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Abstract: The increasing availability of data, which becomes a continually increasing trend in
multiple fields of application, has given machine learning approaches a renewed interest in recent
years. Accordingly, manufacturing processes and sheet metal forming follow such directions, having
in mind the efficiency and control of the many parameters involved, in processing and material
characterization. In this article, two applications are considered to explore the capability of machine
learning modeling through shallow artificial neural networks (ANN). One consists of developing an
ANN to identify the constitutive model parameters of a material using the force–displacement curves
obtained with a standard bending test. The second one concentrates on the springback problem in
sheet metal press-brake air bending, with the objective of predicting the punch displacement required
to attain a desired bending angle, including additional information of the springback angle. The
required data for designing the ANN solutions are collected from numerical simulation using finite
element methodology (FEM), which in turn was validated by experiments.

Keywords: artificial neural networks (ANN); machine learning (ML); press-brake bending; air-bending;
three-point bending test; sheet metal forming

1. Introduction

Sheet metal forming has been employed for centuries in diverse manufacturing in-
dustries to create a wide range of products that may be used in several applications.
Among different forming techniques, sheet bending and stamping can be considered the
most important variants in forming industry. These techniques have been continuously
improved in recent decades to meet the growing need for lightweight metallic components
in the automotive sector in order to address environmental concerns about energy efficiency
and emissions [1,2]. To bend a sheet metal material, different methods can be used such as
air bending, coining, and bottom bending. Air bending, Figure 1a, is a process in which the
punch deforms the sheet by bending without the sheet being coined against the bottom
die. Therefore, it is frequently the preferred bending method because it provides a high
level of flexibility, as it is possible to obtain different bending angles using the same set
of tools by only controlling the punch stroke. However, this process is characterized by
strong nonlinear behavior, considering its parameters and their interrelationships [3].

In bending operations, one of the most important issues to consider is the spring-
back effect. In fact, the removal of the tools causes the release of the installed residual
stresses, leading to elastic recovery of the material and a change in the final bending angle.
Consequently, estimating the springback effect becomes a vital requirement for achieving
an accurate and regulated procedure. To address this issue, several authors tried to esti-
mate the springback behavior in bending operations in order to develop compensation
methods based on experimental, analytic and numerical approaches. The authors of [4–8]
proposed analytic solutions to reproduce the evolution of the bending angle with the
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punch displacement for a certain combination of sheet material and tools. However, these
analytical approaches are often established upon simplifications and assumptions based on
the material properties and tool geometry, which sometimes lead to inconsistent results [9].
To overcome these limitations, finite element analysis (FEA) is widely used as a process
modeling tool always supported by experimental validation [10,11]. In this context, [12]
studied the springback effect of different types of high-strength steels using FEA models.
The authors of [13] developed the smooth displacement adjustment (SDA) method and
the surface controlled overbending (SCO) method to optimize the tool shape for a forming
process, in order to increase the geometry accuracy of the product after springback. The
authors of [14] proposed a springback compensation method for singly curved products
which are established based on the numerical solution of springback behavior. Numerical
methods generally present a reliable prediction of the resultant outcome of a given forming
process, although their use requires the creation of an appropriate model, which easily
becomes a complex process due to the need to adjust multiple parameters. Furthermore,
the process of creating and running models to achieve results can be a time-consuming
task and demands a high computational cost, especially for complex models and when
modifications are required to evaluate various alternatives [15,16].

Recently, there has been an increasing use of machine learning (ML) algorithms in
various applications related to sheet metal forming to improve decision making and achieve
cost-effective, defect-free, and optimal manufacturing quality [17,18]. The ML algorithms
can be divided mainly in three categories: supervised learning, unsupervised learning [19],
and reinforcement learning [20]. Generally, supervised learning is preferred and is used
in classification or regression problems, encompassing support vector machine (SVM)
algorithms, naive Bayes classifier, decision tree, the K-nearest neighbor (KNN) algorithm
and artificial neural networks (ANN). The authors of [21] used SVM to estimate the
springback of a micro W-bending process with high prediction accuracy and generalization
performance. The authors of [22] compared the performance of different machine learning
algorithms (multilayer perceptron type ANN, random forest, decision tree, naive Bayes,
SVM, KNN, and logistic regression) in predicting springback and maximum thinning in two
different forming geometries, namely U-channel and square cup. The authors concluded
that the multilayer perceptron algorithm was the best in identifying the springback, with a
slightly higher score than SVM.

Artificial neural networks, among the various types of learning algorithms, are widely
used in sheet metal forming processes due to their ability to overcome the limitations
imposed by nonlinearities and the multiple parameters involved in forming problems.
Several articles on air bending have been published, following the use of artificial neural
networks [23–27]. The authors of [28] studied the use of ANN on modeling the air V-
bending processes using both an analytical and experimental data set and demonstrated
the capability of ANN to model the springback problem. The authors of [29] implemented
a neural network in order to predict the stepped binder force trajectory for different punch
displacements, in a plane strain channel forming process. The authors of [30] evaluated
the applicability of ANN to the problem of choosing a tool geometry to bend a component
with a defined shape. A finite element model created to simulate the bending process
and a genetic algorithm (GA) were used to optimize the weights of an artificial neural
network, thus reducing the deviation between the predicted tool and the experimental
solution. The authors of [31] analyzed the performance of a multilinear regression model
and an ANN in predicting the springback angle in air bending processes. The results
show ANN outperforming the regression models approach for the evaluated cases. The
authors of [32] also investigated the effect of bending and springback angles in bending
processes. In this case, experimental data obtained from FEA models was used to design
and train the developed ANN models. The results confirm the validity of the FEA analysis
and consequently their capability to provide data for developing ANN. The authors
of [33] developed a combination of error backpropagation neural network and spline
function (BPNN-Spline) in order to estimate the springback angle in a V-die bending
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process. The results showed that the proposed BPNN-Spline model outperforms the
traditional ANN in predicting the bending angles for different punch displacements. The
authors of [3] developed a methodology based on ANN and FEA, capable of establishing
the specific punch displacement for bending a sheet metal material according to the
desired forming angle in press brake bending. The results showed that the developed
methodology can successfully predict the required punch penetration to achieve a given
bending angle by considering results both for geometry after springback and also geometry
before springback. More recently, the authors of [34] proposed a novel theory-guided
regularization method for deep neural network (TG-DNN) training, which uses the material
Swift’s law as the guidance to predict the deformed workpiece geometry after springback
and the corresponding forming parameter of loading stroke. The authors conclude that the
proposed TG-DNN outperforms the conventional pure data-driven DNN for its superior
generalization accuracy, especially when only scarce and scattered experimental data are
available for training.

