sheet forming processes [20,21].

The tube material was assumed as isotropic, elastic and plastic, and its initial geometry
was discretized by means of solid tetrahedral elements. Tube material properties were taken
from a previous work of the authors [9]. The tools were modelled as rigid (non-deformable)
bodies and discretized by means of spatial triangular elements.

A penalty contact algorithm was utilized to model the interaction between the tools
and the tube material.

Discretization of the tube and tool in case of conventional tube expansion with a rigid
tapered conical punch took advantage of the rotational symmetry conditions of the process
to create a simple three-dimensional model built upon an angular sector of 18◦ (1/20 of the
full three-dimensional model). A total of 11,530 tetrahedral elements were utilized with
an average side length of 1 mm and a reduced side length of 0.25 mm in the upper tube
regions where mesh refinement was needed. Figure 6 shows the initial and final deformed
meshes with the predicted contour of effective strain at the end of the process.

Typical CPU time to complete the numerical modelling of conventional tube expansion
was approximately 3 min in a personal computer equipped with an Intel I7-4749 CPU
(3.6 GHz) processor.
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process.

Discretization of the tube material and of the single point hemispherical tool in case of
incremental tube expansion required a full three-dimensional finite element model. The
initial mesh consisted of 50,000 tetrahedral elements distributed along a finer mesh region
at the upper tube end, which initially comes into contact with the tool, and a coarser mesh
region for the remaining regions of the tube (Figure 7a). The final mesh at the end of the
process (Figure 7b) consisted of approximately 120,000 tetrahedral elements due to several
remeshings (based on critical element distortion) that were automatically performed to
keep the numerical simulation from stopping because of excessive element distortion.
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The trajectory of the single point hemispherical tool was set identical to that utilized
in the experiments and the total CPU time to complete the eight forming stages of the
multi-stage incremental tube expansion process was approximately equal to 600 h. Cyclic
strain loading paths of incremental tube forming cannot be obtained from experimental
strain analysis; therefore, finite element predicted strain loading paths become the closest
as one can be from the physical phenomenon, despite the long computational time.

3. Results and Discussion

This section is organized in two main parts. In the first part, we make use of the
principal strain space and focus on material flow and failure by cracking in incremental
tube expansion. Results obtained from conventional tube expansion are included for
comparison purposes. In the second part, we discusses the application of different integral
forms of stress triaxiality in the effective strain vs. stress triaxiality space to solve an
apparent contradiction: on one hand, the in-plane strains of incremental tube expansion
exceed the threshold admissible values of the FFL, which were previously determined by
means conventional tube forming processes, and on the other hand, the FFL is a material
property, and therefore, its threshold values cannot be surpassed and must be independent
of any type of applied loading.

3.1. Material Flow and Cracking

Figure 8 shows the experimental in-plane strains along the longitudinal cross sections
of the incremental tube expansion specimens in principal strain space. The results were
obtained by ARGUS® (refer to the open triangular markers) for three test repetitions
consisting of eight forming stages each. Numerical predictions obtained by finite element
modelling with DEFORM™-3D are enclosed and confirm that incremental tube expansion
subject the material to biaxial stretching conditions.
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The in-plane strains at the onset of fracture by tension are represented by the solid
black triangular marker and its determination involved measuring the tube wall thickness
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at the vicinity of the incipient cracking zone and calculating the through-thickness strain
ε3 f at fracture to obtain the ‘gauge length’ strains

(
ε1 f , ε2 f

)
.

This alternative procedure was necessary because neither ARGUS® nor DEFORM™-
3D could provide the in-plane strains at fracture. In fact, the application of circle grids
with very small diameters to obtain the in-plane strains in the cracked region by means
of ARGUS® is not feasible because it creates measurement problems and delivers values
that cannot be considered fracture strains due to inhomogeneous material deformation
around the cracks. Similar problems exist in finite element modelling with the use of very
refined meshes in the regions where the cracks are likely to be triggered, plus the additional
difficulty resulting from these results being sensitive to mesh size.

