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Abstract: This study shows the application of a system to monitor the state of damage of rail-
way wheel steel specimens during rolling contact fatigue tests. This system can make continuous
measurements with an evaluation of damage without stopping the tests and without destructive
measurements. Four tests were carried out to train the system by recording torque and vibration
data. Both statistical and spectral features were extracted from the sensors signals. A Principal
Component Analysis (PCA) was performed to reduce the volume of the initial dataset; then, the
data were classified with the k-means algorithm. The results were then converted into probabilities
curves. Metallurgical investigations (optical micrographs, wear curves) and hardness tests were
carried out to assess the trends of machine learning analysis. The training tests were used to train
the proposed algorithm. Three validation tests were performed by using the real-time results of
the k-means algorithm as a stop condition. Metallurgical analysis was performed also in this case.
The validation tests follow the results of the training test and metallurgical analysis confirms the
damage found with the machine learning analysis: when the membership probability of the cluster
corresponding to the damage state reaches a value higher than 0.5, the metallurgical analysis clearly
shows the cracks on the surface of the specimen due to the rolling contact fatigue (RCF) damage
mechanism. These preliminary results are positive, even if reproduced on a limited set of specimens.
This approach could be integrated in rolling contact fatigue tests to provide additional information
on damage progression.

Keywords: machine learning; rolling contact fatigue tests; damage assessment; metallurgical analysis

1. Introduction

Rolling contact fatigue (RCF) is typical damage in wheel and rail steels. The assessment
of this typology of damage involves high costs and takes time, usually using destructive
tests for the specimens adopted for the tests. Moreover, analytical models need much data
to be calibrated and a great quantity of tests is required.

Accurate modeling on RCF has been studied until now: some studies have focused on
the mechanical and metallurgical characterization of different steels for wheel and rail [1];
while other studies present the development of analytical models [2–5].

A twin-disk bench is a solution to characterize wheel and rail steel. The bench can
operate in different controlled conditions: rotation speed, slip ratio, and load. In this
way, the bench simulates the real operating condition of the wheel [6]. The traditional
protocol [7] to characterize the damage of wheels and rails is to stop the tests after a
predefined number of cycles during the tests, dismount the sample from the bench, and
perform different tests: weighing measurements to evaluate the wear rate of the steel and
acquire the surface state with a vision system [8,9]. At the end of the test, destructive
measurements are performed to evaluate the effective damage of the steel.

The proposed study aims to quantitatively estimate the damage progress of a specimen
during a test with continuous and non-contact measurements, using a non-supervised
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machine learning technique [10–13], called k-means clustering [14], applied to vibrations
and torque datasets. The idea was to validate a system developed in a previous work [15],
to understand if the approach could be used to control the duration of the test. Preliminary
RCF tests were carried out with the same wheel and rail steels to create a database used to
train the algorithm. Then, a second set of tests were performed using the on-line system to
evaluate the damage. The tests were stopped at different stages of the damage progression
to confirm the results of the machine learning system with destructive measurements.

Vibrations and feedback signals are commonly used to classify the fault conditions of
machines. Literature reports different works on this topic, chiefly applied to bearings of
rotary machines. Convolutional Neural Network (CNN) is presented in many works as a
valid algorithm to detect fault conditions of bearings parts [16–20]. In [21], the Remaining
Useful Life (RUL) prediction of machining sensor data is performed with the combination
of the Support Vector Machine (SVM) as a classification tool and Autoregressive and
Integrated Moving Average (ARIMA) for the identification of the RUL. Meanwhile, in [22],
a real-time classification of a cutting blade’s status was developed. The model based on a
logistic regression was verified with real measurement data from an industrial machine tool.
Meanwhile, Bustillo et al. [23] have studied the experimental repetition of different machine
learning algorithms, such as: regression trees, k-Nearest Neighbors (kNN), Artificial
Neural Networks (ANN), bagging and Random Forest. The purpose of this work is to
predict the tool-life in the face-turning operations of AISI 1045 steel discs, depending
on different cooling systems and tool geometries. The results suggested that the use of
raw experimental data, rather than their averaged values, can achieve machine-learning
models of higher accuracy for tool-wear processes. In [24], acoustic emission features are
correlated with corresponding natural wear of slow speed bearings through a series of
laboratory experiments by using a neural network model and gaussian process regression.
The authors in [25] propose a deep hybrid model that allows obtaining a higher accuracy
than a single convolutional neural network. All these machine-learning algorithms are
used to handle big amounts of raw data (until months of data recorded) and to detect
fault conditions of the rotary machines. Having a high number of data is usually time-
consuming and costly and it is important to find algorithms that need few data for training.
In the area of unsupervised machine learning algorithms, k-means represent a powerful
and simple algorithm to detect fault conditions of rotary machines [26–30]. K-means
algorithm is normally used when the number of data is not excessive and usually matched
with algorithms to reduce the number of features [13]. In [31], the k-means algorithm is
used with a combination of vibration signals and thermal image features, to extract shape
features using image segmentation.

