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Abstract: An efficient nondestructive testing method of resistance spot weld quality is essential
in evaluating the weld quality of all welded joints in the automotive components of a car body
production line. This study proposes a quality prediction algorithm for resistance spot welding
that can predict the geometrical and physical properties of a spot-welded joint and evaluate weld
quality based on quality acceptance criteria. To this end, four statistical models that predict the main
geometrical and physical properties of a spot-welded joint, including tensile shear strength, indenta-
tion depth, expulsion occurrence, and failure mode, were estimated based on material information,
dynamic resistance, and electrode displacement signals. The significance of the estimated models was
then verified through an analysis of variance. The prediction accuracies of the models were 94.3%,
93.4%, 97.5%, and 85.0% for the tensile shear strength, indentation depth, expulsion occurrence, and
failure modes, respectively. A weld quality evaluation methodology that can predict the properties
of a spot-welded joint and evaluate the overall quality requirements based on authorized welding
standards was proposed using the four statistical models.

Keywords: dynamic resistance; electrode displacement; logistic regression model; polynomial
regression model; resistance spot welding; welding quality prediction

1. Introduction

Resistance spot welding is the main joining method used in the assembly of automobile
parts. This technique has the advantage of high productivity compared to other welding
processes. As the welded parts used in car bodies directly affect the stiffness and collision
safety of the vehicles, it is important to improve the quality and maintain the uniformity
of the weld. The tensile shear strength, indentation depth, expulsion occurrence, and
failure mode are properties of a welded joint that affect the quality of welded parts [1–4].
Therefore, a quality inspection of these properties should be performed after the resistance
spot welding process. The quality requirements of a welded joint are evaluated either using
non-destructive testing (NDT) or destructive testing (DT). NDT is generally performed
through visual inspection and ultrasonic inspection of assembly lines [5–7]. These NDT
methods require an additional inspection process because they involve direct measurement
or inspection by an operator. This leads to reduced productivity and requires a considerable
amount of time. Quality inspection metrics such as the strength and failure mode of the
weld can be evaluated using the DT method [8]. However, DT quality inspection of finished
products is not possible because the DT method must be carried out by destroying the
finished products. Therefore, technological development is required to address these
problems. Currently, quality inspection is performed using an NDT method, such as the
analysis of the welding signal measured during the welding process. Although the NDT
method based on dynamic resistance, power, current, voltage, and image data has been
developed and applied, it is not widely applied in the field because there is a limit to its
accuracy and therefore its ability to meet the requirements [5]. In addition, because most
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of the previous research on the NDT method has focused on inspecting only one or two
weld quality metrics, a method that can predict the overall weld quality metrics, including
tensile shear strength, indentation depth, expulsion occurrence, and failure mode, is an
improvement.

For the development of weld quality prediction technology, research on quality pre-
diction and inspection using electrode displacement of resistance spot welding, dynamic
resistance signal, acoustic emission, etc., is being actively conducted. Zhang et al. [9] pre-
dicted the tensile shear strength of a spot-welded joint of a mild steel plate with a multiple
linear regression model that used parameters extracted from electrode displacement curves
with a DA-5 DC transformer displacement transducer to measure the electrode displace-
ment. Yu [10,11] conducted research on a technology that can monitor the weld process and
quality of resistance spot welding of automotive steel sheets, including SGACEN, DP980,
and CP1180, based on a welding power signal. Hwang et al. [12] carried out research on
the prediction of the resistance spot weld quality of a DP780 steel sheet using an adaptive
resonance theory artificial neural network. Zhang et al. [13] developed a method to obtain
a continuous dynamic reactance signal and conducted a study to predict the tensile shear
strength and nugget diameter of a spot-welded joint of an uncoated low-carbon steel
sheet by using a radial basis function (RBF) neural network utilizing such a signal. Xia
et al. [14] reported a method to quantitatively measure the amount of expulsion occurrence
and conducted a study to predict it, using the electrode force and displacement during
resistance spot welding of BUSD, BLD, St37-2G, and DP590 steel sheets. Choi et al. [15]
conducted a study to predict the tensile shear strength, nugget diameter, and failure mode
of a spot-welded joint of 980 MPa grade cold-rolled steel sheets by using a convolutional
neural network (CNN) processing heat trace images of the surface appearance of welds.
Dejans et al. [16] conducted a study to observe the nugget growth and predict the nugget
size of low-carbon steel sheets by monitoring the acoustic emission during resistance
spot welding. Kim et al. [17] predicted the indentation depth of a spot-welded joint of
SPFC590, SPFC780Y, and SPFC980Y steel sheets based on a regression model using an
electrode displacement signal. Although predictive research on each quality metric is being
actively conducted, research encompassing all quality metrics, that is, geometrical and
physical properties of a spot-welded joint, such as tensile shear strength, indentation depth,
expulsion occurrence, and failure mode, is insufficient.