Under these circumstances, the authors had to measure the tube wall thickness in a
NICON® SMZ800 optical microscope equipped with a NIS-Elements® D software version
5.11.01. Figure 9 shows a longitudinal cross-section detail after completion of the incre-
mental tube expansion process with the corresponding evolution of thickness along the
longitudinal direction (starting from the upper tube end). As seen, two different regions
may be distinguished: (i) a first region (labeled as “I”) located near the upper tube end that
is characterized by a sharp decrease in wall thickness and (ii) a second region (labelled
as “II”), in which the wall thickness progressively increases, as the distance to the upper
tube end increases and approaches the undeformed region (not subjected to incremental
expansion), along which the tube wall thickness t0 = 2 mm remained unchanged.
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Two main conclusions can be inferred from Figure 9: (i) failure by cracking is not
preceded by necking and (ii) failure by cracking is related to a sharp decrease in the tube
wall thickness in a small region “I” subjected to a great amount of straining. As seen, there
is no localized thickness reduction in the detail of the tube section after the last forming
stage of incremental expansion. This observation combined with the monotonic increase
in the strain loading path up to fracture shown in Figure 8 (refer to the black triangular
markers) allow concluding that failure occurs without previous necking.

A closer observation of the tube wall thickness within region “I” confirms the existence
of micro-cracks along its length, as it was previously stated by Cristino et al. [16], and
justifies the reason why the experimental determination of the “gauge length” strains
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(
ε1 f , ε2 f

)
at fracture was made at point “A” (Figure 9) located 1.5 mm away from the

upper tube end, in the transition between regions “I” and “II”.
The finite element predicted evolution of the in-plane strains at point “A” for each

individual stage of the incremental tube expansion process is shown in Figure 10. As
mentioned before, the “gauge length” strains

(
ε1 f , ε2 f

)
at fracture (refer to the black solid

triangular marker) were not obtained by finite elements and their determination made use
of the tube wall thickness value at point “A” (Figure 9b) to calculate the through-thickness
strain ε3 f at fracture.

ε3 f = ln
t f

t0
= ln

0.63
2

= −1.16 (7)

Then, assuming material incompressibility and the final slope β of the strain loading
path to remain identical to that of the last piecewise linear path obtained by ARGUS®

(Figure 8), it was possible to determine the ‘gauge length’ strains
(

ε1 f , ε2 f

)
at fracture, as

follows:

β =
ε2

ε1
= 0.54 → ε1 f = −

ε3 f

1 + β
= 0.75 , ε2 f = βε1 f = 0.40 (8)

The corresponding effective strain at fracture ε f = 1.17 was obtained from Equation (4)
and defines a dashed ellipse of constant effective strain values in principal strain space
(refer to both Figures 8 and 9).

Metals 2021, 11, x FOR PEER REVIEW 11 of 18 
 

 

(𝜀𝜀1𝑓𝑓, 𝜀𝜀2𝑓𝑓) at fracture was made at point “A” (Figure 9) located 1.5 mm away from the up-
per tube end, in the transition between regions “I” and “II”.  

The finite element predicted evolution of the in-plane strains at point “A” for each 
individual stage of the incremental tube expansion process is shown in Figure 10. As men-
tioned before, the “gauge length” strains (𝜀𝜀1𝑓𝑓, 𝜀𝜀2𝑓𝑓) at fracture (refer to the black solid tri-
angular marker) were not obtained by finite elements and their determination made use 
of the tube wall thickness value at point “A” (Figure 9b) to calculate the through-thickness 
strain 𝜀𝜀3𝑓𝑓 at fracture. 

