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Abstract: Laser-based additive manufacturing enables the production of complex geometries via
layer-wise cladding. Laser metal deposition (LMD) uses a scanning laser source to fuse in situ
deposited metal powder layer by layer. However, due to the excessive number of influential factors
in the physical transformation of the metal powder and the highly dynamic temperature fields
caused by the melt pool dynamics and phase transitions, the quality and repeatability of parts built
by this process is still challenging. In order to analyze and/or predict the spatially varying and time
dependent thermal behavior in LMD, extensive work has been done to develop predictive models
usually by using finite element method (FEM). From a control-oriented perspective, simulations
based on these models are computationally too expensive and are thus not suitable for real-time
control applications. In this contribution, a spatio-temporal input–output model based on the heat
equation is proposed. In contrast to other works, the parameters of the model are directly estimated
from measurements of the LMD process acquired with an infrared (IR) camera during processing
specimens using AISI 316 L stainless steel. In order to deal with noisy data, system identification
techniques are used taking different disturbing noise into account. By doing so, spatio-temporal
models are developed, enabling the prediction of the thermal behavior by means of the radiance
measured by the IR camera in the range of the considered processing parameters. Furthermore, in
the considered modeling framework, the computational effort for thermal prediction is reduced
compared to FEM, thus enabling the use in real-time control applications.

Keywords: spatio-temporal dynamics; system identification; laser metal deposition; additive
manufacturing

1. Introduction

Additive manufacturing (AM) enables the production of complex and customized
parts using a focused heat source to fuse material in a layer-wise fashion. Depending on
size, material, and complexity of the parts to be manufactured, different processes are used.
In AM of metallic materials, laser metal deposition (LMD) can be used where the layer-by-
layer part manufacturing is accomplished by an in situ delivery of powder material by a
nozzle subsequently melted by the laser. Thereby, the resultant part quality in terms of its
shape, micro-structure distribution, hardness, etc., is determined by many interconnected
physical phenomena affiliated with the combination of the chosen process parameters [1].
The phase transition of the metallic material is a complex process depending on the spatial
heat supply and dissipation. Moreover, the resultant spatially resolved thermal history
of the part mainly effects its micro-structural distribution and thus is desirable to be
predictable for optimization and control of the LMD process [2,3].

Due to the complexity of physical phenomena and the large amount of process vari-
ables involved, finite element methods (FEM) and computational fluid dynamics (CFD)
are commonly used for modeling the LMD process [1]. While these models are suitable
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for process analysis if appropriated parametrized, they are generally too complex for
control applications.

Commonly, works dealing with controller synthesis for laser-based AM processes
assume solely temporal dynamics and, thus, use lumped parameter models (see, e.g., [4–9]).
These lumped models neglect the spatial behavior of the thermal field or use an online
adaption scheme together with an appropriate monitoring system to take the changing
thermal dynamics in the AM process into account. For instance, Salehi and Brandt [4]
measured the melt pool temperature using a two-color pyrometer and related it to the
laser power by the use of a simple transfer function model to synthesize a PID controller.
Song et al. [8,9] developed a state-space model for this purpose. Tang and Landers [5–7]
proposed a transfer-function based model for the use in an online melt pool temperature
controller where they take the time-varying temperature dynamics into account by using a
Kalman-filter based adaption scheme.

The negligence of the spatio-temporal dynamics in modeling and control of the
LMD process can cause geometrical instability or unwanted microstructural properties
of the resultant part [10]. Therefore, more recently, Sammons et al. [11] proposed a
multi-dimensional model of the layer deposition height used in a repetitive layer-to-layer
control scheme. In order to parametrize the model, a system identification framework
together with carefully conducted experiments is used. Cao and Ayalew [12–14] developed
a Multi Input Multi Output (MIMO) surrogate model, considering the spatio-temporal
dynamics relating the laser power and scanning speed to the deposition height and molten
pool temperature. The surrogate model is a reduced lumped model description, and its
parameters are identified using data obtained from FEM simulations of a multi-physics
spatio-temporal model.

In this contribution, the thermal characteristics of the LMD process are modeled
using a spatio-temporal input–output modeling approach relating the laser power to the
measurement signal of an IR camera. Using an IR camera enables the spatially distributed
measurement of the surface temperature and thus the monitoring of the thermal evolution
of the produced part which mainly affects its micro-structure properties [1]. The original
contribution of this work is the combination of spatio-temporal thermal measurements
with a spatio-temporal modeling approach, i.e., the estimation of the model parameters of
a partial recurrence equation model using the measurements of an IR camera. By doing so,
a spatio-temporal temperature model of the LMD process is obtained. Based on this kind
of model, distributed control strategies could be developed that may provide for a more
accurate deposition process.