A quality prediction algorithm for the resistance spot welding process that can predict
the geometrical and physical properties of a spot-welded joint and evaluate weld quality
in accordance with quality acceptance criteria is proposed in this study. For this purpose,
four statistical models that predict the main geometrical and physical properties of a
spot-welded joint, including the four mentioned above, were estimated based on material
information, dynamic resistance, and electrode displacement signals. The significance of the
estimated models was verified using an analysis of variance. The prediction accuracies of
the models were 94.3%, 93.4%, 97.5%, and 85.0% for the tensile shear strength, indentation
depth, expulsion occurrence, and failure modes, respectively. A weld quality evaluation
methodology that can predict the properties of a spot-weld joint and judge the overall
quality requirements in accordance with authorized welding standards was proposed
using the four statistical models.

2. Experiments
2.1. Materials

In this study, 590, 780, and 980 MPa grade uncoated steel sheets and 980 MPa grade
galvanized (GI) steel sheets and galvannealed (GA) steel sheets were used. Table 1 presents
the material grade, thickness, tensile strength, and yield strength of the test materials. The
test coupon was prepared to a size of 100 mm × 30 mm, and the tensile shear test specimen
was welded with it with an overlap of 30 mm. A Cu-Cr dome-type electrode (cap tip) with
a tip diameter of 6 mm and a tip radius of 40 mm was used, and the upper and lower cap
tips were conditioned by making 50 welds prior to the experiment.
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Table 1. Mechanical properties of materials.

Material Grade Thickness (mm) Tensile Strength (MPa) Yield Strength (MPa)

SPFC590 1.2 600 512
SPFC780Y 1.2 807 519
SPFC980Y 1.2 1002 712
SPFC980Y 1.4 1002 712
SPFC980Y 1.6 1002 712
SPFC590 1.0 600 512

SGFC980Y 1.2 1000 708
SGAFC980Y 1.2 1005 715

2.2. Experimental Setup

The experiments were carried out with a medium frequency direct current (MFDC)
resistance spot welding machine, which has a control frequency of 1.0 kHz and a maximum
current of 20.0 kA. The welding gun used in the experiments can be set up with a maximum
load of 6.0 kN. The equipment used in the resistance spot welding experiment is shown
in Figure 1. A Rogowski coil was used to measure the welding current, and the welding
voltage was measured using the NI9229 (NATIONAL INSTRUMENTS Corp., Austin, TX,
USA) voltage measurement module of National Instruments. Electrode displacement was
measured using a linear variable displacement transducer (LVDT). Figure 1b shows the
system through which the welding process signal (electrode displacement, current, and
voltage) was received by the computer during the welding process. The LVDT used to
measure the electrode displacement performs a pneumatic-type displacement measurement
up to 10 mm, and the FP50L (MARPOSS GmbH, Hannover, Germany) product with an
error of 2–35 µm depending on the height of the sensor was used. The welding current can
be measured from 0–15,000 A, and the welding voltage can be measured from −60 to 60 V.
The inverter control frequency of the MFDC inverter RSW machine used in the experiment
was 1.0 kHz, and pulse width modulation (PWM) control was performed once every half
cycle (0.5 ms). Since the welding signal was measured at a sampling rate of 50 kHz, current,
voltage, and dynamic resistance were calculated using 25 data per 0.5 ms from raw data of
current and voltage. As welding was performed in constant current control (CCC) mode,
the average value algorithm was used to calculate welding current and voltage using
25 current and voltage data per 0.5 ms [18]. The dynamic resistance was calculated by
dividing the average voltage by the average current every 0.5 ms, as shown in Equation (1).