𝜀𝜀3𝑓𝑓 = 𝑙𝑙𝑙𝑙
𝑡𝑡𝑓𝑓
𝑡𝑡0

= 𝑙𝑙𝑙𝑙
0.63

2
= −1.16 (7) 

Then, assuming material incompressibility and the final slope 𝛽𝛽 of the strain loading 
path to remain identical to that of the last piecewise linear path obtained by ARGUS® 
(Figure 8), it was possible to determine the ‘gauge length’ strains (𝜀𝜀1𝑓𝑓, 𝜀𝜀2𝑓𝑓) at fracture, as 
follows: 

𝛽𝛽 =
𝜀𝜀2
𝜀𝜀1

= 0.54      →       𝜀𝜀1𝑓𝑓 = −
𝜀𝜀3𝑓𝑓

1 + 𝛽𝛽
= 0.75    ,   𝜀𝜀2𝑓𝑓 = 𝛽𝛽𝛽𝛽1𝑓𝑓 = 0.40  (8) 

The corresponding effective strain at fracture 𝜀𝜀𝑓̅𝑓 = 1.17 was obtained from Equation 
(4) and defines a dashed ellipse of constant effective strain values in principal strain space 
(refer to both Figures 8 and 9). 

 
Figure 10. Finite element predicted in-plane strains of point A during the eight forming stages of 
incremental tube expansion. 

The comparison of the results obtained for incremental tube expansion against those 
obtained for conventional tube expansion with a rigid tapered conical punch [9–12] al-
lowed identifying two main differences regarding material flow and cracking. First, in-
cremental tube expansion is performed under biaxial stretching conditions, whereas con-
ventional tube expansion subjects the material to near pure tension. Second, both pro-

Figure 10. Finite element predicted in-plane strains of point A during the eight forming stages of
incremental tube expansion.

The comparison of the results obtained for incremental tube expansion against those
obtained for conventional tube expansion with a rigid tapered conical punch [9–12] allowed
identifying two main differences regarding material flow and cracking. First, incremental
tube expansion is performed under biaxial stretching conditions, whereas conventional
tube expansion subjects the material to near pure tension. Second, both processes fail by
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tensile stresses (opening mode I), but while fracture in incremental tube expansion is not
preceded by necking, that is not the case in conventional tube expansion, in which fracture
is preceded by localized necking.

Even though all the experimental and theoretical results presented in this section
are consistent and compatible, there is a fundamental problem arising from the fact that
in-plane strains of incremental tube expansion are far greater than the threshold admissible
values given by the FFL. Because the FFL is a material property, whose values cannot be
surpassed, Cristino et al. [16] put forward the possibility of the FFL having an upward
curvature in the first quadrant of principal strain space to accommodate the values in
excess (i.e., to accommodate the in-plane strains located above the straight line falling from
left to right), but they did not provide evidence for this type of tube material.

In connection to this, it is worth noticing that recent published works in incremental
sheet forming also report the existence of strain paths that go beyond the FFL determined
by means of conventional sheet forming tests with proportional strain paths [22].

The following section focuses on this problem and aims at providing an explanation
for the reason why the critical strains of incremental tube expansion at fracture are far
superior to those of conventional tube expansion that is simultaneously compatible with
the FFL being a material property, whose threshold values cannot be surpassed by any
type of loading. The explanation will make use of the effective strain vs. stress triaxiality
space instead of the principal strain space.

3.2. FFL and Stress Triaxiality under Non-Proportional Paths

Damage accumulation associated to growth and coalescence of voids subjected to ten-
sile normal stresses (Mode I) accounts for the dilatational effects related to stress triaxiality
η = σm/σ, in the form of a weighted integral form of the effective plastic strain [23–25].

D =
∫ ε

0

σm

σ
dε (9)

The critical damage Dcrit at the onset of fracture (FFL) corresponds to the maximum
admissible accumulated value of effective strain ε = ε f for a given strain path.

The accumulation of damage D in principal strain space often distinguishes between
two different types of strain paths: (i) linear, proportional strain paths (Figure 11a) and (ii)
non-proportional strain paths, which are often discretized through a series of piecewise
linear strain paths for calculation purposes (Figure 11b).
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As shown in Figure 11c, the application of Equations (3) and (4) to linear, proportional
strain paths, characterized by a constant slope β = dε2 /dε1 (Figure 11a), gives rise to



Metals 2021, 11, 1481 13 of 18

vertical lines η = ηp in the effective strain vs. stress triaxiality space. In contrast, the
application of Equations (3) and (4) to non-proportional, piecewise linear strain paths with
different slopes βi, gives rise to piecewise linear evolutions ε = f (ηi) (hereafter referred to
as ηpiecewise based evolutions) in the effective strain vs. stress triaxiality space.

