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Abstract: In this paper, we report on a few exemplary tests of the applicability of analysis based on the
interconfiguration fluctuation model (ICF) for a description of the temperature dependence of the ther-
moelectric power, S(T). The examples include a series of alloys: CeNi2(Si1−yGey)2, Ce(Ni1−xCux)2Si2,
and the fluctuating valence (FV) compound CeNi4Ga. The two series develop from CeNi2Si2 being
the FV system, where the f states occupation increases progressively with the Ge or Cu substitution.
We find here that the ICF model parameters are of similar magnitude both for the analysis of the
temperature dependence of the magnetic susceptibility and thermoelectric power. The ICF-type
model appears to be a powerful tool for the analysis of S(T) dependences in Ce-based FV compounds
and alloys.
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1. Introduction

In recent years, widespread research has been directed towards waste heat recovery,
i.e., making use of the heat dissipated in the environment. One of the ways is to make
use of the thermoelectric effect. A thermoelectric device has important advantages over
other classical heating/cooling solutions. It has no moving parts, can be integrated with
typical electronic circuits, it provides a possibility of precise local cooling and heating, and
finally, it is environmentally friendly. The main challenge is to improve the efficiency of
thermoelectric devices expressed by the figure of merit ZT = S2σT/κ, where S is the Seebeck
coefficient, σ denotes the electrical conductivity, and κ is the thermal conductivity. ZT can
be increased, for example, by: reducing the lattice thermal conductivity [1], increasing the
charge carrier effective mass (magnetic doping) in systems such as Bi2Te3 [2] or enhancing
spin fluctuations [3]. The Seebeck effect in f -electron systems has been intensively studied
for decades due to the high density of electronic states at the Fermi level, especially for
intermetallics based on lanthanides such as cerium. It stems from the relationship between
the thermoelectric power (TEP) and the density of states, D, namely S ∝ T(∂lnD/∂E)EF

.
However, it is not only the potential applications that drive researchers’ efforts, but

also the need to better understand the mechanisms governing the temperature dependence
S(T). The proposed theories range from advanced approaches such as those based on the
Coqblin-Schrieffer model [4,5] to two-band models [6–9]. Recently, Stockert et al. [10]
proposed a direct relation of thermoelectric power to temperature changes of valence
v(T), without going into the microscopic mechanisms. The thermoelectric power has been
expressed by the approximate equation:

S = Sre f + SVF = aT − b
dv
dT

(1)

where the first term corresponds roughly to a reference material with a stable valence.
Additionally, the overall formula describes the thermoelectric power of a single channel.
We treat a and b as free parameters.

Moreover, as stems from the above discussion, an estimation of S(T) should be possi-
ble if the temperature dependence of valence v(T) is known. Furthermore, it is suspected
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to be the main source of the changes in the number of accessible charge carriers. The
occupation of the f states, 1 − v(T), can be obtained from spectroscopic studies, but most
often it is extracted from the magnetic susceptibility χ(T) analyzed in the framework of
the interconfiguration fluctuation (ICF) model [11,12]. This model assumes that the config-
urations 4f n and 4f n−1 differ in energy by Eex and the rate of fluctuations ωSF is related
to the spin fluctuation temperature TSF = h̄ωSF/kB. In the formulation of the ICF suscepti-
bility, χICF(T), an effective temperature is used either in the form Teff = T + TSF [11,12] or
Teff = (T2 + TSF

2)1/2 [13–15]. Therefore, one finally gets:

χICF(T) =
NAµ2

eff[1 − υ(T)]
3kBTeff

(2)

where NA is the Avogadro’s number, the effective paramagnetic moment for cerium is
µeff = 2.54 µB, kB is the Boltzmann constant, and the mean occupation of the ground
(nonmagnetic) state, ν(T), is expressed by:

ν(T) =
1

1 + 6exp[−Eex/Teff]
(3)

with Eex in units of temperature. Finally, Equation (1) can be rewritten as:

