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Abstract: In the flux-cored arc welding process, which is most widely used in shipbuilding, a constant
external weld bead shape is an important factor in determining proper weld quality; however, the
size of the weld gap is generally not constant, owing to errors generated during the shell forming
process; moreover, a constant external bead shape for the welding joint is difficult to obtain when
the weld gap changes. Therefore, this paper presents a method for monitoring the weld gap and
controlling the weld deposition rate based on a deep neural network (DNN) for the automation
of the hull block welding process. Welding experiments were performed with a welding robot
synchronized with the welding machine, and the welding quality was classified according to the
experimental results. Welding current and voltage signals, as the robot passed through the weld
seam, were measured using a trigger device and analyzed in the time domain and frequency domain,
respectively. From the analyzed data, 24 feature variables were extracted and used as input for the
proposed DNN model. Consequently, the offline and online performance verification results for new
experimental data using the proposed DNN model were 93% and 85%, respectively.

Keywords: automated welding process; weld gap detection; weld deposition rate control; deep
learning; welding signal feature extraction

1. Introduction

Welding is widely applied in heavy industries, such as the automobile and aerospace
industries [1–4]. It plays a critical role in shipbuilding, accounting for approximately 50%
of the entire shipbuilding process [5]. In the manufacture of automobile bodies using spot
welding, automated manufacturing lines using robots have advanced while maintaining
a low defect rate [6]. However, when unexpected disturbances such as welding deforma-
tion and weld shape changes occur in large and complex hull block fillet welding processes,
welding defects, such as the attainment of values greater or less than the required theo-
retical throat thickness standard, may occur, thereby failing to ensure consistent welding
quality [7]. In addition, it is necessary to exercise caution with the control microdefects as
that can lead to the formation of fatigue cracks [8]. Therefore, the majority of operations in
the hull welding process are still dependent on the experience of skilled welders, and the
development of an automated welding process remains an important task [9].

Recently, research on welding condition monitoring using artificial intelligence and
camera vision devices has gained increasing attention because of the increasing demand
for manufacturing intelligence, cost reduction, efficiency, and quality. This research can be
classified into three areas of application: weld defect prediction [10–12], weld bead shape
prediction [13,14], and weld seam tracking [15–17]. For instance, Zhang et al. [10] developed
a convolutional neural network (CNN) algorithm based on a multi-sensor system, including
an auxiliary illumination (AI) visual sensor system, UVV band visual sensor system,
spectrometer, and two photodiodes to detect three different welding defects during high-
power disk laser welding. Yu et al. [11] proposed a deep neural network (DNN)-based
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quality assessment method based on a spectrometer in the laser beam welding (LBW)
process. Shin et al. [12] proposed a DNN-based nondestructive testing method for the
detection and prediction of porosity defects in real time based on welding voltage signals.
Nagesh and Datta [13] used back-propagation neural networks to associate welding process
variables with the features of bead geometry and penetration. Pinto-Lopera et al. [14]
presented a novel technique for real-time measurement of the width and height of weld
beads during gas metal arc welding (GMAW) using a single high-speed camera and
a long-pass optical filter in a passive vision system. Xu et al. [15] presented a technology for
real-time seam tracking to overcome the limitations of teaching-playback welding robots in
seam tracking control during gas tungsten arc welding (GTAW). Zou et al. [16] studied and
analyzed the feature point tracking method and the adaptive fuzzy control algorithm for
the welding process and designed a set of six-degree-of-freedom robotic welding automatic
tracking platforms to realize real-time tracking of the weld seam. Ting et al. [17] developed
a detection–compensation–tracking system and improved the contact-type displacement
and angular sensors for use in weld seam trajectory detection.

According to the reviewed literature, charge-coupled-device (CCD) cameras, vision
sensors, and artificial intelligence techniques have been applied to successfully monitor
the weld defects and weld bead shape during welding, and effective methodologies for
tracking curved weld seams have been presented. However, most studies using CCD
cameras and vision sensors are not applicable to large, welded structures, such as ships.
Hitherto, no study has reported on the monitoring of welding conditions in real-time or
via robot control based on AI model decisions.

