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Abstract: In this study, we investigate the influence of Sc microalloying on the microstructure of
the Al5083 alloy. Trace amounts of Sc addition drastically improve the mechanical properties of the
Al5083 alloy from 216 MPa to 233 MPa. Macroscopically, the addition of Sc significantly reduces the
grain size of Al by approximately 50%. Additionally, a microstructural investigation reveals that
the Sc microalloying element induces fine Al3Sc nanoprecipitates in the Al matrix. The formation
of Al3Sc nanoprecipitates results in a pinning effect on the dislocations, leading to accumulated
dislocations. Compared to a Sc-free Al5083 alloy specimen, the number density of dislocations in the
Sc-added Al5083 alloy significantly increases after hot rolling, enhancing the tensile properties. We
reveal that the improved mechanical properties of Al5083 with Sc microalloying originate from the
grain refinement and the formation of fine Al3Sc nanoprecipitates.

Keywords: Al 5xxxx alloy; Al5083 alloy; microstructure; microalloying

1. Introduction

The Al-Mg-based Al5083 alloy has attracted much research interest due to its broad
range of applications to structural components in the transportation and construction
industries given its high strength, ductility, corrosion resistance, and weldability [1]. For
the Al5083 alloy, an intermediate amount of Mn (~5 wt.%) is utilized in order to enhance
the mechanical properties. Fe, the most typical impurity in Al alloys, is known to appear
as plate-like, Fe-rich intermetallic particles in the grain boundaries [2], deteriorating the
mechanical properties. Elemental Mn then changes the plate-like, Fe-rich intermetallic
particles into skeleton-like particles, which, in turn, improves the mechanical properties of
the Al5083 alloy [2,3].

Thermomechanical processes such as hot rolling have been widely used to improve
the mechanical properties of Al alloys. During hot rolling, strain is applied to Al alloys,
increasing the dislocation density and consequently improving the mechanical properties
due to the work hardening effect [4,5]. In addition, hot rolling breaks the large and brittle
particles formed in Al alloys into fine particles. In consequence, the ductility of cast Al
alloys can be improved by hot rolling.

In addition to the thermomechanical process, Sc microalloying has often been in-
troduced to improve the mechanical properties of Al alloys [6]. The microstructure and
mechanical properties are significantly affected even by a small addition of the Sc microal-
loying element [7,8]. In Al-Mg-based Al alloys, it has been reported that the existence of Mg
strongly reacts with Sc atoms [9]. The strong reaction between the Mg and Sc atoms then
affects the aging response of Sc-microalloyed Al-Mg-based alloys. The addition of Sc forms
Al3Sc precipitates in the Al matrix. The diffusivity of Mg atoms is then severely restricted
by the Al3Sc precipitates [9]. This consequently reduces the growth rate of the Al3Sc
precipitate, which thus enhances the creep resistance of Al-Mg-based alloys. Additionally,
finely dispersed Al3Sc precipitates reportedly inhibit recrystallization during severe plastic
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deformation and during the annealing process [10,11]. Strain hardening can then be used
to improve the mechanical strength of Sc-containing Al-Mg-based alloys without the an-
nealing process commonly used for conventional heat-treated Al alloys [7]. In addition, the
existence of Al3Sc particles in the melt act as nuclei for α-Al during the solidification step,
leading to significant grain refinement [12]. Nevertheless, the effect of Sc microalloying has
been in general reported for macroscopic scale. It is therefore the microstructural evolution
at nanoscopic scale should be carefully considered to understand the improvement of
mechanical properties by the trace addition of Sc microalloying element.

In this study, we aimed to investigate the effect of trace addition of Sc on the mi-
crostructural evolution of the Al5083 alloy. The microstructural evolution due to the
addition of Sc is also expected to affect the hot-rolling process as a thermomechanical
treatment for work hardening. The microstructures of the as-cast Sc-free/microalloyed
Al5083 alloys were investigated from the macroscopic scale to the microscopic scale using
X-ray diffraction (XRD), optical microscopy (OM), secondary electron microscopy (SEM),
and transmission electron microscopy (TEM). The resultant microstructural observations
analyzed considering the mechanical properties of the fabricated Al alloys.