R =
V
I

(1)

The electrode displacement was also measured at the same sampling rate as the
electrical signal and calculated at the same frequency period to synchronize with the
current and voltage signals. The waveforms of the measured electrode displacement and
the dynamic resistance signals are shown in Figure 2.
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Figure 2. Waveforms of electrode displacement and dynamic resistance during welding process.

2.3. Experimental Procedure

Experiments were conducted according to changes in the welding current and welding
time, which are the main process parameters for resistance spot welding. The experimental
conditions are listed in Table 2. Expulsion occurrence was investigated through visual
inspection by operators or cross-sectional observation of welds. The indentation depth
of the welds was measured using a micrometer as the difference between the base metal
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thickness and the thickness at the center of the welded joint. The tensile shear strength was
measured using a universal testing machine with a maximum load of 5000 kg at a tensile
test speed of 10 mm/min. After the tensile test, the failure mode of the welded joint was
visually checked by the operators. Figure 3 shows the measured electrical signals, stress–
strain curve obtained from a tensile test, indentation depth measurement, cross-sectional
image of a spot-welded joint, and failure modes after the tensile shear test.

Table 2. Welding conditions.

Item Condition

Welding machine Medium-frequency direct current welding machine

Electrode force
(kN) 2.94

Welding current
(kA) 4.0, 5.0, 6.0, 7.0, 8.0

Welding time
(ms) 250, 333, 417

Hold time
(ms) 167
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2.4. Regression Model
2.4.1. Polynomial Regression Model

Regression analysis is a statistical method that describes the functional relationship
between a dependent variable and one or more independent variables. In linear regression
analysis, a mathematical relationship between a continuous dependent variable and an
independent variable is usually derived by assuming that the relationship is linear. How-
ever, if the relationship between the dependent variable and the independent variable is
not linear, a large error will occur if a linear regression model is used. In addition, because
effect modification, where the effect of one variable is changed by another variable, must
be considered in the linear regression model, the polynomial regression model was used to
estimate the predictive model of the continuous variables, that is, tensile shear strength
and indentation depth. The polynomial regression model can be expressed as

yi = β0 + β1xi + β2x2
i + β3x3

i + · · ·+ βkxm
i + ei, for i = 1, 2, . . . , n (2)

where m is the degree of the polynomial, which is also considered the degree of the
regression model [19].

2.4.2. Logistic Regression Model

When the dependent variable is a categorical variable, linear regression analysis
cannot be applied to deal with discontinuous variables, such as success/failure and
good/defective. Logistic regression analysis is a generalized linear regression model
used to predict functional relationships between variables by using a discrete dependent
variable and one or more independent variables. In this study, a logistic regression model
was used to estimate the predictive model of expulsion occurrence and failure mode, which
are categorical variables. The logistic regression model can be expressed as

logit(Y) = naturallog(odds)ln
(

π

1− π

)
= α + βX (3)

Taking the antilog of Equation (3) on both sides, we derive an equation to predict the
probability of occurrence of the outcome of interest as follows:

π = Probability(Y = outcome o f interest |X = x, a speci f ic value o f X) =
eα+βx

1 + eα+βx (4)

where π is the probability of the outcome of interest or “event”, α is the Y intercept, β is
the regression coefficient, and e = 2.71828 is the base of the system of natural log. X can be
categorical or continuous, but the dependent variable is always categorical [20].