In general, the welding current and voltage signals measured during welding pro-
cesses effectively represent the physical phenomenon of welding, and numerous studies
have been conducted to determine welding quality and evaluate weldability [18–23]. In
addition, many studies have been conducted to analyze the correlations between the fre-
quencies of the measured signals for condition monitoring, such as defect detection; these
studies could accurately distinguish between normal and defective target signals [24–26].
Chu et al. presented time–frequency analysis as an effective method to determine welding
quality and performed frequency analysis to distinguish between normal and defective
welding process signals [27]. Based on the advantages of DNNs, such as their capabilities
of nonlinear combination, learning between nonlinear variables, and understanding the po-
tential structure of data, excellent results have been achieved in welding monitoring [11,12].

To this end, this study proposes a DNN-based welding condition monitoring and
quality control method using feature variables extracted from the time and frequency
domains of the welding signal measured in a hull welding process. First, a signal mea-
surement system synchronized with the motion of a welding robot in the welding process
was developed, and then repeated experiments were performed by varying the welding
gap. The measured welding current and voltage signals were analyzed in the time and
frequency domains, respectively, and the feature variables that were most correlated with
the weld gap variables were extracted. The weld gap detection model was designed using
a DNN and learned based on the time and frequency feature variables of the welding
signal. A decision-making system (the classification result of the DNN model output is
transmitted to the robot controller in the form of an analog voltage, and the motion of the
robot is controlled) was developed to control the weld composition rate to meet the quality
requirements for each weld gap.

The remainder of this paper is organized as follows. In Section 2, the procedures
for the welding experiments and experimental system are detailed. The experimental
results and weld gap monitoring performance of the proposed DNN-based algorithm are
discussed in Section 3. Finally, conclusions are presented in Section 4.
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2. Materials and Methods
2.1. Materials

In this study, SS 400 was used as the base material (test plate). The thickness of the
selected welding material was 15 mm, and the maximum tensile strength was 400 MPa.
The mechanical properties and chemical components are listed in Table 1. Figure 1 depicts
the dimensions and schematics of the test plates to be welded on the filet joint. All welding
experiments were conducted in a 3F vertical up position in the same manner as the block
welding process performed in an actual shipyard. To minimize thermal deformation during
welding, tack welding was performed at the beginning and end of the test plates, and the
length of the entire welding section was 200 mm.

Table 1. Chemical composition and mechanical properties of the base metal.

SS 400

Chemical Composition (wt%) Mechanical Properties

C Si Mn P S YP
(MPa)

TS
(MPa)

EI
(%)

0.1744 0.252 0.773 0.0127 0.0037 281 457 26
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Figure 1. Dimensions and schematic of the test plates in 3F vertical up welding position: (a) overview,
(b) top view, and (c) side view.

2.2. Experimental Equipment and Procedure

As illustrated in Figure 2, the welding experiments were performed using a constant-
voltage direct current (DC) inverter welding machine (Fronius TPS-4000, Fronius, Wels,
Austria) and a six-axis robot (Neuromeka, Seoul, Korea). The signal input/output of the
welding monitoring system developed in this study used an NI module, as depicted in
Figure 2b. The NI-9229 (National Instruments, Austin, TX, USA) module measured the
welding current and voltage analog signal, and the NI-9375 (National Instruments, Austin,
TX, USA) module transmitted the digital voltage signal to the ROB 5000 OC (Fronius, Wels,
Austria) module to control the arc ON/OFF of the welding machine. An NI-9423 (National
Instruments, Austin, TX, USA) module connected to the robot controller read the robot
motion information and acted as a trigger to measure the synchronization signal according
to the robot motion in a real-time control system. Finally, an NI-9263 (National Instruments,
Austin, TX, USA) module transmitted the decision of the gap detection unit to the robot
controller in the form of a digital voltage. The optimal trajectory (motions 1, 2, and 3)
for each weld gap that was stored in advance by the welding robot SDK program was
changed by the digital voltage input. After the welding experiment, each test plate was
subjected to a cross-sectional analysis. The middle part of the welded test plates was cut,
ground, sanded, polished, and then etched with 5% Nital HNO3 solution, and the shape,
quality, and size of the welds were recorded. The cross-section of the weld was analyzed
and photographed in detail using an optical microscope.
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Figure 2. Experimental equipment: (a) welding robot and welding machine, (b) NI modules and
ROB 5000 OC, and (c) robot controller.