In all these studies, the material is known and its mechanical characterization is
described usually through work hardening laws (e.g., Swift law), determined in advance.
Thus, the bending test is not usually the preferred method to determine experimentally the
hardening behavior of a given material and normally tensile tests are used to determine
such behavior. It is known that bending tests entail inhomogeneous stress and strain
distributions in the material, making it impossible to infer the stress–strain relationship
directly from the experiment [35]. Typically, the material parameters identification is
performed by inverse methodologies where the objective is to find the parameters that
provide an optimal fit for a wide range of experiments. The main drawback of this strategy
is being time-consuming, particularly when several test conditions are used [36]. Recently,
neural networks have been used to replace or improve the constitutive model obtained by
inverse analysis [36–40]. For example, [41] developed a machine-learning based Johnson-
Cook (JC) plasticity model to capture the non-monotonic effect of the temperature and
strain rate on the hardening response for DP800 steel. The authors concluded that by
combining the neural network and existent material model, all the experimental data were
described with high accuracy. None of these studies, however, are directly connected to
the use of the bending process to evaluate a material hardening behavior. This paper thus
appears as an attempt to respond to this research opportunity.

The purpose of the current study is to evaluate the applicability of machine learning
algorithms on bending procedures. Therefore, different ANN will be developed in order to
explore the modeling capabilities and to resolve two different problems directly related to
bending solicitations herein called Problem (a) and Problem (b). Problem (a) is related to
using neural networks to determine the hardening behavior of a given material using only
the three-point bending test results. On a different perspective, Problem (b) is related to
the implementation parameters of the air bending process where it is intended to develop
a methodology that estimates the punch displacement required to obtain a given bending
angle. In both approaches it is proposed to combine the use of a learning tool with a
simulation and data generation tool (FEA) in order to train the developed ANN.

This paper is organized as follows. In Section 2, we provide an overview of the
corresponding problem statements and establish the adopted methodologies to solve both
problems. In Section 3, we include the neural network formulation and the implementations
that showed the best performance. In Section 4, the neural network results obtained for the
two problems are analyzed and discussed.
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(a) (b)
Figure 1. (a) Air bending process parameters: die opening (V), die radius (rm), inside bending radius (ri), punch nose radius
(rp), punch penetration (yp), sheet bending angle (α), sheet thickness (t); (b) stress distribution in plastic bending deformation.

2. Materials and Methods
2.1. Problem Statement

Air bending is one of the most frequent plastic deformation methods used on parts
made from flat sheets. As represented in Figure 1a, the main objective of this process is to
obtain a desired bending angle, α, in a sheet metal material by applying a specific punch
displacement, yp. The main process parameters include: (a) the tools geometry, which
comprises the die opening, V, die radius, rm, and punch radius, rp; (b) the blank material,
which includes not only the sheet thickness, t, but also the material properties (e.g., type of
material, hardening law, yield stress, ultimate tensile strength, elongation) [3].

When a sheet metal material is bent, it is subjected to different stress stages throughout
its depth (Figure 1b). The applied moment, M, causes the sheet to take the form of an
arc of a circle centered at point O with a radius ri. On the convex side, the longitudinal
fibers expand, and on the concave side, they compress. These two types of fibers are
separated by a third set of fibers that retain their initial length and constitute the so-called
neutral axis. The neutral axis divides the straight section into two parts: one part in tension
(σ > 0), and one in compression (σ < 0). On the neutral axis the longitudinal stress is zero
(σ = 0) [4].

As mentioned earlier, the springback effect plays an important role in bending pro-
cesses. As represented in Figure 2 the removal of the tools leads to elastic recovery of the
material, which results in different bending angles before and after springback. The spring-
back angle, ∆αSB, corresponds to the difference between the angle after elastic recovery,
α f , and the bending angle defined when the punch contacts the part, αi. The springback is
entirely intercorrelated with the stress distribution on sheet metal as residual stresses [42].
Its behavior is also affected by material properties such as strain hardening, elastic property
evolution, the presence of Bauschinger effects, elastic and plastic anisotropy, and tribology
between contacting surfaces [43]. Although there are mathematical models for predicting
springback in bending situations, most of them are simplistic and do not take into account
all influential factors.
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Figure 2. Definition of elastic recovery (springback) in bending process.

2.1.1. Problem (a)—Material Characterization

The three-point bending test [44] is a classic experiment used to evaluate the behavior
of a material when subjected to bending. This test is in every way similar to the air bending
process, as represented in Figure 3, however the main objective within this test will be
to evaluate the behavior of a certain material to pure bending loading. This test is quite
simple, as it does not require any prior sample preparation (e.g., machining), and can
easily be performed on a universal tensile testing machine. The challenges with this test
resides in the involvement of axial and transverse forces in the bending deformation.
Furthermore, friction and local deformation beneath the contact points can also affect the
results [45]. To convert the measured output from these tests (punch displacement, yp
and punch force, Fp) into stress–strain (σ-ε) response, inverse fitting models are usually
used in literature [46–48]. These methods require accurate modeling of the test with a
predetermined hardening model and costly optimization loops. The main drawback of this
strategy is being time-consuming, particularly when several experimental tests are used.
Another way is by using analytical approaches as for example the derivation proposed
by [49].
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Figure 3. Schematic illustration of the three-point bending test and definition of the main objectives
for problem (a).