3. Results and Discussion
3.1. Independent Variables for Regression Models

Figure 4 shows the feature points selected from the electrode displacement and dy-
namic resistance waveforms for the development of the welding quality prediction models.
Three feature points A, B, and C were selected from the electrode displacement waveform,
as shown in Figure 4a to express the electrode displacement characteristics based on the
electrode force, thermal expansion, and cooling of the weld. To express the characteristics
of the dynamic resistance waveform, the average resistance, area under the dynamic resis-
tance waveform, and feature point D were selected, as shown in Figure 4b. Feature point
A is the maximum point of the LVDT electrode displacement waveform, feature point B
is the displacement point when the welding current is terminated, and feature point C
is the displacement point when the holding time ends. It is observed that the electrode
displacement rapidly grows to feature point A due to the expansion of the nugget in the
initial stage of welding and reaches the maximum displacement value. Figure 5 shows the
electrode displacement and dynamic resistance waveforms according to the welding time,
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and the nugget diameter and indentation depth at welding times 1 to 6 are shown with
cross section images. After the beta peak of dynamic resistance, the workpiece stack-up
is softened by melting. The area of the molten portion widens, and the displacement
gradually decreases to feature point B, which is the welding end point [8,21]. After point B,
a sharp decrease in displacement is observed until feature point C, at which the hold time
ends due to the cooling and pressurization of the welded part. Point D in the dynamic
resistance waveform represents the value of the dynamic resistance corresponding to point
B, the end time of welding. Point D has a high correlation with the average value of the
dynamic resistance and the area under the dynamic resistance waveform, which are also
significant features for predicting weld quality [22,23].
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Table 3 lists the 11 independent variables used to estimate the weld quality models.
The independent variables include those representing both the material information and
feature points, as shown in Figure 4. The presence or absence of coating, the thickness of
the material, and the tensile strength of the test material, are basic data about the material
and are denoted as x1, x2, and x3. The five independent variables, x4~x8, describe the
feature points shown in Figure 4a. The displacement value and time corresponding to
point A are denoted as x4 and x7, respectively, and those corresponding to point B are
denoted as x5 and x8, respectively. The displacement value at point C is denoted as x6, and
the time corresponding to point C is excluded from the independent variables because the
hold time is fixed at 167 ms. The three independent variables, x9~x11, describe the feature
points shown in Figure 4b. The average of the dynamic resistance waveform is represented
by x9, the area by x10, and the dynamic resistance value at point D by x11.
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Table 3. Definition of independent variables.