Figure 3 illustrates the shape of the fillet weld bead as the weld gap parameter
increases under fixed welding conditions. As the weld gap increases, more molten metal
is sucked into the gap, and the weld bead becomes smaller; therefore, the theoretical
throat thickness required in this case cannot be satisfied. Three types of weld gaps were
considered in this study: 0, 2, and 4 mm. The optimum welding speed that could satisfy the
theoretical throat thickness required for each gap condition was selected based on previous
experiments. The optimal welding speed for the 0 mm gap was 16 cm/min, that for the
2 mm gap was 13.8 cm/min, and that for the 4 mm gap was 10.8. The motion trajectory
of the robot was created. However, to detect the welding gap in real time and control the
robot motion accurately, it is necessary to consider the case of cross-applying the optimal
welding conditions for each welding gap. Therefore, although there were three gap sizes,
experiments and analyses were performed by considering a total of nine cases, including
welding conditions and cross-verification of the weld gap.
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In this study, repeated welding experiments were performed, including cross-conditions
experiments with each welding condition and weld gap, and nine welding experiments
were considered as one set. Thus, three sets of welding experiments (i.e., 27 experiments)
were performed to obtain the data. The welding current signal and arc voltage signal
generated during welding were measured in real-time at a sampling rate of 2 kHz using
a current clamp and an analog-to-digital converter. The welding conditions used in the
experiment are presented in Table 2, and conditions such as shielding gas, CTWD, welding
wire specifications, welding feed rate, and welding contact pressure values were set similar
to those used in actual shipyards. The tool center point (TCP) value of the robot was set to
the end of the welding torch, including the wire protrusion length.

Table 2. Welding experiment conditions.

Welding Parameter Parameter Value

Welding type FCAW
Welding speed (cm/min) 10.8, 13.2, 16.0

CTWD (mm) 18
Wire feed rate (m/min) 6.8

Welding voltage (V) 29
Welding joint T-fillet joint

Shield gas CO2-100% (25 L/min)
Weld gap (mm) 0, 2, 4

Weaving speed (Hz) 0.9
Weaving width (mm) 9
Torch work angle (◦) 45

3. Results and Discussion
3.1. Effect of Gap and Welding Speed on Weld Bead Shape Parameters

Table 3 presents the cross-sectional images of the test plates for a total of nine welding
experiments wherein cross-conditions were applied. The ideal theoretical throat thickness
was confirmed in the experiment in which the optimum welding condition was applied to
each weld gap; however, in the experiments performed under other welding conditions,
the required theoretical throat thickness was found to be larger or smaller. As a result of
applying robot motion 1, which is the optimal condition for a 0 mm gap, to the 2 and 4 mm
gaps, the size of the generated weld bead was small because additional penetration oc-
curred in accordance with the size of the gap. In contrast, as a result of applying robot
motion 2, which is the optimal condition for the 2 mm gap, to the 0 and 4 mm gaps, the leg
length and theoretical throat thickness were found to be larger than the normal standard in
the 0 mm gap, and owing to the additional penetration in the 4 mm gap, the size of the
generated weld bead was smaller. Finally, as a result of applying robot motion 3, which is
the optimal condition for a 4 mm gap, to the 0 and 2 mm gaps, a large weld deposit rate at
a low welding speed resulted in large weld beads in the two welding sections.
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Table 3. Weld bead cross-sectional analysis.