The experimental strain paths disclosed in Figure 8 allow concluding that tube expan-
sion by a rigid tapered conical punch subject the material to linear, proportional (or near
proportional) strain paths, whereas incremental tube expansion subjects the material to
non-proportional strain paths. The picture inserts of Figure 11a,b are drawn in accordance
with this conclusion.

However, the strain paths determined by CGA using the automatic measurement
system ARGUS® must be seen as static results obtained at the end of the incremental tube
expansion process (Figure 8), or at the end of each intermediate forming stage (Figure 10).
Full characterization of the non-proportional strain paths of incremental tube forming
with detailed information on the cyclic oscillations from shearing to biaxial stretching, as
the single point hemispherical tool approaches, contacts and moves away from a specific
location of the incrementally expanded tube surface can only be obtained through finite
element modelling.

Figure 12 provides a schematic representation of a finite element computed non-
proportional, cyclic path undergone by a specific tube location in the effective strain vs.
stress triaxiality space. Three different evolutions ε = f (η) are considered as a result
of the following three approaches to account for the accumulation of damage D in non-
proportional, cyclic paths:

(a) The envelope stress triaxiality ηenv based approach (Figure 12a).

Denv = ηenvε → ηenv =
1
ε

∫ ε

0

(σm

σ

)
max

dε (10)

where (·)max stands for the peak values of the stress triaxiality ratio at each cycle (circular
path) of the forming tool.

(b) The average positive stress triaxiality ηpos based approach (Figure 12b).

Dpos = ηposε → ηpos =
1
ε

∫ ε

0
〈σm

σ
〉dε (11)

where 〈·〉 corresponds to the Macaulay bracket to prevent accumulation of negative dam-
age.

(c) The average stress triaxiality η based approach (Figure 12c), where D = D of
Equation (9).

D = ηε → η =
1
ε

∫ ε

0

σm

σ
dε (12)

where D = D of Equation (9).
The three evolutions ε = f (η) resulting from these approaches are identical in case of

linear, proportional strain paths because in such loading conditions, D = Denv = Dpos = D.
Figure 13 shows the finite element non-proportional, cyclic path of incremental tube

forming experienced by point A of Figure 9 and the three different ε = f (η) evolu-
tions that result from the integral forms of stress triaxiality ηenv, ηpos and η given by
Equations (10)–(12). The linear piecewise ηpiecewise based evolution resulting from the ex-
perimental in-plane strains obtained by ARGUS® and by the linear, proportional, equal
biaxial stretching ηp based evolution are included for comparison purposes.
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Figure 13. Finite element computed non-proportional, cyclic path of point A (Figure 9) with several
ε = f (η) evolutions obtained from different assumptions and integral forms of stress-triaxiality.

As seen, the ε = f (η) reference evolution based on a linear, proportional, equal biaxial
stress triaxiality ratio ηp consists of a vertical line ηp = 0.66 that extends up to an effective
strain value at fracture ε f = 1.17 located far above the FFL. The other ε = f (η) reference
evolution based on a linear piecewise ηpiecewise approximation of the experimental in-plane
strains measured by ARGUS® is not very much different from that based on ηp. Major
differences between the two evolutions are found in the forming stages 2 to 5 due to a shift
in the linear piecewise ηpiecewise based evolution towards plane strain.

Still, the onset of fracture at ε f = 1.17 is nearly identical to that of the ηp based
evolution and, therefore, far above the FFL. In fact, because the linear piecewise ηpiecewise
based evolution is built upon a direct transformation of the experimental strain paths from
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principal strain space to the effective strain vs. stress triaxiality space, it is understandable
that the surpass of the FFL must occur in both spaces.