Independent
Variable Definition Independent

Variable Definition Independent
Variable Definition

x1 Coating x2 Thickness x3
Tensile strength of

test materials
x4 Displacement at A x5 Displacement at B x6 Displacement at C

x7 Welding time at A x8 Welding time at B x9
Average of

dynamic resistance

x10

Area of dynamic
resistance
waveform

x11
Dynamic

resistance at D - -

3.2. Correlation Analysis

Table 4 presents the results of the correlation analysis between the four dependent vari-
ables (expulsion occurrence, failure mode, indentation depth, and tensile shear strength)
and 11 independent variables (x1~x11). As a small value of the correlation coefficient
indicates that the relationship between the two variables is not significant, independent
variables with a small correlation coefficient were excluded from estimating the model. For
the first case, which is the prediction model for expulsion occurrence, x1, x2 and x3 had
small correlation coefficients and the other independent variables had relatively large corre-
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lation coefficients. This may be because the waveforms of both the electrode displacement
and dynamic resistance signals rapidly decrease with the occurrence of expulsion [14].
Therefore, expulsion occurrence can be predicted using the independent variables that
represent the electrode displacement and dynamic resistance waveforms. For the second
case, which is the prediction model for the failure mode, x2, x3, x4, x6, x7, x9, x10, and
x11 had relatively large correlation coefficients. For the third case, which is the prediction
model for the indentation depth, x5, x6, x7, x9, x10, and x11 had relatively large correlation
coefficients. In particular, the indentation depth showed the highest correlation with x6,
indicating the electrode displacement at the end of pressurization by the electrode force,
because x6 indicates the amount of compression of the test materials [20]. The result of
this analysis shows that the material properties of the test steel sheets do not significantly
affect the indentation depth. For the last case, which is the prediction model for the tensile
strength, x2, x3, x4, x6, x7, x9, x10, and x11 had relatively large correlation coefficients.
Because the tensile shear strength of the weld is affected by the thickness and strength
of the material, a high correlation is shown in x2 and x3. As x4 and x6 increase with the
increasing welding current while x7 decreases, they greatly affect the tensile shear strength
of the weld [24].

Table 4. Result of correlation analysis.

Response
Variable (↓) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Expulsion
occurrence −0.045 0.039 0.019 0.196 −0.622 0.783 −0.456 0.009 −0.549 −0.385 −0.524

Failure
mode −0.100 −0.266 −0.332 0.249 −0.137 0.285 −0.367 0.071 −0.573 −0.357 −0.548

Indentation
depth 0.249 −0.048 0.092 0.172 −0.760 0.922 −0.494 0.097 −0.793 −0.486 −0.748

Tensile
shear

strength
0.148 0.299 0.423 0.463 −0.131 0.487 −0.404 0.047 −0.631 −0.410 −0.575

3.3. Estimation of Prediction Models
3.3.1. Prediction Model for Expulsion Occurrence

A logistic regression model was used to estimate the prediction model for expulsion
occurrence. The expulsion occurrence prediction model is given by Equation (5). E is
the probability of an expulsion occurrence. For the dependent variable, the case wherein
expulsion occurred was set to 1, and the case wherein expulsion did not occur was set to 0.
The independent variables that were insignificant in the correlation analysis were removed,
and the remaining variables (x4–x11) were used for the prediction model. The relationship
between the independent variables and the dependent variable was estimated using the
backward elimination stepwise regression method. The results of the model estimation
and coefficient analyses are presented in Table 5. The Hosmer–Lemeshow goodness-of-fit
test of the model yielded a result of 0.167, implying that the estimated model is suitable
for predicting expulsion occurrence. As a result of the coefficient analysis in Table 5, all p
values were less than 0.05, indicating that the estimated model could significantly explain
the expulsion occurrence.

E =
eX

1 + eX , X = −13.54 + 0.0.618x50.0911x6 − 0.0317x7 (5)



Metals 2021, 11, 1459 10 of 16

Table 5. Coefficient analysis of expulsion occurrence prediction model.

Term SE Coefficient p Value VIF

Constant 3.150 0.000 -
x5 0.0170 0.000 15.14
x6 0.0191 0.000 15.21
x7 0.0120 0.006 1.06

3.3.2. Prediction Model for Failure Mode

The prediction model for the failure mode was also estimated using a logistic re-
gression model. The failure mode prediction model is shown in Equation (6). F is the
probability of the failure mode. As for the dependent variable, the case wherein button
failure occurred was set to 1, and the case wherein interfacial failure occurred was set to 0.
The independent variables that were insignificant in the correlation analysis were removed,
and the remaining variables (x2„ x6, x7 x9, x10, x11) were used for the prediction model.
The prediction model was also estimated using the backward elimination stepwise regres-
sion method. The results of the model estimation and coefficient analyses are presented in
Table 6. The Hosmer–Lemeshow goodness-of-fit test of the model yielded a result of 0.178,
indicating the suitability of the estimated model for the failure mode prediction. As all the
p values were less than 0.05, the estimated model could significantly explain the failure
mode.