Robot Motion
Weld Gap (mm)

0 2 4

Motion 1
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3.2. Feature Parameter Extraction from Welding Current and Voltage Signals

In this study, to monitor the welding gap, the welding current and voltage signals were
analyzed in the time and frequency domains, respectively, and the pattern change of the
welding signal waveform with changes in the weld gap was confirmed. Figure 4a depicts
the welding current and voltage signals measured when the welding robot passes through
the welding seam once based on the trigger device. For these signals, the feature variable
extraction in the time domain was performed based on the median filter, as illustrated in
Figure 4b. A median filter was applied to the welding current and voltage signals to derive
the average value points for 20 samples in the original signal raw data, and the points
were connected to generate a guideline for the welding current and voltage signals. Peak
values above and below the median filter criteria were derived and displayed, and feature
variables for the welding current and voltage were extracted based on the peak values.
Figure 4c,d depict the results of the fast Fourier transform (FFT) analysis of the current
and voltage signals measured in the robot weaving section, respectively. As a result of
analyzing the welding current voltage signal in the time and frequency domains, a total of
six characteristic variables were extracted from each domain for each welding current and
voltage, and a total of 24 characteristic variables are listed in Table 4.
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Figure 4. Time and frequency domain feature extraction: (a) raw data of the welding current and voltage signal, (b) feature
point generation using the median filter, (c) FFT result of the welding current signal, and (d) FFT result of the voltage signal.

Table 4. Definitions of feature variables.

Feature Variable Number Description Symbol

X1 Average welding current value in one weaving section I
X2 Average of bottom peak value (current) I(Pb)
X3 Standard deviation of bottom peak value (current) s[I(Pb)]
X4 Average of top peak value (current) I(Pt)
X5 Average value of top to bottom peak with respect to median filter I f
X6 Average value of bottom to top peak with respect to median filter Ir
X7 Average voltage value in one weaving section V
X8 Average of bottom peak value (voltage) V(Pb)
X9 Standard deviation of bottom peak value (voltage) s[V(Pb)]

X10 Average of top peak value (voltage) V(Pt)
X11 Average value of top to bottom peak with respect to median filter V f
X12 Average value of bottom to top peak with respect to median filter Vr
X13 Maximum value of current frequency max( fc)
X14 Average value of current frequency fc
X15 Standard deviation value of current frequency s( fc)
X16 Maximum amplitude (current frequency) max(Ac)
X17 Average value of amplitude Ac
X18 Standard deviation value of amplitude s(Ac)
X19 Maximum value of voltage frequency max( fV)
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Table 4. Cont.

Feature Variable Number Description Symbol

X20 Average value of voltage frequency fV
X21 Standard deviation value of voltage frequency s( fV)
X22 Maximum amplitude (voltage frequency) max(AV)
X23 Average value of amplitude AV
X24 Standard deviation value of amplitude s(AV)

Now, X1 (I) denotes the average value of the current measured in one weaving section,
X2 (I(Pb)) denotes the average value of the peaks derived below the median filter guideline,
X3 (s[I(Pb)]) denotes the standard deviation of the peaks derived below the median filter
guideline, X4 (I(Pt)) denotes the average value of the peaks derived above the median
filter guideline, X5 (I f ) denotes the average of all the values connected from the highest
peak to the lowermost peak with respect to the median filter guideline, and X6 (Ir) denotes
the average of all the values connected from the lowermost peak to the highest peak
with respect to the median filter guideline. The feature variables were extracted from the
voltage signal in the same way as those from the current signal, and they are listed as
X7–X12. Based on the information obtained in the frequency domain during the frequency
analysis process for welding current and voltage signals, six feature variables related to
the frequency components were extracted from the welding current signal. X13 (max( fc))
denotes the maximum peak value of the frequency, X14 ( fc) denotes the average value of
the top five frequency peaks, X15 (s( fc)) denotes the standard deviation of the top five
frequency peak values, X16 (max(Ac)) denotes the maximum amplitude (welding current
frequency), X17 (Ac) denotes the average value of the top five frequency amplitudes, and
X18 (s(Ac)) denotes the standard deviation of the top five frequency amplitudes. From the
voltage signal, the same feature variables as those from the current were extracted and are
listed in Table 4 (X19–X24). Figure 5 depicts the extracted characteristic variables (i.e., X1,
X2, and X4). It was confirmed that the features identified in this process were accurately
extracted from the welding signal analysis, and the characteristic variables demonstrated
a constant trend in terms of the welding gap.
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3.3. Training and Validation of the Proposed DNN-Based Weld Gap Monitoring and Weld
Deposition Rate Control Model