In the current literature, many studies have been focused on quantifying the dam-
age evolution and improvement of the fault condition, especially without stopping the
tests [1,8,15,21,22].

The innovative contribution of this work is in the field of the small-scale RCF tests.
Similar techniques have already been used to investigate variations in frequency responses
of vibrations [32], but those approaches require operator-based manual tuning and exten-
sive post-processing of the data. The proposed method is automatic and quantitatively
estimates the damage in real-time during a test [33].

The paper is divided into the following sections: Section 2 presents the specimens, the
instrumentation, the protocol and the data processing used to perform this experimental
activity; Section 3 presents the experimental campaign carried out, divided into a training
part and a validation part of the system, able to monitor the damage evolution of the wheel
and rail steels. The discussion of the results is compared with the metallurgical analysis
carried out on the specimen tested. In Section 4, some conclusions are discussed about this
method for monitoring the damage evolution in rolling contact fatigue tests.
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2. Materials and Methods
2.1. Specimens

The rolling contact tests were carried out with a two-disc test rig pairing a wheel steel
disc as follower with a rail steel disc as driver. The diameter of the discs is 60 mm, and the
contact surface width is 15 mm. The specimens were machined out of a new wheel rim and
a new rail head with their axis perpendicular to the wheel tread and the rail longitudinal
axis, respectively. The wheel discs are made of SANDLOS® S steel [7,34,35], which is type
AAR CLASS C steel modified. SANDLOS® S steel has a higher content of Si than CLASS
C and it is micro-alloyed with V and Nb. The last two chemical elements are added in
accordance with maximum requirements (V ≤ 0.04% and Nb ≤ 0.05%) to improve the
cyclic yield strength and fracture toughness in the wheel tread. This steel is designed for
interaction with head-hardened rails, also in the presence of sand or debris in the contact
area. The rail discs are made of 350 HT EN 13674-1 steel, which is used for heat-treated
rails. All steels are supplied by Lucchini RS. Their chemical composition and mechanical
properties are shown in Table 1.

Table 1. Main chemical elements and mechanical properties of the wheel and rail steels.

Steels SANDLOS® S 350 HT

Chemical
Composition (%)

C 0.72 0.72
Mn 0.80 1.04
Si 0.87 0.30
S 0.001 0.004
P 0.010 0.015

Ultimate tensile stress (MPa) 1180 ≥1175
Monotonic yield stress (MPa) 750 -

Elongation (%) 12 ≥9
Hardness HB 347 345

2.2. Instrumentation

Figure 1 shows a schematic drawing of the twin-disk rig used in this work (University
of Brescia, Brescia, Italy), which was developed internally as described in [2]. The shafts
are independent, and a hydraulic actuator applies the imposed contact load. The rolling
speed of the shafts is measured by encoders, and a load cell located at the piston head
measures the contact load between specimens. The bench is equipped with a torque sensor
with a full scale of 200 Nm positioned on the displaceable shaft.