2. Experimental Procedures

Al5083 was used as a base composition in this study, and the corresponding chemical
compositions are presented in Table 1. Al-5 wt.% Mn, Al-5 wt.% Ti, Al-5 wt.% Fe, and
Al-2 wt.% Sc master alloys were used, with approximately 99.9 wt.% pure elements used
for the other components. The elements were initially melted using a high-frequency
induction furnace at 800 ◦C under atmospheric conditions. Ar gas was then injected into
the molten metal for 15 min to enhance the homogeneity and to remove any impurities
from the molten metal. After the gas bubbling treatment, the molten metal was poured into
a mold at 750 ◦C. The as-cast samples were then homogenized at 475 ◦C for 24 h in order
to improve the workability of the alloy during the hot working process. The homogenized
samples were also hot-rolled up to 60% at 450 ◦C and stabilized at 150 ◦C for 2 h to reduce
the internal energy induced by hot rolling.

Table 1. Chemical compositions of the fabricated Sc-free/microalloyed Al5083 alloys.

Element (wt.%) Si Fe Cu Mn Mg Cr Zn Ti Sc Al

Sample A 0.4 0.4 0.1 0.5 4.9 0.25 0.25 0.15 - Bal.
Sample B 0.4 0.4 0.1 0.5 4.9 0.25 0.25 0.15 0.15 Bal.

For the mechanical test, the specimens were prepared according to ASTM E8 standard
test methods with the gage length, total length, width, and thickness of 25 mm, 100 mm,
6.0 mm, and 2.5 mm, respectively. Tensile tests were then carried out using a universal
testing machine (UTM, Shimadzu, AG-300kNX Plus, Kyoto, Japan) with a constant strain
rate of 2.0 mm/min at room temperature. More than 10 specimens were measured to
obtain average values of mechanical properties.

The macroscopic structure was investigated via optical microscopy (OM, Leica DM750M,
Wetzlar, Germany) with ImageJ software to quantify the grain size. In addition, the overall
microstructure was characterized based on X-ray diffraction (XRD, Bruker Corp., D8 Advance,
Hanau, Germany). The microscopic structure was then examined using scanning electron
microscopy (SEM, Jeol Ltd., JSM-7100F, Tokyo, Japan). For the SEM investigation, the speci-
mens were mechanically polished using standard metallographic techniques and etched by
Keller’s reagent [13]. Additionally, the nanoscopic structure was studied via field-emission
transmission electron microscopy (TEM, Tecnai ST-F20, FEI, Eindhoven, The Netherlands). For
electron transparency, each sample was initially polished down to <20 µm and Ar-ion milled
at an incident ion beam angle of 6◦ with an accelerating voltage of 4 kV.
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3. Results and Discussion

Figure 1 shows the typical tensile stress–strain curves obtained from the developed
Al-Mg-(Sc)-based alloys with different post-treatment processes. The tensile properties of
the yield strength (σy), ultimate tensile strength (σUTS), and total elongation (εf) are also
given in Table 2. The tested specimens are categorized into two major groups with/without
the trace addition of Sc (samples A and B) and with/without the additional hot-rolling
processes (samples A′ and B′). Thus, the effect of the addition of Sc can be investigated
by comparing samples A and B. From the tensile test results, the tensile strength (σUTS) is
improved from 216 MPa to 233 MPa by the addition of a small amount of Sc (0.15 wt.%).
Meanwhile, the elongation remains nearly identical at approximately 4% regardless of the
addition of Sc. In order to determine the effect of hot rolling, the tensile properties were
then compared based on samples A′ and B′. As presented in Table 2, the additional process
resulted in the simultaneous improvement in both the tensile strength and the elongation.
The σUTS value is increased to 304 MPa for sample A′ and 330 MPa for sample B′ due
to the hot-rolling process. Moreover, the elongation is significantly improved from ~4%
to ~12% for both samples. In addition to the elongation outcomes of samples A and B,
the elongation results of samples A′ and B′ are nearly identical even after the hot-rolling
process. It is generally known that hot rolling causes an increase in the number of internal
defects such as dislocations and twin grains in specimens, along with deformation of the
grains, which affects the mechanical strength [4,5]. From the tensile results, the highest
tensile strength of Al-Mg-Mn-based alloys can be realized with a trace addition of Sc and
an additional hot-rolling process. The effects of adding Sc and the hot-rolling process were
initially investigated based on a macroscopic structural investigation using XRD.
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Figure 1. Tensile properties of the Al5083 alloy (sample A) and Sc-microalloyed Al5083 (sample B)
alloy from the tensile tests of hot-rolled sample A (sample A′) and sample B (sample B′).