Figure 6 illustrates the structure of the DNN-based weld gap detection framework
proposed in this study, which includes signal pre-processing, feature variable extraction,
DNN model learning and prediction, and welding robot control. In the first step, a welding
experiment was performed while the welding machine and robot were synchronized, and
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the welding current and voltage signals were acquired. In the second step, the signal
during the robot’s weaving time was extracted and analyzed in the time and frequency
domains, and 24 feature variables were extracted during this process. In the third step, the
DNN model was trained based on the extracted feature variables. In this process, labels
were assigned as class 0 when the weld gap was 0 mm, class 1 when the weld gap was
2 mm, and class 2 when the weld gap was 4 mm, and the DNN model was trained. In the
fourth step, the classification result of the DNN model for the feature variable derived by
real-time signal processing as a verification process for the process signal, which is included
in the training data based on the stored DNN learning model, was sent to the robot through
the NI-9263 analog output module. The motion change command was transmitted to the
controller and the robot’s motion was controlled simultaneously.
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Figure 6. Proposed weld gap detection and welding quality control system.

To select the optimal DNN model structure for monitoring the weld gap, five DNN
structures were selected by adjusting parameters such as the number of hidden layers and
the number of nodes in the hidden layer, and these five structures were trained during
2000 epochs. Values such as training loss, validation loss, training accuracy, and validation
accuracy were derived after the completion of training, and are listed in Table 5.

Table 5. Five DNN structures.

DNN
Structure

Input
Node

Hidden
Layer Number of Nodes Training

Accuracy (%)
Training

Loss
Validation

Accuracy (%)
Validation

Loss

Structure 1

24

5 64-64-64-64-64 88.6 0.42 83.6 0.51
Structure 2 5 128-128-128-128-128 90.2 0.25 88 0.29
Structure 3 5 256-128-128-64-64 94.3 0.15 92 0.22
Structure 4 4 256-128-128-64 89.5 0.36 85 0.44
Structure 5 4 128-128-64-64 88.4 0.39 81 0.48
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Batch normalization [28] and dropout [29] were introduced to solve the problem
of internal covariate shift, which is difficult for DNN models to learn, and to prevent
overfitting. In this study, DNN Structure 3 with the lowest validation loss and highest
accuracy was adopted, based on the performance results derived after completion of the
learning of five DNN structures, as illustrated in Figure 7. The training network structure
in the learning process of the DNN model is presented in Table 6. In this process, the
weights were initialized randomly using rectified linear unit (ReLU) [30] as the activation
function and Adam [31] as the optimizer. In addition, batch normalization and dropout
were placed in the next layer following the dense and activation function layers to prevent
overfitting. The dropout rate was set to 0.5.

Metals 2021, 11, x FOR PEER REVIEW 10 of 20 
 

 

Structure 1 

24 

5 64-64-64-64-64 88.6 0.42 83.6 0.51 

Structure 2 5 
128-128-128-128-

128 
90.2 0.25 88 0.29 

Structure 3 5 256-128-128-64-64 94.3 0.15 92 0.22 
Structure 4 4 256-128-128-64 89.5 0.36 85 0.44 
Structure 5 4 128-128-64-64 88.4 0.39 81 0.48 

Batch normalization [28] and dropout [29] were introduced to solve the problem of 
internal covariate shift, which is difficult for DNN models to learn, and to prevent over-
fitting. In this study, DNN Structure 3 with the lowest validation loss and highest accuracy 
was adopted, based on the performance results derived after completion of the learning 
of five DNN structures, as illustrated in Figure 7. The training network structure in the 
learning process of the DNN model is presented in Table 6. In this process, the weights 
were initialized randomly using rectified linear unit (ReLU) [30] as the activation function 
and Adam [31] as the optimizer. In addition, batch normalization and dropout were 
placed in the next layer following the dense and activation function layers to prevent over-
fitting. The dropout rate was set to 0.5. 

 
Figure 7. Structure of the deep neural network (DNN) for classification of the weld gap. 

Table 6. Training network structure of the DNN used in this study (structure 3). 