F =
eX

1 + eX , X = 15.22− 0.00532x5 − 27.30x6 (6)

Table 6. Coefficient analysis of failure mode prediction model.

Term SE Coefficient p Value VIF

Constant 2.050 0.000 -

x5 0.001 0.000 1.11

x6 3.880 0.000 1.11

3.3.3. Prediction Model for Indentation Depth

A polynomial regression model was used to estimate the prediction model for inden-
tation depth. The indentation depth prediction model is given by Equation (7). I represents
the predicted value of the indentation depth. The dependent variable (indentation depth)
was set as a continuous value. The independent variables that were not significant in
the correlation analysis were removed and the remaining variables (x5, x6, x7, x9, x10, x11)
were used for the prediction model. The prediction model was also estimated using the
backward elimination stepwise regression method. Table 7 presents the results of the
analysis of variance (ANOVA). The coefficient of determination (R2) for the estimated
model was 93%. The p value of the model was 0.000, indicating that the dependent variable
(indentation depth) could be significantly explained by the model.

I = −245 + 5.170x5 + 5.833x6 + 0.696x7 + 1257.000x9 + 0.081x10 − 1214.000x11−
0.008x5

2 − 0.008x6
2 − 0.017x5·x6 − 0.005x5·x7 − 5.170x5·x11 − 0.004x6·x7 − 5.486x6·x9+

69.000x9
2 − 6.070x9·x10 + 7.180x10·x11

(7)
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Table 7. ANOVA of indentation depth prediction model.

Term p Value

constant 0.015
x5 0.000
x6 0.000
x7 0.001
x9 0.004
x10 0.759
x11 0.006
x5

2 0.000
x6

2 0.000
x5·x6 0.000
x5·x7 0.001
x5·x11 0.000
x6·x7 0.003
x6·x9 0.000
x9·x10 0.006
x10·x11 0.004

3.3.4. Prediction Model for Tensile Shear Strength

The prediction model for the tensile shear strength was also estimated using the
backward elimination method of the polynomial regression model. The tensile shear
strength prediction model is given by Equation (8). T represents the predicted value of
tensile shear strength. The independent variables that were insignificant in the correlation
analysis were removed and the remaining variables (x2, x3, x4, x6, x7, x8, x9, x10, x11) were
used for the prediction model. Table 8 presents the ANOVA results. The coefficient of
determination (R2) of the estimated model was 96.06%. The p value of the model was 0.000,
indicating that the estimated model could significantly explain the dependent variable
(tensile shear strength).

T = −44.39 + 242.670x2 − 0.229x3 − 0.007x4 − 0.054x6 − 0.021x7 − 14.100x9 + 0.007x10
−5.660x11 − 143.910x2

2 − 0.0002x4
2 − 0.0004x6

2 + 69.000x9
2 + 0.211x2

·x3 − 0.047x2·x6 − 95.400x2·x9 − 0.00004x3·x7 − 0.035x3·x11 + 0.192x4
·x9 + 0.258x6·x9 + 0.089x6·x11 − 0.0001x7·x10 + 0.217x7·x11

(8)

3.4. Weld Quality Prediction Using Prediction Models

After performing 80 new welds, 80 input variable data were obtained. Tables 9 and 10,
Figure 6a,b show the results of applying each input data to the prediction model obtained in
Section 3.3. The prediction results for the expulsion occurrence, failure mode, indentation
depth and tensile shear strength were 97.5%, 85.0%, 91.9%, and 94%, respectively. In
the expulsion occurrence prediction result, condition positive means that expulsion did
not occur and condition negative means that expulsion occurred. In addition, in the
failure mode prediction result, the condition positive is interfacial failure and the condition
negative is button failure. In both graphs in Figure 5, the x-axis represents the predicted
value and the y-axis represents the actual value.
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Table 8. ANOVA of tensile shear strength prediction model.