S = Sre f + SVF = aT − b
−6TEexexp[−Eex/Teff]

(1 + 6exp[−Eex/Teff])
2T3/2

eff

(4)

for the case of Teff = (T2 + TSF
2)1/2, and

S = Sre f + SVF = aT − b
−6Eexexp[−Eex/Teff]

(1 + 6exp[−Eex/Teff])
2T2

eff

(5)

for the case of Teff = T + TSF.
The model of Stockert et al. [10] for the description of the temperature dependence of

the thermoelectric power, S(T), has been proposed and verified for the example of Eu-based
compounds, namely EuNi2P2 and EuIr2Si2. They related S(T) to the temperature dependent
Eu valence via Equation (1). One can expect that it should work for many other systems
with fluctuating valence (FV). In the present paper, we use a similar approach for the
exemplary Ce-based compounds characterized by the well-established FV state. However,
in each case, we assume that the temperature dependent Ce valence is well-represented
by the ICF model. In the Results section, the applicability of Equation (5) will be tested
for some Ce-based compounds, for which we have previously observed the presence of
the fluctuating valence. The aim of the present study is to verify if the ICF-type model
of the thermoelectric power provides reliable values of fit parameters and, in respect to
magnetic susceptibility, it can be applied as an alternative characteristic of the FV state.
Furthermore, the effectiveness of the current model can make it complementary to the
two-band models [6–9].

2. Materials and Methods

The discussed exemplary compositions were studied and described in our previous
papers [16–21], where the details concerning the synthesis of the polycrystalline samples
by arc-melting and the measurements of the thermoelectric power can be found. The
main point of the current study is to show how the novel model of S(T) works for these
exemplary compounds. To carry out the new analysis of the previous data, we implemented
Formulas (4) and (5) into the program OriginPro 8 SR0, v8.0725, (OriginLab Corporation,
Northampton, MA, USA).
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3. Results

In the following subsections, Equation (5) will be used for the analysis of the tem-
perature dependence of the thermoelectric power, which we measured previously for
some Ce-based compounds. The choice of the tested compounds and alloys stems from
our previous extended studies, which confirmed the fluctuating valence state for these
compositions.

3.1. CeNi2(Si1−yGey)2

CeNi2Si2 is a fluctuating valence (FV) system [6,16,22], whereas CeNi2Ge2 is a heavy
fermion (HF) compound with the Kondo temperature of about 30 K [16,23–26]. We have
recently investigated the physical properties for compositions in the transition range
between the terminal compounds, i.e., for the alloys CeNi2(Si1−yGey)2. We have shown
that for a small amount of Ge, especially y ≤ 0.25, the fluctuating valence implies large
values of the Kondo temperature. Additionally, the temperature dependence of TEP can be
well described by the single-ion Kondo model [16]. However, the analysis of the magnetic
susceptibility using the ICF model has shown that the change of valence with temperature
is still meaningful even for y up to 0.63 [16]. Therefore, the CeNi2(Si1−yGey)2 series is
a good candidate to test the range of applicability of the Stockert model. Figure 1 shows
magnetic susceptibility for y equal to 0.13 and 0.63 and fitted using the ICF model as we
have already presented in Ref. [16]. Moreover, it is shown that a similar behavior can be
expected for y = 0.25 and 0.75. The obtained values of the parameters are listed in Table 1
in brackets, which include the results obtained with the assumption of Teff = (T2 + TSF

2)1/2.
Figure 2 presents a refinement of the thermoelectric power dependence on temperature,
S(T), using Equation (5). It is evident that similar to the case of the magnetic susceptibility,
a good fit is obtained for y up to 0.63 and the effectiveness of the model starts to drop for
y = 0.88. From the results in Table 1, the values of TSF decrease with the increasing Ge
content, which very well reflects the expected damping of the valence fluctuations.
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Figure 1. Magnetic susceptibility of CeNi2(Si1−yGey)2. The ICF model is applied for y = 0.13 and
0.63 (measured up to 1000 K), Equation (2).
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Figure 2. Thermoelectric power as a function of temperature fitted with Equation (5). (a) y = 0.0,
(b) y = 0.13, (c) y = 0.63, (d) y = 0.88. The obtained values of the parameters are gathered in Table 1.
S(T) measurements were described in Ref. [16].