Layer Number Type Output Shape Number of Parameters Arguments 
- Input 24  Range = [0,1,2] 
1 Dense_1 256 6400  
2 Batch Normalization_1 256 1024  
3 Activation_1 256  Function = ReLU 
4 Dropout_1 256  Probability = 0.5 
5 Dense_2 128 32896  
6 Batch Normalization_2 128 512  
7 Activation_2 128  Function = ReLU 
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Table 6. Training network structure of the DNN used in this study (structure 3).

Layer Number Type Output Shape Number of Parameters Arguments

- Input 24 Range = [0,1,2]
1 Dense_1 256 6400
2 Batch Normalization_1 256 1024
3 Activation_1 256 Function = ReLU
4 Dropout_1 256 Probability = 0.5
5 Dense_2 128 32896
6 Batch Normalization_2 128 512
7 Activation_2 128 Function = ReLU
8 Dropout_2 128 Probability = 0.5
9 Dense_3 128 16512

10 Batch Normalization_3 128 512
11 Activation_3 128 Function = ReLU
12 Dropout_3 128 Probability = 0.5
13 Dense_4 64 8256
14 Batch Normalization_4 64 256
15 Activation_4 64 Function = ReLU
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Table 6. Cont.

Layer Number Type Output Shape Number of Parameters Arguments

16 Dropout_4 64 Probability = 0.5
17 Dense_5 64 4160
18 Batch Normalization_5 64 256
19 Activation_5 64 Function = ReLU
20 Dropout_5 64 Probability = 0.5
21 Dense_6 3 195 Function = Softmax
22 Batch Normalization_6 3 12
23 Activation_6 3 Function = ReLU

The total data used in the training process were 4060 samples; the data were sent
to the GPU with a batch size of 32. The entire dataset was divided into a training set
(3248 samples) and a validation set (812 samples) in the ratio of 8:2. The number of
iterations for training the proposed DNN model (epoch) was set to 2000, and the plot of
training loss and validation loss according to the epoch is illustrated in Figure 8. Evidently,
the validation loss converged to a final value of 0.2, and no overfitting phenomenon
was observed.
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3.4. Bead Shape Control for Gap Compensation Using DNN

Additional welding experiments were performed to verify the performance of the
proposed DNN-based weld gap monitoring and the weld deposition rate control algorithm.
The test plate used for the additional experiments is depicted in Figure 9. Figure 9a depicts
a test plate in which the weld gap changes in a stepwise manner based on the welding
section, and Figure 9b depicts a test plate with a shape wherein the weld gap linearly
changes from 0 to 5 mm. The setup in Figure 9a was used for the offline test, whereas that
in Figure 9b was used for the real-time test.

3.4.1. Weld Gap Monitoring Performance Evaluation (Offline)

To verify the performance of the proposed DNN-based weld gap detection model,
the verification was performed through an offline test and online test. The data used in
the verification process were new welding experiment data that were not included in the
training data. The welding test plates used as the offline test data are shown in Figure 9a.
Different gap sections were created for each section in a welding seam. A total of three
test experiments were performed, and the results of the verification by the proposed DNN
model for the corresponding test data are presented in Table 7 and Figures 10–12.

The DNN gap detection model exhibited an excellent detection accuracy of approxi-
mately 93.7% in relation to the three robot motions. Based on these excellent verification
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results, real-time tests were performed as described in the next section. The test plates used
in the real-time verification experiments are shown in Figure 9b. The real-time verification
was performed using test plates in which the weld gap linearly increased from 0 to 5 mm.
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Table 7. Weld gap monitoring performance of the proposed DNN model.