The objective of this first problem is to develop a new methodology based on neural
networks to characterize the hardening behavior of a material using the results obtained in
a three-point bending test. Accordingly, it is proposed to implement a new procedure to
replace the traditionally inverse and analytical fitting methods in order to easily charac-
terize the hardening behavior of given material. The developed neural networks should
consider as input the punch force displacement curve obtained in a three point bending
test and provide the characteristic parameters of a Swift hardening law, as represented in
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Equation (1). The methodology should characterize materials with a K parameter between
[400–1600] and n parameter between [0.05–0.35]. These limits are consistent with the objec-
tives of characterizing materials widely used in industrial applications such as sheet metal
steel, ranging from mild steels to AHSS. Accordingly, these parameters for K (strength
coefficient) and n (work hardening exponent) will include every behavior for materials
of interest, both for strength and also for different hardening behavior. In this problem,
the value of ε0 was taken as fixed with a constant value of 0.01. Additionally, only 0.8 mm
sheet thickness will be considered. The Swift law parameters and their limits considered in
this bending problem (a) are summarized in Table 1. This table also includes the geometry
of the chosen setup to perform the three-point bending test.

σ = K(ε0 + εp)
n (1)

Table 1. Swift parameters and bending test geometry used in problem (a).

Swift Parameters 3-Point Bending Test Geometry

K n ε0 Rm [mm] Rp [mm] V [mm]

400–1600 0.05–0.35 0.01 4 4 50

2.1.2. Problem (b)—Air Bending, Forming and Springback Prediction

The second problem of this work will address the air bending process, considering the
influence of springback on the process. As referred, the major advantage of this bending
technique is the ability to use the same set of tools (punch and die) to achieve multiple
bending angles in different materials. In this context, establishing and controlling the
amount of punch penetration becomes the most important process parameter to establish
and control. However, obtaining the required bending angle with adequate accuracy can
become a major challenge due to the many parameters involved in the process. The main
objective of Problem (b) is the development of a new methodology based on neural net-
works to estimate the required punch displacement, yp, to produce a given bending angle,
α, using well-defined process conditions. These bending conditions include not only the
tools geometry (V, rm, rp) but also the material thickness, t.

Due to the problem’s geometric simplicity, analytical relationships involving variables
in the bending process, such as punch displacement as a function of bending angle, die
radius, die opening, and sheet thickness, can be defined. Previous research has shown that
J. Bessa Pacheco’s analytical model (YJBP) [8] is the one that best reproduces the behavior
(yp = f (α)) seen in press brake air bending. This proposal, represented in Equation (2),
incorporates the sheet metal thickness (t), bending angle (α), die opening (V), inside
bending radius (ri), and die radius (rm) and will be utilized as a supplement to the results
analysis in the current work.

YJBP =
V

2 · tan( α
2 )

+ (ri + t + rm)×
1− sin( α

2 )

sin( α
2 )

(2)

The die opening is a significant influencing factor in the bending process. The typical
bender’s practice is to choose the die opening based on the sheet thickness. The ideal
combination of sheet thicknesses and die opening can be defined by practical guidelines
derived from industrial process experience. Linear relationships between those variables
(Equation (3)) characterized by a scalar kvt factor can be utilized to determine the bound-
aries of suitable combinations. Normally, kvt factors with values between 6 and 10 establish
the limits of appropriate combinations for a correct bending operation.

V = kvt · t (3)

Figure 4 represents industrial practices for press-brake bending, in which standard
die dimensions (V opening) are considered (V = 11.5, 18.3, 23.1, 34.2, 43.7, 53.7 mm) and
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the intended sheet metal thickness (t between 0.5 and 6.0 mm) for practical applications.
It is seen also in Figure 4 the recommended industrial practice of V/t ratios between 6
and 10, a region defined by such straight lines. Press-brake bending performed outside
this region of recommended ratios will either give rise for high springback results (case A,
V/t > 10) or punch indentations (case C, V/t < 6). A recommended ratio is represented by
case B, for a 6 < V/t < 10. Accordingly, when comparing cases A and B the same die is used
(V = 43.7) for a thickness of 1 mm (non-recommended V/t = 43.7) and 5 mm (recommended
V/t = 8.7); as a consequence it is seen an excessive curvature geometry for case A, thus
resulting an higher springback, after bending. This also means that when comparing these
two situations, case A (non-recommended V/t) will have a different relation between
bent angle and punch penetration when compared to case B (recommended V/t). On the
other hand, V/t ratios less than 6 should be avoided since greater pressures are created
at tool/blank interfaces, and localized deformations (i.e., indentations) emerge at such
contact zones, increasing the probability of fracture. For example, comparing cases C and
B, the same sheet thickness is used (t = 5 mm) to be processed by different die openings:
case B uses V = 43.7 mm (recommended V/t = 8.7), while case C uses V = 23.1 mm (non-
recommended V/t = 4.6). It is seen (Figure 4) that for case C the punch indents the material,
causing a superficial defect and also contributing to a different relation between bent angle
and punch, when compared to recommended case B.

Figure 4. V-t diagram: combinations of tested V and t values (points) and limits (straight lines)
representing industrial practice reference rules.

The influence of springback in the yp-α relation, for A, B, and C is represented in
Figure 5. In each graph it is presented the punch displacement, yp, needed to produce a
desired bending angle, α, between 90◦ and 180◦ and considering two distinct situations:
before and after springback. This representation confirms that the springback effect is more
evident for case A since the difference between the punch displacement before and after
springback is higher. Thus, in this bending condition the springback need to be taken into
account when predicting the punch displacement, in order to achieve a proper bending
result. In addition, the punch displacement predicted by the YJBP analytical model is also
shown, for each case, in Figure 5. Generally speaking, the analytical model prediction is in
closer agreement with the numerical reference value before springback for all cases. This
is quite expected since the mathematical formulation of this model only includes the tool
geometry and the material sheet thickness, ignoring the springback effect. Thus, the results
obtained using the analytical approach are suitable for regions with reduced springback
effect (V/t < 10) while for higher ratios the accuracy of results is reduced. Nevertheless,
even for this zone (V/t < 10), the analytical approaches can be synonymous of errors.
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Figure 5. Punch displacement (yp) graphs as a function of required bending angle (α) for cases A–C.