Figure 2 shows the two-theta scan profiles when using XRD obtained from samples
A/A′ and B/B′. The XRD profiles consist of strong diffraction peaks with several weak
diffraction peaks. First, the strong diffraction peaks for samples A/A′ and B/B′ are all
identified as Al, as shown in Table 3. The experimental Al peaks, however, are slightly
shifted to the left in 2θ. This indicates that the samples are tensile-strained. Second,
the weak peaks are determined as Mg2Si, Al8Mn5, and Al6(Fe, Mn) phases based on the
reported crystallographic information [14–17]. In contrast, a Sc-related phase such as the
Al3M′ type phase is not found in the Sc-added Al5083 alloy (sample B/B′). It is considered
that the Al3M′ type phase is very fine size [18–20] such that XRD is incapable of detecting
Sc-related precipitates due to the relatively large beam probe size [21]. Details will be
discussed with the TEM investigation.
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Table 2. Tensile properties of Sc-free/microalloyed Al5083 alloys with/without the hot-rolling process.

Designation Specimen σy (MPa) σUTS (MPa) ε (%)

Sample A 5083/
homogenization 113 216 ± 9 4.7 ± 1.2

Sample A′ 5083/
homogenization + hot rolled 183 304 ± 13 12.5 ± 1.1

Sample B 5083 + 0.15Sc/
homogenization 135 233 ± 9 4.1 ± 0.8

Sample B′ 5083 + 0.15Sc/
homogenization + hot rolled 214 330 ± 10 12.4 ± 1.1

Figure 3a,b shows typical optical micrographs (OM) recorded from the synthesized
Al-Mg-Mn-(Sc)-based alloys. The homogenized Al-Mg-Mn-(Sc) alloys consist of uniformly
distributed equiaxed grains, as shown in the magnified OM images (inset of Figure 3a,b).
From the OM images, a trace amount of Sc addition induces a difference in the grain
size, as shown in Figure 3a,b. The grain sizes of the synthesized alloys are measured and
averaged using a postimage processing technique provided in the ImageJ software (1.52,
National Institute of Mental Health, ML, USA) used here. The average grain size of the
homogenized Al5083 alloy is ~83.99 µm. This average grain size is then drastically reduced
to ~41.29 µm upon the addition of 0.15 wt.% Sc, which is only ~50% of the original grain
size (Al5083). In Al-based alloys, it has been reported that Sc microalloying elements
enhance the solidification speed due to the faster solidification phase transition caused
by the supercooling effect [22]. Additionally, the Sc constituent is known to promote the
formation of Al3Sc precipitates, which hinder the grain growth of α-Al [12]. Based on
earlier work, the addition of Sc in Al alloys mainly causes grain refinement, thus increasing
the mechanical strength. The microstructure of the hot-rolled specimens (samples A′ and
B′) were then investigated, as shown in Figure 3c,d. Neither of the hot-rolled specimens
shows obvious dynamic grain growth at the relatively high rolling temperature of 450 ◦C.
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Figure 2. Phase identification of (a) the Sc-free/microalloyed Al5083 alloys using 2θ scans
of XRD with (b) the magnified XRD profiles from 39◦–44◦ for the phase identification of
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Table 3. Experimental and calculated 2θ Angles with the corresponding differences for the Al phase.