Welding Speed (cm/min) Output Support Correctly Estimated Error Accuracy % Average Accuracy %

16 (motion 1)
Class 0 38 34 4 89.5

92.8Class 1 45 40 5 88.9
Class 2 36 36 0 100

13.2 (motion 2)
Class 0 47 43 4 91.5

94.1Class 1 48 46 2 95.8
Class 2 39 37 2 94.9

10.8 (motion 3)
Class 0 54 50 4 92.6

94.07Class 1 59 58 1 98.3
Class 2 46 42 4 91.3
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3.4.2. Real-Time Welding Quality Control

The DNN-based weld gap monitoring and robot control system developed in this
study was implemented based on LabVIEW software, and the entire system flowchart is
illustrated in Figure 13. The system includes the signal measurement, robot motion trigger,
feature extraction from new and frequency domains for welding current and voltage
signals, normalization process for extracted features, and control of the robot based on the
classification result of the saved DNN weight model.
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Figure 14a depicts the experimental result of applying robot motion 1 to the weld
gap, which increases linearly from 0 to 5 mm. In this process, control of the welding robot
was not performed. Figure 14b depicts the results of monitoring the weld gap in real time
and controlling the robot with the proposed DNN-based model under the same welding
conditions. The weld bead by the welding robot controlled according to the change in
the weld gap had a more uniform appearance than that of the uncontrolled weld bead,
and the pressed weld bead did not appear. However, as shown in Figure 14b,c, a convex
shape was observed at the center of the bead owing to an error in the gap classification
result. This was considered as an enlarged bead because the welding speed was reduced
owing to the misclassification of class 2 (4 mm gap) in the 2 mm gap section. In contrast, in
the uncontrolled weld bead, a concave shape was observed in the 3 mm-gap section, and
the shape of the controlled weld bead was constant in all sections. The case, wherein the
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weld gap not only increased linearly from 0 to 5 mm but also decreased, was verified, as
shown in Figure 15. In the real-time verification of the test plate with a decreasing weld
gap, the uncontrolled weld bead had a large size in the 0 mm gap section, and the size of
the controlled weld bead was constant in all sections. However, in the real-time weld gap
monitoring results shown in Figure 15c, it was confirmed that the weld bead was slightly
larger during a short period as it was misclassified as a 4 mm gap in the section where
the weld gap decreased from 2 to 0 mm. In the real-time verification performed based
on the DNN model trained with the experimental data obtained through the crossover
experiment, although a detection error occurred, it was confirmed that the weld gap could
be accurately recognized again after the occurrence of the error. As a result, when the
gap increased and then decreased, the verification accuracies were confirmed to be 86%
and 89.4%, respectively; therefore, it is considered that the proposed DNN-based quality
management system through weld gap monitoring and real-time quality control can be
applied to the field. Noticeably, an excellent performance was obtained under the 0 and
4 mm gap conditions under increasing gap conditions; however, the weld gap detection
accuracy in the 2 mm gap section was slightly lower. In the 0 and 4 mm gap sections, an
accuracy in excess of 90% was confirmed; however, in the 2 mm gap section, an accuracy of
approximately 70% was confirmed. As shown in Figure 14c and Table 8, many prediction
errors occurred at the point where the 0 mm gap section changed to 2 mm; hence, it can
be confirmed that the welding speed was reduced and a larger bead was generated. In
this process, the detection accuracy was also slightly lower at the beginning of the welding
process from a section without a weld gap to a section with a weld gap. When the weld
gap section was changed from 2 to 4 mm, there were almost no prediction errors.
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Table 8. Real-time weld gap detection performance of the proposed DNN model (increasing gap).

Variable Support Correctly Estimated Error Accuracy % Average Accuracy %

Class 0 (0 mm gap) 30 27 3 90
86Class 1 (2 mm gap) 53 37 16 69.8

Class 2 (4 mm gap) 47 46 1 97.9

The same point can be confirmed in Figure 15c and Table 9; that is, the weld gap
decreased. An accuracy of 93% was confirmed in the 2 and 4 mm gap sections, respectively,
while an accuracy of 82% was confirmed in the 0 mm gap section. In this process, the
prediction accuracy also decreased during the change from a section with a weld gap to
a section without a weld gap, and the detection error increased at the beginning of the
section change.

Table 9. Real-time weld gap detection performance of the proposed DNN model (decreasing gap).