The springback angle, ∆αSB is represented in Figure 6 for different V/t ratios and
assuming different desired bending angles, α. The values for the cases A and B are also
represented. This representation reinforces that higher V/t ratios promotes the material
elastic recovery, which is translated in a higher difference between the angle before and
after tooling removal. Additionally, it is visible that springback angle increases during the
bending operation. Therefore, for a final bending angle of 90◦, the springback angle for
cases A and B are 14º and 3º respectively.

Figure 6. Springback angle values (∆αSB) for different bending conditions (V/t ratios) and consider-
ing different required bending angles (α).

To sum up, the air bending problem (b) of this work aims to develop a method capable
of providing a fast and accurate estimate of the punch displacement, yp, to obtain a desired
angle α for the complete range of V/t ratios presented in Figure 4. The developed neural
networks should not only present the punch displacement for a desired bending angle but
also an estimate of a springback angle for each case. For such purpose, only one material
will be considered, a dual phase steel (DP590) with thicknesses between 0.5 < t < 6 mm.
The die opening values considered are defined between 10 < V < 50 mm which translate
in a “die opening-thickness” ratio between 1.6 < V/t < 100. The selected die openings (V)
correspond to dimensions for standard industrial press-brake bending dies and the sheet
metal thicknesses represent the most common practical intended applications.



Metals 2021, 11, 1418 9 of 24

2.2. Proposed Approach Using ANN

Modeling and solving a problem using artificial neural networks (ANN) can be in-
cluded within machine learning (ML) approaches, as its development is based on the
available data that characterizes the problem. Most often, the ANN algorithms consist
of a supervised learning method, although unsupervised ANN algorithms are also used.
Considering its widespread interest and use since mainly the late 1980s [50,51], currently,
there has been a renewed interest due to the latest developments associated with, which
is normally referred to as deep learning, or deep neural networks (DL/DNN) [52]. These
DNN entail an increased complexity of the models and have been successful in numerous
pattern recognition problems. In the present work we will be concentrated on a conven-
tional ANN approach, i.e., shallow ANN, rather than on DNN which we believe will be of
interest when escalating the approach to a higher scale of generalization ability.

The main idea behind ANN, either shallow or deep models, is a structure of multiple
simple processing elements (PE), or nodes, with a pattern of interconnections (weights) that
process information at its input to provide a solution, to the problem, at its output. As such,
it is usually characterized as being inspired in the human brain. In a supervised learning
algorithm the process of learning consists on the adjustment of parameters (i.e., weight’s
values of the interconnections) in order to minimize an error function that represents a
measure of the deviation between the known, or target response, and the ANN response,
when examples, or instances of the problem are available in the data sets. A typical ANN
architecture is represented in Figure 7 where the nodes (i.e., PE) are organized in successive
layers from Input to Output, and without backwards connections, i.e., in a feedforward
structure [50]. The use of nonlinear functions in the PE, combined with multiple PE,
enables ANN to model highly nonlinear problems. The definition of the Input and Output
layers defines how the problem is formulated and encoded in the ANN. This structure
provides great flexibility by allowing the combination of different types of information
we can give to a single ANN, as well as enabling multiple types of information a single
ANN can provide to the user. Before an ANN can be ready to provide a solution in a
use phase, its variable parameters must be adjusted in a training, or learning phase. This
requires the selection of the performance function and the algorithm used to minimize
this function by selecting the appropriate values for each adjustable parameter. Multiple
algorithms can be used, being most common backpropagation or gradient descent based
learning methods and the mean squared error (MSE) as the performance function, namely
in function approximation type problems. Having the ANN architecture defined and the
training phase completed, the ANN represents a well-defined mathematical function that
delivers output values when input values are specified. The ANN developed in the present
work for both problems were based on this architecture. As represented in Figure 8 for
problem (a) the objective is to define and encode at the input layer, information relative
to the force-displacement (Fp-yp) bending test, in order to obtain at the output layer the
parameters of the constitutive hardening law —Equation (1). In problem (b) the objective
is to define at the ANN input layer the die opening (V), the material thickness (t) and the
desired bending angle (α) and having at the ANN output the punch displacement (yP) that
should be used and the magnitude of the springback angle (∆αSB). Both problems were
considered as function approximation type problems. The required training and validation
data sets were obtained through the use of FEA models, as described in the next section.
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Figure 7. Neural network: example of a feedforward structure, with m input nodes, several hidden
layers with specific numbers of processing units (PE) each implementing a nonlinear function (i.e.,
sigmoid), n output nodes implementing a linear function and interconnections weights (i.e., Wkn
and Wmr).

Figure 8. Schematic representation of the main objectives and the proposed methodology for solving
problems (a) and (b).

2.3. Finite Element Model

The air bending process and the three point bending test can be defined as plane strain
problems, in which the blank width is much larger than the blank thickness. Due to the
symmetry of these two proposed bending processes, only half of real experimental setup
was considered in the 2D finite element model. Figures 9 and 10 illustrates the fundamental
geometry and variables defined for FE models, used for the bending problem (a) and
press-brake bending problem (b), respectively. Both numerical models were validated by
experiments in previous works [3,53].