Al (Ref.) Sample A Sample A′ Sample B Sample B′

(h, k, l) 2θ (h, k, l) 2θ ∆2θ (h, k, l) 2θ ∆2θ (h, k, l) 2θ ∆2θ (h, k, l) 2θ ∆2θ

111 38.47 111 38.26 −0.21 111 38.32 −0.15 111 38.32 −0.15 111 38.23 −0.24
200 44.72 200 44.56 −0.16 200 44.46 −0.26 200 44.51 −0.21 200 44.70 −0.02
220 65.09 220 64.78 −0.31 220 64.59 −0.50 220 64.55 −0.54 220 64.70 −0.39
311 78.23 311 77.77 −0.46 311 77.57 −0.66 311 77.53 −0.70 311 77.80 −0.43
222 82.43 222 81.92 −0.51 222 81.94 −0.49 222 81.96 −0.47 222 82.00 −0.43
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Figure 3. Typical OM images recorded from (a) sample A (Sc-free and non-hot-rolled), (b) sample
B (Sc-microalloyed and non-hot-rolled), (c) sample A′ (Sc-free and hot-rolled), and (d) sample B′

(Sc-microalloyed and hot-rolled).

Figure 4 shows backscattered electron (BSE) images recorded from samples A and
B with the corresponding EDS mapping results. From the recorded BSE images, the syn-
thesized Sc-free and 0.15 Sc-added Al4.9Mg0.5Mn alloys have similar microstructures,
as can be seen in Figure 4a,c. The Al4.9Mg0.5Mn-(0.15 Sc) alloys mainly consist of an
Al matrix and three different phases in the grain boundaries, as indicated in Figure 4a.
From the elemental mapping results, the large particle (I) is rich in the three elements
of Fe, Cr, and Mn, which may have formed in the Al6M type phase, where M can be
Fe/Cr/Mn [23,24]. The Al6M-type phase is in good agreement with the phase identifi-
cation result from XRD (Figure 2). Other particles with a skeleton-like structure (II) are
simultaneously observed with Al6M-type particles. The two elements of Cr and Mn show
much brighter intensity levels, compared to the other elements. Based on previous reports,
in consequence, the skeleton-like structure (II) is considered to be the Al-(Cr, Mn) type
of intermetallic phase [24]. The particles with dark contrast (III) are then determined as
Mg2Si after a chemical analysis and considering the XRD results (Figure 2). The Al-Mg
phase diagram [25] shows that the solubility of Mg in Al is within 17% and that the phase
transformation temperature to α-Al + Al8Mg5 from the Al-Mg alloy in the liquid state is
approximately 723 K. It is therefore considered that the liquid state is mainly solidified to
the α-Al phase without the formation of Al-Mg precipitates due to the insufficient Mg-rich
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eutectic phase caused by the low content of Mg and the relatively insufficient temperature.
On the other hand, the trace addition of Sc leads to no distinct formation of a Sc-containing
secondary phase in the Al-4.9Mg-0.5Mn-0.15Sc alloy. This is due to the fact that Sc-related
precipitates such as those with the Al3M’ type structure are only a few nanometers in size,
in the case of which M’ could be Sc or a random solid solution with other elements in the
Al alloys [26,27].
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Figure 4. Typical BSE images of non-hot-rolled (a) sample A (Sc-free Al5083), (c) sample B (Sc-microalloyed Al5083) and
(b,d) the corresponding elemental mapping results from SEM.

Figure 5 shows bright-field (BF) images and the elemental mapping results of samples
A and sample B. The diffraction contrast images were recorded at the low-order zone axis
of [110]Al in order to improve the diffraction contrast. Samples A and B show no obvious
microstructural differences in the medium magnification images shown in Figure 5a,d. As
shown in the inset of Figure 5a, the typical ED pattern of sample A only consists of Al
spots without any secondary spots. In contrast, the ED pattern of sample B shows extra
peaks which are indexed as the Al3M′-type structure, as indexed in the inset of Figure 5d.
The diffraction spots of the Al3M′ phase exist at 1