Piezo-accelerometers (732a by Wilcoxon) with a full scale of 500 m/s2, and a band-
width of 26 kHz are fixed near each mandrel support, on the machine frame. Both the
accelerometers and the torque sensors are acquired using a NI 9172 DAQ board (by NI),
equipped with a NI9215 module (by NI) for the torque signal and a NI9233 module (by NI)
for the accelerometers. The acquisition was performed using a custom software developed
in Labview (by NI) running at a synchronous sampling frequency of 5 kHz for the whole
duration of each test.

2.3. Protocol

The tests were performed under the same maximum contact pressure (P = 1100 MPa),
rolling speed (500 rpm) and sliding/rolling ratio (s = 1%). The contact pressure and the
sliding speed conditions are typical of the wheel–rail contact on a curve. Before each test,
the wheel and rail discs were cleaned in a bath of ethanol with ultrasonic vibrations and
weighed by a precision balance with a resolution of 0.001 g. Both stepwise and continuous
tests were performed: during the stepwise tests, the discs were periodically dismounted,
ultrasonically cleaned, and weighed to evaluate their weight loss, while continuous tests
were never interrupted, and the weight loss of the discs was measured only at the end of
the tests. The curves of weight loss versus number of cycles were obtained for both the
wheel and rail discs and the wear rates were calculated from the stepwise tests. At the end
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of each test, the wheel disc was cut along the midplane orthogonally to the contact surface.
The disc cross-section was ground, mechanically polished to a 1 µm finish, etched with 2%
Nital and examined with a Leica DMI 5000 M light optical microscope. The deformation
under the contact surface and the crack morphology were investigated and the damage
mechanisms were identified. The damage evolution of the wheel discs at an increasing
number of cycles was documented. Vickers hardness tests were carried out on the cross-
section of each wheel disc at varying distances from the contact surface to evaluate the steel
work-hardening phenomenon and correlate it with the deformation beneath the contact
surface. The tests were performed using a 1000 g load and a dwell time of 15 s, complying
with ASTM E384 (2011).
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2.4. Data Processing

The analog signals are recorded in packets of 0.2 s for faster post-processing, and
further split in binary files representing 200 s to avoid the handling of big-size files. The
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feature extraction and the relative weight of the features follow the same approach as
in [15]. Software developed in Labview computed in real-time for all three signals (two
vibration signals and one torque) and for each record, 44 features, aiming to get a detailed
representation of the phenomenon every 0.2 s. The features extracted are, for each channel:
mean, variance, root mean square, 75th percentiles, median, and the centroid of the power
spectrum density, as shown in Table 2. Features depending on the combination of different
signals were also computed for each channel pair: the maximum value of the cross-
correlation function and its associated time delay, the centroid of the frequency response
function, and the quartiles of the frequency response function cumulate as shown in Table 3.

Table 2. Features based on a single channel selected.

Feature X Acceleration Y Acceleration Torque

Mean Used Used Not used
Variance Used Used Used

Root mean square Used Used Used
Median Not used Used Not used

75th Percentile Not used Used Not used
PSD centroid Used Used Used

Table 3. Features based on channel pairs selected.

X Acceleration Y Acceleration Torque

X Acceleration

Frequency Response Function (FRF) centroid
Max Cross Correlation

Time delay
FRF centroid

FRF 25th percentile FRF 25th Percentile
FRF median FRF Median

FRF 75th Percentile FRF 75th Percentile

Y Acceleration

Max cross correlation
Time delay

FRF centroid

Max cross correlation
Time delay

FRF centroid
FRF 25th percentile FRF 25th percentile

FRF median FRF median
FRF 75th percentile FRF 75th percentile

Torque

FRF centroid FRF centroid

Max cross correlation
FRF 25th percentile FRF 25th percentile

FRF median FRF median
FRF 75th percentile FRF 75th percentile

The features were normalized following the Z-Score method: every feature was
normalized by considering the mean and the standard deviation of the same feature
considering all data available for training.