2.3.1. Problem (a)—Material Characterization

The three-point bending process simulation, problem (a) was performed using ABAQUS
with implicit analysis (ABAQUS/ Standard). The blank material is modeled with an elasto-
plastic behavior using the Swift law for the hardening curve. The selected materials and
corresponding properties are presented in the Table 2. The sheet blank was discretized with
819 deformable four node solid elements (CPE4R type from ABAQUS Library) and nine
layers through thickness. Mesh discretization is regularly spaced in both thickness and
length (xx-axis) directions. Punch and die were modelled as analytical rigid surfaces and for
Coulomb friction a value of 0.1 has been defined, which follows previous results obtained
from experiments validating the numerical model [53].
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Figure 9. Three-point bending test geometry and variables defined for problem (a) FE model.

Figure 10. Geometry and variables defined for problem (b) FE model.

Table 2. Mechanical properties and Swift law hardening parameters of selected materials used in
problem (a).

Property

Elastic modulus E [GPa] 210
Poisson coefficient ν 0.3

K 400–1600
Swift parameters ε0 0.01
σ = K(ε0 + ε)n n 0.05–0.35

2.3.2. Problem (b)—Air Bending: Forming and Springback Prediction

The press-brake air bending process simulation, problem (b) was performed using
ABAQUS with implicit analysis (ABAQUS/ Standard) for this quasi-static problem. There-
fore, both the bending process and the springback can be processed efficiently by using
two steps for simulation. The blank material, dual-phase steel DP590, is modeled with an
elastoplastic behavior using the Swift law for the hardening curve. The selected materials
and corresponding properties are presented in the Table 3. The sheet blank was meshed
with 450 deformable four node solid elements (CPE4R type from ABAQUS Library) and
nine layers through thickness. Mesh discretization along xx direction is done with a bias
ratio, so that several nodes accommodates to a small punch radius but also a similar ratio ac-
commodates to a higher die radius, always having in mind a right balance with proportion
for elements. Punch and die were modelled as analytical rigid surfaces. The friction has
been considered for the interacting surfaces, with a Coulomb coefficient of 0.15, following
previous results with experiments to validate the numerical model [3].
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Table 3. Mechanical properties and Swift law hardening parameters of selected materials used in
problem (b).

Property DP590

Elastic modulus E [GPa] 210
Poisson coefficient ν 0.3

Yield stress Re [MPa] 393
Ultimate tensile strength Rm [MPa] 641

Total elongation et [%] 26

K 1000
Swift Parameters ε0 0.0024
σ = K(ε0 + ε)n n 0.155

Python scripts were developed to create and modify automatically the parts of finite
element model, for different bending conditions and also to submit the analysis, since a
total of 740 analysis were considered. In order to acquire results from each of previous
numerical simulations, an additional python script was written so that the fundamental
data is retrieved for the ANN development such as punch displacement, bending angle,
bending conditions and other variables.

3. Neural Networks Implementation

Once a specific architecture is selected, developing an ANN solution involves mainly
an iterative process of specifying values for the variable parameters in the learning al-
gorithms and evaluating the resulting performance, in order to select the best settings.
Due to the high number of parameters involved, this development turns out to be a case
dependent problem with few guidelines available to guarantee success in every case.

The first step is the generation and analysis of the data available for each problem.
The higher the quantity of data available, the better are the expectations of developing a
successful ANN solution. The data used should represent the variety of situations, i.e., in-
stances, of the problem in order to obtain good generalization abilities. In order to promote
these objectives data is normally divided in: data sets used during the learning phase for
parameters adjustment (i.e., training sets) and data sets new to the ANN (i.e., test set).
In some learning algorithms a third set is used (validation set), not for parameters adjust-
ment, but to favor ANN generalization capability, by stopping training when performance
deteriorates in the validation set (early stopping).

Analyzing the data is also crucial, especially in shallow ANN, as it may enable
reducing the number of elements required to represent the information in the Input layer
and therefore the size of the ANN. A good knowledge of the problem is also important
to interpret and define the Output layer elements required. The next sections describe
the specific problem formulation and respective ANN implementation using the Deep
Learning Toolbox available in Matlab [54].

3.1. Problem (a)—Material Characterization

In this problem, the input data, provided by FEA, consists of a punch force-displacement,
Fp-yp, curve comprising a total of 730 discrete points. In feedforward shallow ANN, each
layer is fully connected to the next layer, which in this problem makes unpraticable to
use all points as elements in the Input layer. So, in order to simplify the ANN structure
and reduce the number of parameters to be adjusted, only five points were considered as
illustrated in Figure 11a. P1 corresponds to the point that divides the elastic deformation zone,
characterized by a linear Fp-yp trend, from the plastic deformation zone on the test curve.
On the other hand, P2 represents the point of maximum force in each test. Similarly, P3, P4
and P5 are points with arbitrarily chosen fixed displacement values (15 mm, 17 mm, 20 mm)
used in each curve. Therefore, as represented in Figure 11b, the feedforward ANN for this
first problem will be characterized by ten processing elements corresponding to the five pairs
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of punch force-displacement values in the input layer and two output values corresponding
to parameters K and n of the Swift law, represented in Equation (1).

A total of 91 curves were generated considering 13 different values for K parameter and
7 values for the n parameter. These curves are obtained from bending tests having the same
conditions for punch displacement, from 0 mm (flat sheet blank) to 20 mm (bent specimen).
Figure 12 shows the data sets (output values) used for neural network development. It can
be seen that the 13 K parameters were selected in the interval [400, 1600] with 100 units
increments, and the 7 n values with increments of 0.05 units in the interval [0.05, 0.35].
From these, 55 cases (60.4% of the total) were used as the training set. The remaining
cases (39.6% of the total), corresponding to K = 800, K = 1400 and n = 0.15, n = 0.25 were
randomly split into a testing and validating set, each with 18 cases.

(a)
(b)

Figure 11. Implementation of material characterization problem: (a) punch force-displacement curve
and the selected five pairs of values (P1–P5); (b) structure of the neural network with ten processing
elements in the input layer corresponding to the five pairs of punch force-displacement values and
two nodes in the output layer (Swift parameters — K and n).

Figure 12. Selected data sets for problem (a).