2 g of the Al reflections, which indicates
that the lattice constants of Al and Al3M’ are similar. Besides the formation of Al3M′-type
precipitates in sample B, the addition of a trace amount of Sc affects the number density
of the precipitates in the α-Al grains of samples A and B. Figure 5b,e shows Z-contrast
images, respectively, recorded from sample A and B using a scanning TEM technique
with a high angular annular dark-field (HAADF) detector. Both sample A and sample B
consist of very fine nanoprecipitates in the α-Al grains, while the number density of the
nanoprecipitates significantly increases in the Sc-microalloyed Al5083 alloy. For samples
A and B, the observed nanoprecipitates are mostly revealed as Al8Mn5 and Al6(Fe,Mn)
from the elemental mapping results, as shown in Figure 5c,f. On the other hand, Al3Sc
(Al3M′ type) precipitates are additionally observed in sample B. From the microscopic
observations, it is evident that the addition of Sc facilitates the formation of nanoprecipitates
in the Al matrix. Interestingly, the effect of a Sc addition on the formation of precipitates is
known to show different results in Al alloys, including (i) an enhancement [28,29], (ii) no
effect [30,31], and (iii) suppression [32,33]. Nevertheless, the results of this study clearly
show that the trace amounts of added Sc facilitate the formation of nanoprecipitates in
the Al-Mg-Mn alloy. Based on the above results, it is considered that the increase in the
number density of the nanoprecipitates contributes to the enhancement of the mechanical
properties of the Sc-added Al5083 alloy.
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Figure 5. Microscopic structural investigation using TEM for (a–c) sample A and (d–f) sample B: (a,d) typical BF images with
the corresponding electron diffraction patterns (insets) and (b,e) Z-contrast images with (c,f) the corresponding elemental
mapping results.

Figure 6 shows bright-field (BF) images of the hot-rolled samples A′ and B′. The
dislocation density is generally known to increase due to the hot-rolling process. In
comparison to Figure 5, the dislocation density increases more in samples A′ and B′.
In addition, as shown in Figure 6a,b, the addition of Sc clearly affects the dislocation
density in the α-Al grain. The Sc-free alloy of sample A′ (Figure 6a) has fewer dislocations,
compared to the Sc-added alloy of sample B′ (Figure 6b). In the magnified BF images of
samples A′ and B′, it can be observed that dislocations are well developed around the
nanoprecipitates. Samples A′ and B′ are hot-rolled at an identical reduction rate of 60%
such that the difference in the dislocation density likely originated from the microstructural
difference induced by the addition of Sc. As shown in Figure 5, the addition of Sc facilitates
the formation of nanoprecipitates in the Al matrix such as Al6M (M: Fe/Cr/Mn), Al3M′

(M′: Sc/Ti), Mg2Si, and other phases, which cannot be exactly identified. The size of
nanoprecipitates was then measured by few nm ~ few tens nm. The nanoprecipitates in
the Al matrix then cause a pinning effect on the dislocations, resulting in the accumulation
of dislocations, which then leads to an increase in the dislocation density during the
hot-rolling process.
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4. Conclusions

In this study, we demonstrated that the mechanical properties of Al5083 alloys can
be effectively improved by the hot rolling and the trace addition of Sc. The highest tensile
properties (σUTS = 330 MPa, ε = 12.4%) were achieved by the hot rolling and the trace
addition of Sc (0.15 wt.%). It is, in general, accepted that mechanical strength and ductility
are inversely proportional. The developed Al alloys, however, showed that the mechanical
strength and the elongations were simultaneously improved. We then investigated the
effect of Sc microalloying on the microstructural changes of the Al5083 alloy. A trace
amount of added Sc affects the microstructure of the Al5083 alloy from the macroscopic to
the microscopic scale in the following ways:

(1) Macroscopically, the Sc microalloying element significantly reduces the Al grain size
from ~83.99 µm to ~41.29 µm;

(2) Microscopically, the Sc microalloying element forms Al3Sc nanoprecipitates. More-
over, the formation of other nanoprecipitates is significantly facilitated by the addition
of the Sc element.

The increase in the number density of the nanoprecipitates then enhances the accumu-
lation of dislocations during the hot-rolling process, leading to an enhancement of the work
hardening during hot rolling. Therefore, the improvement of the mechanical properties
of the Sc-added Al5083 alloy stems from grain refinement and the facilitated formation
of nanoprecipitates.
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