Then, a Principal Component Analysis (PCA) was computed to reduce the number
of features using a limit of 90% of the variance explained, using the training data only.
Then, the data described in the PC’s space are computed by the k-means algorithm. The
result of the k-means algorithm is a distance dij for each state, but this distance does not
give quantitative information of belonging to a state. To solve this problem, the data are
transformed in a probability trough this formulation:

Pij =
1/

(
dij

)2

∑K
k=1 1/(dik)

2 (1)

where Pij is the probability of the i-th record to belonging to a particular j state, dij is the
distance of the i-th record of a j state, and dik is the distance of the other states calculated
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by the k-means. In this way, the distance between the i-th data and a specific reference for
that state is translated in a probability of belonging to that state, which is much easier to
interpret than the simple distance.

2.5. Validation Approach

The validation of the proposed approach was carried out by using the real-time
computation of the k-means algorithm. The real-time results of the k-means algorithm
were used as a stop condition for the validation tests.

3. Experimental Results and Discussion
3.1. Test Performed

Table 4 shows the tests performed: four training tests with a predefined number of
cycles, and three validation tests with the algorithm status used as a stop condition.

Table 4. Tests performed, and protocol followed.

Test ID Protocol Stop Condition Cycles

T01 Stepwise Predefined number of cycles 200,000
T02 Stepwise Predefined number of cycles 200,000
T03 Continuous Predefined number of cycles 200,000
T04 Continuous Predefined number of cycles 200,000
V01 Continuous Controlled by k-means results 10,000
V02 Continuous Controlled by k-means results 25,858
V03 Continuous Controlled by k-means results 100,000

3.2. Training Tests

The training tests T01 and T02 were performed following with a stepwise protocol,
while T03 and T04 followed a continuous protocol. Figures 2 and 3 show the results
deriving from the elaboration of the datasets carried out with k-means: for each cycle, the
probability of belonging to a cluster was calculated.

By analyzing the stepwise tests (Figure 2), three clusters were recognized from the
k-means algorithm: cluster 1 (yellow) represents the undamaged state and it is the most
frequently found during all the tests; cluster 2 (green) is associated with the damaged state
and becomes prevalent only in the T02 test after 180,000 cycles. The least populated cluster,
the number 3 (red), is the one that identifies the test rig downtime, occurring at 10,000,
20,000, 30,000, 50,000, 70,000, 100,000, 130,000, and 160,000 cycles.

The continuous tests (Figure 3) present a different trend. The undamaged state
decreases after 70,000 cycles for T03, and after 20,000 cycles for the T04 tests. The damage
state slowly increases its likelihood, reaching a condition of equal probability at 95,000
cycles for T03, and 25,000 for the T04 test. After that, the damaged state becomes the
most likely until another change is detected by the algorithm, respectively, at 140,000 for
T03, and the other change is detected at 100,000 for the T04 test. After these cycles, the
undamaged state returns the most likely until the end of the test for the T04 test. For the
T03 test, there is a third change that begins exactly at the end of the test with a return to the
damaged state.

These trends found with machine learning analysis can be explained with the metal-
lurgical analysis, in particular: optical microscope analysis, hardness tests, and weight loss
with the calculated wear curves.
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with flacking appearing on the surface, which means that the damage is in progress. The
machine learning analysis confirms the final state of damage and can suggest what could
happen during the tests. For T02, the change in damage state occurs at 180,000 cycles,
meanwhile, T03 has a rapid change in damage state at the end of the test.
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The same conclusions can be drawn by considering the cross-section micrographs
of Figures 5 and 6. In both cases, the cross-sections of the wheel discs T02 and T03 show
surface cracks following the plastic deformed material.

An increase in hardness was observed under the contact surface in all tested discs.
This result correlates well with the pattern of deformation observed metallographically in
Figures 5 and 6, because the progressive accumulation of plastic strain under the contact
surface during the test resulted in the steel hardening. The maximum hardening is close to
the contact surface where the plastic deformation is more severe; then, the hardness gradu-
ally decreases at increasing distances from the surface because of the smaller deformation
down to the value of the undeformed steel.
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The maximum hardness measured in the discs of the stepwise tests is higher than that
in the disc of the continuous test and it suggested that the discs of the stepwise tests are in
the initial stage of the damage, meanwhile, in the continuous test, the detachment of the
surface material has already occurred with the consequence to have lower hardness near
the surface in comparison with the stepwise tests.