Table 1. Spin fluctuation temperature TSF and interconfigurational excitation energy Eex for thermo-
electric power of CeNi2(Si1−yGey)2 analyzed by Equation (5) (with Teff = T + TSF).

y (Ge) TSF (K) Eex (K)

0.0 242 2455
0.13 259 (265 a, 310 b) 2094 (1196 a, 960 b)
0.63 96 (209 a, 154 b) 768 (465 a, 399 b)
0.88 68 569

a TEP parameters derived from Equation (4) assuming Teff = (T2 + TSF
2)1/2. b Parameters derived

from the analysis of the magnetic susceptibility by the ICF model assuming Teff = (T2 + TSF
2)1/2, data

from [16].

To plot the occupancy of the f states as a function of temperature, we assume following
Refs. [27–30], that the highest possible contribution of the Ce 4f 0 state is 0.30. Therefore,
(1 − 0.3v(T)) is presented in Figure 3. For comparison, the f occupancy, which we have
previously obtained at RT from the analysis of the Ce 3d XPS spectrum [16] with the
procedure proposed by Gunnarsson-Schönhammer-Fuggle [31,32], is about 0.8 for y = 0.
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Figure 3. Occupancy of the f states as a function of temperature derived from the thermoelectric
power S(T) for CeNi2(Si1−yGey)2.
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3.2. Ce(Ni1−xCux)2Si2
The next example concerns the Ce(Ni1−xCux)2Si2 series of alloys. This time, the va-

lence state is modified by the substitution on the site of the 3d element. For example, the
fluctuation of valence in CeNi2Si2 is progressively suppressed by the Cu substitution for
Ni, where the terminal CeCu2Si2 compound is a heavy fermion system with TK ~ 10 K [17].
The crystal structure is tetragonal of the ThCr2Si2-type for the entire range of x. Figure 4
shows the temperature dependence of the thermoelectric power fitted with Equation (5)
for the Cu content x equal to 0.25 and 0.88. The spin fluctuation temperature TSF and
the interconfigurational excitation energy Eex take the values 168 and 1450 K for the for-
mer and 82 and 769 K for the latter, respectively. However, our previous analysis of
the magnetic susceptibility with the ICF model [17] for x = 0.25 was carried out for the
case of Teff = (T2 + TSF

2)1/2 and provided TSF = 205 K and Eex = 766 K. It corresponds to
Equation (4) for the TEP, which provides comparable values of TSF = 258 K and Eex = 1097 K.
Figure 5 illustrates the temperature dependences of the f occupancy determined by
Equation (5).
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Figure 4. Thermoelectric power of Ce(Ni1−xCux)2Si2 as a function of temperature fitted with Equa-
tion (5). (a) x = 0.25 and (b) x = 0.88. See the text for the values of the parameters.
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Figure 5. Occupancy of the f states as a function of temperature derived from the thermoelectric
power S(T) for Ce(Ni1−xCux)2Si2.
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3.3. CeNi4Ga