More important to our discussion are the ε = f (η) evolutions obtained for the integral
forms of stress triaxiality given by ηenv, ηpos and η (refer to Equations (10)–(12)). As can
be seen, the three evolutions reach the effective strain at fracture (ε f = 1.17) very far from
the FFL. In particular, the evolution of ηenv cuts the FFL at stress triaxiality values around
0.4, suggesting that the fracture should occur much earlier than it does. The other two
(ηpos and η) reach the fracture for values of stress triaxiality below 0.2 (i.e., in-between pure
tension and pure shear) without crossing the FFL and in good agreement with a possible
extrapolation of the FFL to the left side. The difference between the ηpos and η based
evolutions is not relevant for incremental tube expansion and derives from discharging,
or accounting for, the accumulation of negative damage. Although discharging negative
damage is commonly executed in cold forming, there are studies recently published
pointing to cut-off values of stress triaxiality up to −0.6 for the cold forming of aluminum
alloys under quasi-static loading [26]. According to this and taking into account that the
instantaneous stress triaxiality in the incremental tube forming oscillates between −0.6 to
0.6 (see Figure 13), the use of the average stress triaxiality η takes on a greater physical
sense.

Taking the integral form of stress triaxiality η (i.e., the average stress triaxiality given by
Equation (12)) into consideration, it is now important to check if the compatibility between
the FFL and the above-mentioned reason for the critical in-plane strains of incremental
tube expansion at fracture being far greater than those of conventional tube expansion
also applies to the latter. For this purpose, we computed the ε = f (η) evolution for
conventional tube expansion directly from the average stress triaxiality η and plotted
the results in Figure 14. The instantaneous stress triaxiality (η) in the conventional tube
expansion is also shown.
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Two interesting results can be drawn. On the one hand, the level of average stress
triaxiality in the conventional process at fracture (η f ≈ 0.47) is very well above the one
obtained in the incremental process (η f ≈ 0.11). As suggested by Martinez-Donaire
et al. [18], this difference, also observed in other incremental forming processes [27],
results in a greater resistance to accumulate damage in the incremental process than in the
conventional one, requiring higher levels of strain to trigger the ductile fracture. On the
other hand, results also show a near coincidence of the instantaneous and the average stress
triaxiality-based evolutions (η ∼= η) in the conventional process. This also makes sense
and is compatible with the widely popular application of McClintock’s ductile damage
criterion [23] to determine the onset of cracking by tension in conventional tube forming
processes [12]. These results confirm the validity of the overall approach for both non-
proportional, cyclic paths of incremental tube expansion and near proportional paths of
conventional tube expansion.

4. Conclusions

The critical in-plane strains and effective strain at fracture of incremental tube expan-
sion are greater than those of conventional tube expansion by rigid tapered conical punches.
However, the conclusion that the gains in formability are due to the fact that strain paths
go beyond the fracture forming limit (FFL) line of the tube material is erroneous because it
does not account for the non-proportional, cyclic nature of the strain paths and because
it ignores the FFL being a material property that is independent of any type of applied
loading.

Finite element modelling of incremental tube expansion considering material strain
hardening and non-proportional, cyclic paths resulting from the real tool trajectory com-
bined with the utilization of appropriate integral forms of stress triaxiality allows under-
standing that the gains in formability result from a shift of the loading paths towards the
left side in the effective strain vs. stress triaxiality space. Moreover, the results also show
that this shift of material flow is of paramount importance to ensure compatibility between
the critical strains at fracture and the threshold admissible values of the material FFL.

The necessity of using effective strain vs. stress triaxiality evolutions based on average
stress triaxiality to ensure compatibility with the FFL in incremental tube expansion is
understandable because the individual locations of the plastically deformed tube surface
oscillate cyclically from shearing to biaxial stretching, as the single point hemispherical
tool approaches, contacts and moves away from these locations during its trajectory.

The fact that average stress triaxiality is not required to handle the formability of
conventional tube expansion is compatible with the match between stress triaxiality and
the integral forms of stress triaxiality (e.g., average stress triaxiality) when material is
subject to near-proportional loading paths. This last conclusion is no less important than
the previous ones because it justifies the successful utilization of McClintock’s fracture
criterion to analyze the onset of fracture by tension in conventional tube forming processes
over the past few decades.
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