Figure 8 shows the wear curves obtained from the continuous and stepwise tests.
At first sight, the weight loss increases with the number of cycles because of progressive
wear. In the stepwise tests, the wear curves show two different periods. There is an
initial incubation period lasting 10,000 cycles where the wear rate is low and then steadily
increases, followed by a steady-state period where the wear rate is higher and constant.
The first period is probably due to the build-up of plastic strain in the disc surface before
a threshold is reached and wear starts to take place [36]. Given the substantially linear
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relationship between weight loss and number of cycles in the steady-state period of the
curves, the wear rates of both wheel and rail discs were calculated for each test from the
linear best fit of the experimental points.
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The results are shown in Table 5: the wear rate of the SANDLOS® S discs is consistent
with that obtained in a previous work carried out by the authors on the same steels in
longer tests [7]. The weight loss of the wheel and rail discs measured during the two
repeated stepwise tests can be superimposed, qualitatively indicating good reproducibility
of the tests.

Table 5. Wear rate of the wheel and rail discs during the steady state period of the stepwise training
tests.

Steel Wear Rate (g/Cycle)

SANDLOS® S T01 3.34 × 10−6

350HT T01R 7.10 × 10−6

SANDLOS® S T02 3.08 × 10−6

350HT T02R 7.90 × 10−6

Another important consideration in the wear curves of the wheel discs is in the
comparison of the weight loss between the continuous and stepwise tests at the end of
tests. The weight loss of continuous tests is higher than the weight loss obtained in the
stepwise tests. This confirms that the damage was more severe in the continuous tests.

These trends of training tests lead to an understanding that the RCF phenomenon
is cyclic. At the initial stage of the test, the contact surface material accumulates plastic
deformation that is proved by an increase in the hardness. In this state, the material is in
the undamaged state. When the material reaches a limit in the accumulation of plastic de-
formation, the nucleation of surface cracks begins. The subsequent crack propagation leads
to the detachment of material from the contact surface. In this case, the system is detecting
a more likely damaged state. This condition remains until the material detachment leads to
the complete removal of the plastic deformed material. After this, the process restarts from
the accumulation of plastic deformation.

3.3. Validation Tests

Three validations tests were performed by using the real-time results of the k-means
algorithm as a stop condition. The moments chosen to stop the tests were: in the undam-
aged state when the damage state begins to increase (Figure 9a), after the change when the
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damage state becomes the most likely cluster (Figure 9b), and in the damage state at several
cycles after the change (Figure 9c). V01 and V02 tests show a correct trend of the clusters:
when the test is stopped or controlled by the k-means results, the cluster corresponding
to the downtime bench becomes the most populated cluster. V03 test presents a moment
when the cluster of the downtime bench becomes the most populated cluster at the initial
stage of the test. This was not a downtime of the bench, but probably a moment where
the algorithm recognizes a wrong cluster due to the vibration data with a low value. V01
presents a continuous change between the damage state (green) and undamaged state
(yellow). This means that the two clusters are equiprobable and the damage is in an
initial stage.
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The metallurgical analysis confirms the results found in the training tests. Figures 10 and 11
show the running surfaces and the cross-sections of the wheel discs at the end of the three
continuous tests. The contact surfaces appear different at the end of the tests with different
durations proving that the wheel disc damage changes during the test. In the early 10,000
cycles, the surface appearance did not change significantly; after 25,858 cycles, flaking
appeared on the surface—this phenomenon progressively intensifies with the increasing of
the number of cycles up to 100,000 cycles.