Variable Support Correctly Estimated Error Accuracy % Average Accuracy %

Class 0 (0 mm gap) 43 40 3 93
89.4Class 1 (2 mm gap) 43 40 3 93

Class 2 (4 mm gap) 45 37 8 82.2

The weld bead cross-sectional analysis results with and without weld deposition
rate control are depicted in Figures 16 and 17, respectively. Figure 16 shows the weld
cross-section for each section with a linearly increasing gap. Figure 16a–c depict cross-
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sectional images of the weld without weld deposition rate control, and Figure 16d–f depict
cross-sectional images of the weld with controlled weld deposition rate based on the
proposed DNN-based gap detection algorithm. Figure 17a–c depict the cross-sections of
the weld without welding deposition rate control under the decreasing gap condition, and
Figure 17d–f depict cross-sections of the weld with controlled weld deposition rate. As
a result, from Figures 16 and 17, it was confirmed that the weld bead controlled by the
proposed DNN-based weld gap monitoring and weld deposition rate control algorithm
derived a constant leg length and theoretical throat thickness in each section regardless of
the change in the weld gap.
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Figure 16. Weld bead cross-sectional comparison with and without quality control (optimal conditions for 0 mm gap):
(a–c) without real-time weld quality control, and (d–f) with weld quality control based on the proposed DNN method.
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(a–c) without real-time weld quality control, and (d–f) with weld quality control based on the proposed DNN method.
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A real-time test was conducted to derive uniform weld beads through the use of the
weld deposition rate control. At the beginning of the welding process, robot motions 1 and 3
were used, but the other welding conditions were kept constant. The experimental results
for controlling the weld deposition rate are presented in Tables 10 and 11. The tables
confirm that the proposed DNN-based weld gap detection model could accurately detect
the increased and decreased weld gap, appropriately control the motion of the welding
robot, and regulate the weld deposition rate to generate uniform beads. Furthermore,
the cross-section of the test plates was analyzed to assess the welding quality. A weld
bead of approximately 7 mm was generated for each weld gap region. Based on this
real-time verification, the proposed DNN-based model can accurately detect gaps and
achieve a suitable classification performance.

Table 10. Comparison thickness of theoretical throat with and without control (Optimal conditions
for 0 mm gap).

Thickneass of Theoretical Throat (mm)
Weld Gap (mm)

0 2 4

Without control 7.353 6.928 6.363
With control 7.623 7.494 7.706

Table 11. Comparison thickness of theoretical throat with and without control (Optimal conditions
for 4 mm gap).

Thickneass of Theoretical Throat (mm)
Weld Gap (mm)

4 2 0

Without control 7.353 6.928 6.363
With control 7.623 7.494 7.706

4. Conclusions

In this paper, we proposed a new welding gap-monitoring system based on a DNN
without using additional devices. The robot and welding machine were synchronized,
and a LabVIEW software-based signal measurement, analysis, determination, and control
system was developed. The welding current and voltage signals were analyzed in the
time and frequency domains, respectively. A total of 24 feature variables were derived
and used as inputs to the proposed DNN model to train the model. In addition, a signal
preprocessing software was developed to extract the corresponding feature variables in
real time. The notable developments and results of this study are as follows:

1. The proposed DNN-based gap detection model was trained based on the feature
variables extracted from the welding current and voltage signals, leading to a training
accuracy of approximately 94.3%.

2. For both offline and online cases, the verification process was performed with data
that were not included in the training data (obtained through additional experiments).
In this process, average accuracies of 93.7% and 87.7% were obtained for offline and
online cases, respectively. In the online test, the weld gap detection performance
decreased slightly at the beginning of the section where the weld gap changed.

3. The trained DNN model for weld gap detection and weld deposition rate control was
verified using test plates with linear changing gaps (0–5 mm). The results indicate
that uniform external welding beads were achieved by controlling the welding robot
based on real-time weld gap detection results.

The real-time weld gap monitoring and weld deposition rate control system proposed
in this study contribute to automation in shipbuilding; however, this study has certain
limitations. Although the proposed DNN-based weld gap monitoring system exhibited
excellent performance, the application of the model is limited owing to the welding con-
ditions and welding experiments. Therefore, in future research, we plan to focus on the
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generalization of the proposed model and further improve the proposed weld gap moni-
toring and weld deposition rate control algorithm using additional data and an upgraded
deep learning model.
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