Term p Value

constant 0.000

x2 0.000

x3 0.000

x4 0.851

x6 0.004

x7 0.393

x9 0.456

x10 0.183

x11 0.515

x2
2 0.000

x4
2 0.076

x6
2 0.001

x9
2 0.000

x2·x3 0.000

x2·x6 0.000

x2·x9 0.000

x3·x7 0.045

x3·x11 0.003

x4·x9 0.000

x6·x9 0.000

x6·x11 0.065

x7·x10 0.002

x7·x11 0.000

Table 9. Confusion matrix of expulsion occurrence prediction result.

Actual Class
Positive Negative

Predicted Class

Positive 18 0

Negative 2 60

Table 10. Confusion matrix of failure mode prediction result.

Actual Class
Positive Negative

Predicted Class

Positive 18 2

Negative 10 50
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3.5. Weld Quality Evaluation Algorithm

A prediction algorithm for weld quality was developed based on multiple models,
namely, the four regression models for quality prediction discussed in Section 3.3. The
weld quality was evaluated based on the weld quality specifications, including the welding
quality standards [25,26]. Table 11 presents the weld quality criteria used in this study.
Figure 7 illustrates a schematic of the weld quality prediction algorithm based on multiple
models. This algorithm begins by measuring the welding signals, welding voltage, current,
and electrode displacement. Next, the measured signals are processed, and the processed
signals, that is, the features in Table 3, are passed on to each of the four models as the input
to the model. Each quality prediction model calculates the predicted value of each quality
metric, and the predicted value is sent to the quality evaluation part, as depicted in Figure 7.
Finally, the quality evaluation part uses the four predicted values to determine the overall
weld quality based on the quality criterion in Table 11. In addition, the quality prediction
results of the individual quality metrics were managed, enabling detailed quality control
as well as overall quality.

Table 11. Weld quality criterion according to quality metric.

Quality Metric Criterion

Expulsion (ISO 18595) No expulsion

Failure mode (ISO 18595) Button failure

Indentation depth (AWS D8.1M) Indentation should be less than 30% of the thickness of each outside sheet of the
welded joint

Tensile shear strength
(AWS D8.1M)

Material
grade Thickness (mm) Tensile strength

(MPa)
Criterion

(kN)

SPFC590 1.2 600 5.7

SPFC780Y 1.2 807 7.4

SPFC980Y 1.2 1002 8.8

SPFC980Y 1.4 1002 11.1

SPFC980Y 1.6 1002 13.5

SPFC590 1.0 600 4.3

SGFC980Y 1.2 1000 8.8

SGAFC980Y 1.2 1005 8.8
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4. Conclusions

In this study, a weld quality prediction model was estimated using a polynomial
regression model and logistic regression model based on the parameters of the material
information and welding process signal (electrode displacement and dynamic resistance)
information. The results of this study can be summarized as follows:

(1) Features were extracted from the material information, electrode displacement
waveform, and dynamic resistance waveform as inputs to the weld quality prediction mod-
els for expulsion occurrence, failure mode, indentation depth, and tensile shear strength.
The effects of the features on the outputs of the models were analyzed using a correlation
analysis.

(2) The models were estimated through backward elimination using polynomial
regression models and logistic regression models, and the prediction accuracies of the
models were 94.3%, 93.4%, 97.5%, and 85.0% for the tensile shear strength, indentation
depth, expulsion, and failure mode, respectively.

(3) An algorithm for predicting the overall weld quality was developed based on
multiple models and weld quality standards.

The results of this study contribute to the knowledge of automation techniques of
weld quality inspection. The study findings are expected to be particularly beneficial in
the automobile industry because they indicate the feasibility of automatic prediction of the
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quality of resistance spot welding for tensile shear strength, depth indentation, expulsion
occurrence, and failure modes. In the future, we intend to further improve the models
by building a database for various materials, thicknesses, and coatings, and by applying
machine learning algorithms such as deep neural networks and CNNs.
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