These observations can be correlated with ratcheting, surface crack nucleation and
growth, and weight loss. The analysis with an optical microscope of the 10,000-cycle disc
cross-section (Figure 11a) shows the presence below the contact surface of a plastic layer
deformed in the friction direction; only one very short surface crack was found on the
whole disc section. Therefore, the material was not significantly altered, and the disc weight
loss was very limited, as shown in Figure 12. Ratcheting and consequent surface crack
nucleation and growth were displayed on the cross-section of the 25,858- and 100,000-cycle
discs (Figure 11b,c, respectively). These damage mechanisms are typical of wheel and rail
steels in dry tests, as documented for example in [37]. The hardness profile confirms the
analysis carried out with the optical microscope (Figure 13). The maximum hardness at
10,000 cycles is lower and proves the observation done in the cross-section of the wheel
discs: the damage is in a preliminary stage and the surface did not change significantly.

After 25,858 cycles (V02), the hardness increases the symptom that the plastic layer
below the surface is more deformed in the friction direction. After 100,000 cycles (V03),
the hardness is still increasing proving that the plastic deformation of the material is
more severe. In addition to this, the ratcheting continues with consequent surface crack
nucleation and growth.

By analyzing the wear curves (Figure 12), the weight loss is similar to the weight loss
found in the training tests. The weight loss of the validation tests V01 and V02 follows the
same trend of the stepwise tests, because the material is in the initial stage of the damage
and the difference between continuous and stepwise tests is not yet appreciable. The
difference between continuous and stepwise tests is visible in V03 tests, where the weight
loss is higher than the stepwise tests at the same number of cycles, and it is similar to
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the trend found in the continuous training tests. This indicates a good reproducibility of
the tests.

The machine learning analysis controlled by the k-means results confirms the trends
found in the training tests. The metallurgical analysis proves the results found with
the k-means algorithm. The observations with optical microscope, the hardness tests,
and the wear curves prove that the material is being damaged with the typical damage
mechanism of the wheel and rail steel in dry tests: wear, ratcheting, surface crack nucleation
and growth.
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4. Conclusions

The present work shows a new technique to evaluate the evolution of damage in RCF
tests with the use of a k-means algorithm used for clustering the vibrations and torque
data. The classical and easy method found in the literature to evaluate the damage of a
steel wheel is to perform a small-scale test with a twin disk bench and stop the test at an
intermediate number of cycles applying destructive analysis to evaluate the damage.

The application of the k-means algorithm to small-scale RCF tests is a novelty for
these typologies of tests. Indeed, this technique allows us to avoid the intermediate stop
of a test to evaluate the damage of a steel wheel. The damage is quantitatively estimated
mathematically with a distance between the current data and a specific reference, called
cluster-centers. The cluster-centers are directly correlated with the traditional damage in
RCF (wear, racheting, etc.). The membership probability calculated from these distances
represents an effective way to quantitatively estimate the severity of damage during
the tests.
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The validation tests controlled by the k-means results confirm the trends obtained in
the training tests. The metallurgical analysis shows the ability of the algorithm to detect
the different stages of the traditional mechanism of damage in RCF and quantitatively
estimate its severity, even if the metallurgical analysis is not a comparative measure to allow
validation from a metrological point of view. When the cluster representing the damage
state reaches a value of membership probability higher than 0.5, the metallurgical analysis
show clearly the cracks on the surface of the specimen due to the RCF damage mechanism.

These preliminary tests are encouraging and show the ability of the algorithm to detect
every stage of the damage in wheel and rail steels with several limitations. A limitation
of these results is the number of specimens tested. Indeed, a further number of tests are
needed to confirm these preliminary results from a metrological point of view to have
a better train of the k-means algorithm. The limitation to perform further tests is in the
duration of the tests. The duration of a test depends on the steel analyzed and the operating
conditions: the time of a test is from one day to a week in dry conditions. Another limitation
of these tests is the difficulty in creating other specimens. Indeed, the specimens are directly
extracted from a real wheel with a difficult method of extraction. This makes it difficult to
have a high number of specimens for material and reduce the possibility to perform the
correct number of results to have validation from a metrological point of view.

With a correct number of results to have validation from a metrological point of view,
constants and parametric models representing the damage evolution could be found to
give further information to designers for a better evaluation of damage in railway wheels.
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