Various combinations of hidden elements and layers were tested in multiple and
repeated runs using the Levenberg–Marquardt learning algorithm and the mean squared
error (MSE) performance function [55], in order to identify the size of the NN structure
that seemed to fit better the available data. For the best performant cases, several runs (10)
were made, starting with different initial weight values and initial learning rate parameters.
The weight values were updated in a batch mode, i.e., after all data cases were presented
to the ANN. The input and output values were normalized in the [−1,1] range, and several
learning parameter combinations were tested. The condition to stop learning was based
on the performance function on the values of the validation set (i.e., early stop). The best
performance was obtained with five hidden layers, each with five elements. Following the
training phase, the ANN performance were compared against the simulation solutions,
after conversion of the NNs output to un-normalized values. The performance obtained can
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be observed through the error’s histograms in Figure 13 , where the extreme error values
appear on a reduced number of cases. Table 4 presents the performance of the developed
ANN, after conversion to un-normalized values, for each of the three data sets (training,
validating, and testing) and in terms of root mean squared error, RMSE—Equation (4),
maximum and minimum extreme error values.

RMSE =
√

MSE =

√√√√ 1
N
·
[

N

∑
i=1

(targeti − outputi)2

]
(4)

In absolute terms it looks as the ANN performs worse in modeling the K parameter
comparatively to the n parameter. However, when the performance measures, RMSE, are
expressed in relation to the range values of each parameter (i.e., 1200 for K, 0.3 for n) and in
relation to the K and n values for the maximum and minimum values, the performance is
of similar magnitudes and behavior in the three data sets for both parameters. The overall
performance (RMSE) is better in the training sets, less than 0.5% in both cases, with the
validating and testing sets below 2% in the worst case. The extreme values are higher (i.e.,
−8.6%), but they occur in a few cases.

(a) K error histogram (b) n error histogram
Figure 13. Neural network histogram of errors for (a) K output variable and (b) n output variable
considering un-normalized values, all data sets and considering grouping each of the 91 cases error
in 20 classes (i.e., bins).

Table 4. Neural networks performance error for problem (a) in terms of RMSE, Max. and Min.

Training Data Set Validating Data Set Testing Data Set

RMSE Max. Min. RMSE Max. Min. RMSE Max. Min.

K 2.959 9.508 −7.938 8.955 10.201 −21.225 15.376 27.567 −38.296
n 0.0013 0.0031 −0.0034 0.0037 0.0078 −0.0081 0.0057 0.0051 −0.0216

K 0.3% 0.6% −0.3% 0.8% 1.3% −2.7% 1.3% 1.7% −7.6%
n 0.4% 0.9% −3.4% 1.2% 5.2% −3.4% 1.9% 3.4% −8.6%

3.2. Problem (b)—Air Bending: Forming and Springback Prediction

In this work the advantages of formulating specific ANN modeling of forming and
springback in air bending are highlighted by the possibility of extending the use of press-
brake variables (V/t ratios) outside the limits of practical industry guidelines that are
mainly supported by analytical and experience based knowledge [3]. Furthermore, it
is desired to explore whether a multitask versus single task ANN [34] can prove to be
more effective in increasing the generalization ability and reduce errors and outliers.
The additional information in the multitask ANN can also be considered of interest for the
air bending application. The input layer includes the die opening (V), the sheet thickness (t)
and the desired bending angle (α) (Figure 14) in both multitask and single task ANN. In one
of the single task ANN the output layer consists on the punch displacement (yp) required
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to obtain the desired bending angle, after removing the tool (i.e., after springback occurred).
Another single task ANN provides as output, the springback angle (∆αSB). In the multitask
ANN, the output includes, in addition to the punch displacement, the magnitude of the
springback angle.

(a) Single-task (ST) ANN structure (b) Multitask (MT) ANN structure

Figure 14. Structure of the neural networks considering (a) single task (ST) and (b) multitask (MT)
formulations.

A total number of 37 cases were used (Figure 15) resulting from different combinations
of die opening and material thickness (Table 5). Two different separations of data (DD1,
DD2) between training and validation/testing sets were used in the multiple runs of ANN
development stages. In both separations, the same proportion of training (25/37) versus
validation/testing (12/37) was used. An automated Bayesian regularization learning algo-
rithm using the respective learning function available in Matlab (‘trainbr’) [55] combined
with early stopping, and the mean squared error (MSE) performance function, as it could
enhance reduction of extreme errors.

(a) (b)

Figure 15. Selected bending processing conditions (V/t ratios) for (a) data set division I (DD1) and
(b) data set division II (DD2).

The results obtained with the considered best performant ANN, either ST-NN, MT-NN
and considering the two data divisions (DD1, DD2), are represented in Figure 16. The re-
sults include an overall measure (RMSE), maximum positive and minimum negative errors,
for each used data set (training, validation, testing). When considering all measures, it can
be observed that, for the punch displacement (yp), the performance on training, validation
and testing data sets are in closer agreement for the MT-NN, although having slightly
lower RMSE performance in the training set comparatively with the ST-NN. Combined
with the general better performance on the outliers in all sets (training, validation, testing)
it can be considered that a MT-NN generalizes better than ST-NN. When observing the
results for the springback angle using the MT-NN, the same behavior is verified, with the
MT-NN performing better and more homogeneously. However, the extreme error values
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occur in cases within the training set. These results will be further analyzed in the next
section in order to evaluate the usefulness of the ANN models in both problems (a) and (b).

(a) RMSE - yp (b) RMSE - ∆αSB

(c) Max - yp (d) Max - ∆αSB

(e) Min - yp (f) Min - ∆αSB

Figure 16. Performance measures of neural networks for the two different data sets (DD1 and DD2)
and considering both single (ST) and multitask (MT) ANN structure; all performance measures are
presented for the train, validation and test data sets; (a) punch displacement (yp) RMSE value; (b)
springback angle (∆αSB) RMSE value; (c) punch displacement (yp) maximum value; (d) springback
angle (∆αSB) maximum value; (e) punch displacement (yp) minimum value; (f) springback angle
(∆αSB) minimum value.
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Table 5. Test combinations and dimensions for the tooling used in problem (b).