CeNi4Ga crystallizes in the hexagonal CaCu5-type structure, with space group
P6/mmm. We classified this compound as being in the fluctuating valence (FV) state [18–20],
with the occupancy of the f states nf = 0.76 and the hybridization of the f states with the
conduction electrons ∆ = 68 meV. The temperature dependence of TEP for CeNi4Ga is
negative in the whole temperature range studied [18], which results from the partly un-
filled Ni 3d states and the reduced contribution of the Ce f states at the Fermi level. These
characteristics of CeNi4Ga make it the next suitable candidate for testing the effectiveness
of the TEP model based on the temperature dependence of the valence. The analysis with
Equation (5) provides the red solid line shown in Figure 6 and the obtained values of
the parameters are TSF = 97 K and Eex = 1203 K. Again, it is interesting to compare the
resulting occupancy of the f state with estimates by other methods. On the right-hand axis
of Figure 6, the temperature dependence of the f occupancy is plotted in a similar manner
as for the previous exemplary compounds. The value at 300 K is equal to 0.75, which is in
perfect agreement with the value nf = 0.76, which we have obtained by the analysis of the
RT Ce 3d XPS spectrum [21].
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4. Discussion and Summary

Most of the models of the thermoelectric power in intermetallics, based on anoma-
lous lanthanides such as Ce or Yb, refer to magnitudes such as density of states at the
Fermi level, electronic band structure, and other quantities, which, in fact, include indi-
rectly the inherent property of these systems—the non-integer valence state. Therefore,
the application of the model, making direct use of the temperature dependence of the f
states occupancy, seems fully justified. The presented examples corroborate the effective-
ness of the approximation proposed by Stockert et al. [10]. We have shown that the ICF
parameters, previously derived from the temperature dependence of magnetic susceptibil-
ity, are comparable with the results obtained in the present paper from the temperature
dependence of thermoelectric power. Nevertheless, some differences in the parameters
values are obviously apparent, thus a question arises: Which experimental method is more
reliable? It should be remembered that the magnetic susceptibility is very sensitive to even
a small amount of magnetic impurities, which are often difficult for quantitative extraction.
Therefore, the data obtained from the analysis of S(T) may be more resistant to such effects.

In summary, we gain a unique opportunity to realize a combined analysis of the
magnetic susceptibility and thermoelectric power for fluctuating valence systems. En-
hancements of the Seebeck parameter, possibly related to the unstable valence have been
experimentally reported also for many compounds containing Yb (i.e., [33,34]). Therefore,
the discussed model can also be effective for Yb-based systems. Furthermore, the valence
state may provide an important contribution to the thermoelectric power in some Sm-based
compounds [35].
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9. Toliński, T. Crystal electric field contribution to the thermoelectric power of the CeCoAl4 antiferromagnetic. Int. J. Mod. Phys. B

2018, 32, 1850347. [CrossRef]
10. Stockert, U.; Seiro, S.; Caroca-Canales, N.; Hassinger, E.; Geibel, C. Valence effect on the thermopower of Eu systems. Phys. Rev. B

2020, 101, 235106. [CrossRef]
11. Hirst, L.L. Theory of Magnetic Impurities in Metals. Phys. Kondens. Mater. 1970, 11, 255–278. [CrossRef]
12. Sales, B.C.; Wohlleben, D.K. Susceptibility of Interconfiguration-Fluctuation Compounds. Phys. Rev. Lett. 1975, 35, 1240–1244.

[CrossRef]
13. Franz, W.; Steglich, F.; Zell, W.; Wohlleben, D.; Pobell, F. Intermediate Valence on Dilute Europium Ions. Phys. Rev. Lett. 1980, 45,

64–67. [CrossRef]
14. Mazumdar, C.; Nagarajan, R.; Dhar, S.K.; Gupta, L.C.; Vijayaraghavan, R.; Padalia, B.D. Ce2Ni3Si5: A mixed-valence cerium

compound. Phys. Rev. B 1992, 46, 9009–9012. [CrossRef]
15. Layek, S.; Anand, V.K.; Hossain, Z. Valence fluctuation in Ce2Co3Ge5 and crystal field effect in Pr2Co3Ge5. J. Magn. Magn. Mater.

2009, 321, 3447–3452. [CrossRef]
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18. Toliński, T.; Zlatić, V.; Kowalczyk, A. Thermoelectric power in CeT4M (T = Cu, Ni; M = In, Ga) compounds. J. Alloys Compd. 2010,
490, 15–18. [CrossRef]
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