V Vnom α b Thickness [mm]
[mm] [mm] [mm] [◦] 0.5 1 2 3 4 5 6

11.10 10 30 15 · · · ·
18.30 16 30 25 · · · · ·
23.06 20 30 35 · · · · · · ·
34.21 30 40 50 · · · · · · ·
43.73 40 80 50 · · · · · · ·
53.73 50 80 35 · · · · · · ·

4. Results
4.1. Problem (a)—Material Characterization

In this section it will be presented, with detail, the results obtained for problem (a) in
order to evaluate the influence of Swift parameter prediction error directly on a stress–strain
curve. In this context, Figure 17 illustrates in a graphical format the 91 combinations of
K-n used for the neural network development. This diagram shows not only the expected
target (circle marker) but also the ANN output (star marker). The train data set (light color)
and the validation/test data set (dark color) are all represented. These results support the
performance analysis presented in Section 3.1 since, in general, the developed ANN can
predict with accuracy the Swift parameters for the majority of the total cases. However,
for some combinations, a substantial disagreement between output and target value is
evident, especially for cases that belong to the validation and testing data set. Table 6
summarizes the differences between target-output values, for different cases C1 to C4, also
identified in Figure 17, in terms of relative error for both Swift parameters. For case C1,
the relative errors are quite low (less than 0.5%) as expected, since this combination belongs
to the train data set. On the contrary for cases belonging to validation/test data set (C2, C3,
C4) the errors are systematically higher, however always bellow 5%, except for one case
(C4) which is bellow 9%. The higher error (C4) occur in 1 out of 91 cases, and therefore it
can be considered an outlier for the test/validation data set.

Figure 17. Graphical comparison between targets and ANN output values for the 91 K-n combinations.

In order to evaluate the influence of the Swift parameter error on a true stress–strain
curve, Figure 18a compares the difference for cases C1 to C4 when considering the target
Swift parameters (solid line) and the parameters obtained using the developed ANN
(dotted line). From the graph it can be noted that case C4 presents the largest gap be-
tween the two σ-ε curves especially for higher true strain values. However, as seen in
Figure 18b, the true stress error, represented by the absolute difference (|σANN − σtarget|)
for each value of true strain, is less than 15 MPa, which in this context can be considered
completely acceptable.
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(a) (b)
Figure 18. True stress–strain curves (a) for cases C1 to C4 considering the Swift parameters obtained
using ANN and its comparison with the expected target results; (b) corresponding true stress error
(|σTarget − σANN |) for each case and true strain values between [0, 0.2].

Table 6. Relative error [%] between the target reference and the ANN output values of four different
cases (C1 to C4) and considering two Swift parameters (K and n).

KTarget KANN |KRelative Error| nTarget nANN |nRelative Error|

Case 1-C1 1100 1105 0.5% 0.200 0.199 0.5%
Case 2-C2 1400 1392 0.6% 0.100 0.096 4.0%
Case 3-C3 800 821 2.6% 0.250 0.258 3.2%
Case 4-C4 500 538 7.6% 0.250 0.272 8.8%

Complementary Test

In order to confirm the results prediction, complementary tests were performed.
For that purpose, an additional database was created, using FEA, considering Swift param-
eters that were not used in the development of the ANN. These new target parameters
(Ktarget and ntarget) are summarized in Table 7 for six different extra tests. Additionally,
the numerical punch force-displacement curves are represented in Figure 19a for each extra
case. In this point it is important to note that the extra cases two and five have similar
Fp-yp curves, and this proximity is especially evident in the elastic-plastic transition zone.
However, the Swift parameters are completely distinct. Regarding the ANN prediction
for these extra cases, the Swift parameters obtained using the developed neural network
(KANN and nANN) are in closer agreement with the targets, with relative errors below 2.5%
for ExT2-6 and 5.8% for ExT1. Figure 19b represents the resulting hardening Swift curves
(Equation (1)) for these considered extra cases with the parameters predicted using ANN
(KANN , nANN) and the corresponding reference values (Ktarget, ntarget). As previously ob-
served, the true stress–strain curves (Swift) for both cases are in a good agreement for strain
values between 0–0.2. Among these new cases, the ExT2 and ExT5 are of particular interest
as, although having closer three-point bending test curves, the respective stress–strain
curves are quite different. Observing the ANN performance in these two cases, Figure 19b,
it can be verified that the ANN performs equally well. Therefore, it can be concluded that
the five point selection, that represents the information from the bending test curves given
to the ANN, it was usefully used by the trained ANN.
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(a) (b)

Figure 19. Three point bending test (a) punch force-displacement curves (Fp-yp) obtained by finite
element analysis for extra cases ExT1 to ExT6, and (b) the corresponding true stress–strain curves (σ-ε).

Table 7. Relative Error [%] between the target reference and the ANN output values for six different
extra cases (ExT1 to ExT6) and considering two Swift parameters (K and n).

KTarget KANN |KRelative Error| nTarget nANN |nRelative Error|

ExT1 1250 1278 2.3% 0.120 0.127 5.8%
ExT2 1250 1250 ∼0.0% 0.280 0.279 0.4%
ExT3 850 840 1.2% 0.120 0.117 2.5%
ExT4 850 851 0.1% 0.280 0.280 ∼0.0%
ExT5 650 648 0.3% 0.120 0.120 ∼0.0%
ExT6 650 651 0.2% 0.280 0.280 ∼0.0%

4.2. Problem (b)—Air Bending: Forming and Springback Prediction

Turning now to problem (b), in this section it will be presented the results obtained
by the multitask ANN developed in Section 3.2, using the DD1 division set (MT-ANN,
DD1). In this context, Figure 20a,b details, respectively, the punch displacement (yp) and
the springback angle (∆αSB) curves as a function of required bending angle (α), for the
37 V/t combinations. This representation illustrates the overall capability of the developed
ANN to model, in the same structure, two different, although related, functions (yp and
∆αSB), and in a significant range of input parameter values (V, t, bending angle). It can
also be observed that in the prediction of the springback angle, higher oscillations occur in
relation to the reference curves.

(a) (b)
Figure 20. (a) Punch displacement (yp) graph and (b) springback angle (∆αSB) graph as a function of
required bending angle (α) for the total V/t combinations used in problem (b).
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In order to evaluate the results of this problem in more detail, the three cases (A, B and
C), presented in Section 2.1.2 (Figures 4–6), will be studied in this analysis. As already men-
tioned, these three cases correspond to different bending conditions: case A (V/t = 43.7)
is characterized by an excessive springback angle, case C (V/t = 8.7) is characterized by
indentation, and finally case B (V/t = 4.6) where none of these phenomena occur and
the bending conditions are considered appropriate, in closer agreement with analytical
models and industry guidelines. Additionally, it can be noted that cases A and B belong
to the test and validation data set, while case C belongs to the training data set, following
the proposed data sets division (DD1), as represented in Figure 15a. It can be observed
(Figure 21) that the ANN performs equally well in the three cases, which means it can
provide a solution to a wide extension of the bending angles, that can be obtained with the
same set of tools, in addition to the industry guidelines.

(a) Case A— Punch Displacement (b) Case A—Springback Angle

(c) Case B—Punch Displacement (d) Case B—Springback Angle

(e) Case C—Punch Displacement (f) Case C—Springback Angle

Figure 21. Punch displacement (yp) graphs and springback angle (∆αSB) graphs as a function of
required bending angle (α) for cases A, B, C.
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In order to have a closer look at the capability of ANN to model the punch displace-
ment, Figure 22 includes both the yp and error graphs in case B, which favors the analytical
or geometrical based solutions. It contains the yp reference curves obtained from sim-
ulation, after (ySimASB) and before (ySimBSB) springback, the analytical solution (yJBP)
and the ANN solution (yANN). Although the yp curves seem to have a similar behavior,
the error curves clearly differentiate the analytical solution when compared to the reference
simulation curves, before springback and even more when springback is taken into account.
Comparatively the ANN solution presents a lower error relative to reference simulation
curve after springback, demonstrating that it provides an adequate solution even when
springback is considered.

(a) (b)
Figure 22. Punch displacement errors (eyp), for case B, as a function of required bending angle (α)
considering ANN output values and JBP analytical results.

In order to evaluate the error of the ANN solution when predicting the springback
angle (∆αSB), Figure 23 represents, for the previously described three cases (A, B, C)
the evolution of springback angle (∆αSB) and the respective error curves relative to the
simulation reference springback angle. In the overall, evolution of (∆αSB) angles follow
a similar behavior to the reference curves and the errors are clearly higher and more
irregular in case A, than B and C. This indicates higher difficulty in this area of the tools
usage (V/t > 10). However, taking into account the objective of having an indicator of
the magnitude of the springback angle, rather than a precise value for the user, the ANN
solution can be considered to fulfill its purpose adequately.

(a) (b)
Figure 23. Sprinback analysis for cases A, B, C: (a) springback angle (∆αSB) and the corresponding
expected value (Target) as a function of required bending angle (α); (b) springback angle error (e∆αSB)
for each case as a function of required bending angle (α).



Metals 2021, 11, 1418 22 of 24

5. Conclusions

In this work, the use of machine learning algorithms was explored in the form of
artificial neural networks to model different problems associated with sheet metal process-
ing and material characterization. The ANN methods have the advantage of an efficient
modeling of the complexity and nonlinearities associated with these problems. However,
it must be considered that they do not provide by themselves an explicative solution for
the problems nor a confidence level of the results obtained. Therefore, its usage must be
carefully considered and other ML tools and methods could provide a complementary
solution to overcome some of these limitations. First, it was intended to use the results of
a simple and standard test (three-point bending) to perform the mechanical characteriza-
tion of a metallic sheet material and finding the corresponding parameters for the Swift
hardening curve. Second, in a different but related problem, it was intended to model the
sheet metal press brake, air-bending process, to predict the required punch displacement
corresponding to the desired bending angle, after removing the tools (i.e., after springback).
In both cases, simulation results obtained with FEA models were used. The obtained
results show that ANN can be a valuable tool to model these problems.

In the first problem, mechanical characterization with three-point bending, the results
show a good agreement with the simulation and reference models, being able to closely
predict the material K and n parameters in the ranges 400 to 1600, and 0.05 to 0.35 respec-
tively, and characterizing adequately the strain–stress curves in the range of interest, i.e., up
to 0.2 strain values. In the second problem, press-brake bending, it can be concluded that a
single structure ANN was efficient in predicting simultaneously the required punching
displacement and the springback angle. It was also proved beneficially to include a second
learning task to better predict the punch displacement.

In spite of having more than two hidden layers, the ANN developed can be considered
within a simpler shallow ANN classification, rather than included in deep learning ANN
structures. Shallow ANN has the advantage of being faster to train and requiring less
data. However, when expanding the solution to include other materials, tools or process
parameters it can be expected that a deep learning structure will be beneficial. One
envisaged future work will be to use convolution neural networks (CNN) in a deep
learning structure. This approach allows for the use of more information about a problem
to be included in the Input layer, without having the corresponding increase of the ANN
size as in fully connected feedforward structures. Regarding the first problem, it may be
explored whether the complete curve would provide better generalization. As for the
second problem, it is intended to include the material force–displacement behavior in the
learning tasks, to evaluate at what level the precision and generalization ability of the ANN
can be guided using this information. In general, it is intended to expand the solutions for
these problems by comparing ANN solutions with other methods in an attempt to include
more materials and associated increased data sets.
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