The remainder of the paper is organized as follows: the experimental setup together
with operational conditions for data acquisition and the entire data pre-processing scheme
are described in Section 2. In Section 3, the fundamentals of the spatio-temporal system
identification are summarized. Furthermore, the used model is proposed together with
the applied identification approaches. Modeling results considering real data of an LMD
process are presented and discussed in Section 4.

2. Experimental Setup and Data

In this section, the data acquisition as well as the data pre-processing are discussed.
The experimental setup is illustrated in Figure 1. The setup consists of two main compo-
nents, the LMD unit and the measurement system based on an infrared camera, which are
described in Section 2.1. This is followed by the experimental setup (see Section 2.2) and
the used data preprocessing algorithms (see Section 2.3).
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Figure 1. Schematic of the experimental setup.

2.1. Hardware
2.1.1. Laser Metal Deposition System

The experiments were conducted using a laser processing setup consisting of a 2 kW
multi-mode fiber-laser with a wavelength of 1070 nm (YLS-2000-S2, IPG Photonics, Burbach,
Germany). The laser optics (MWO44, Kuka Industries GmbH & Co. KG, Würselen,
Germany) were mounted to a six-axis robot (RV30-25, Kuka Industries GmbH & Co. KG,
Obernburg, Germany). The experiments were performed with AISI 316 L powder with a
grain size in the range of 50 µm to 105 µm. The shape of the particles was spherical. The
powder was fed to a three-jet-nozzle (Fraunhofer ILT, Aachen, Germany) by a two-channel
powder feeder (PF2/2, GTV Verschleißschutz GmbH, Luckenbach, Germany) using Argon
carrier gas. A substrate of S235 steel was aligned to a baseplate before initiating deposition
of the material. In order to prevent oxidation during fabrication, Argon shielding gas
was used. The focal spot was positioned 85 mm from the workpiece, which resulted in a
defocused laser spot size of approximately 2 mm at the substrate surface.

2.1.2. Measurement Equipment

For measurement of the thermal history, a cooled InSb mid-wave infrared (MWIR,
λcam = 2.0 µm to 5.7 µm) camera (ImageIR 8380 hp, InfraTec GmbH, Dresden, Germany)
was used. The camera has an array of 640 × 512 detector elements and has been radiomet-
rically calibrated in sub-ranges by the manufacturer for a temperature range from 0 °C to
2000 °C (black body temperature, ε = 1). In order to be able to use several of the sub-ranges
simultaneously, a multi-integration time mode or a rotating filter wheel can be applied.
The rotating filter wheel was used for the performed measurements, so that a temperature
range of 300 °C to 2000 °C (ε = 1) is selected at an image frame rate of approx. 300 Hz. Due
to the used macro lens, the geometric resolution of a single image point is approximately
70 µm (IFOV) at the measurement distance of 47 cm with a zenith angle of 39°. The angular
range is limited due to the laser optics and the protective frame of the build chamber.
Within the selected arrangement of the experimental setup, the whole specimen is in the
field of view of the camera. To protect the camera (see Figure 2) from the harsh process
conditions, two protective arrangements were taken:
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1. The camera is enclosed in a housing to prevent the metal powder dusts from entering
into the camera. A hole was drilled into the housing’s metal plate at the camera’s
field of view and a semi-transparent plastic foil was adhered to it.

2. The infrared camera optics could absorb the reflected radiation from the laser beam
and thus be permanently damaged. An additional laser protection filter (transmission
band in the range of 1730 nm to 3300 nm) placed into the camera’s field of view blocks
the radiation in the laser wavelength.

InfraTec ImageIR Protective enclosure

Plastic foil

Laser filter

Substrate

Figure 2. Camera setup during the LMD process. The protective enclosure is only opened for the
photography of the setup.

2.2. Operating Conditions

A series of experiments was conducted by depositing 13 weld beads adjacent to each
other in a defined scanning direction with a misalignment of 2 mm, creating a single layer
adherent to the substrate material (see Figure 1). Each track had a length of 25 mm resulting
in an approximately square shaped layer. Table 1 summarizes the operating conditions
used in the experiments. The resulting specimen is shown in Figure 3.

2.3. Measurement Data Processing

Proportionally to the radiance incident on the camera detector elements Lcam, a voltage
is generated in the detector elements, which is measured by the evaluation electronics and
output as quantized digital count UD. Due to the manufacturer’s radiometric calibration,
the relationship between the digital value UD and the temperature of a blackbody radiator
(ε = 1) is known. Since there are no blackbody radiators in the real applications, the
influence of emissivity must be taken into account:

Lcam = εLobj(Tobj) + (1− ε)Lamb(Tamb) (1)
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where L denotes the radiance captured by the camera Lcam, by the object Lobj or by the
reflected ambient Lamb depending on their corresponding temperature T. The emissivity ε
takes values between 0 and 1 for real objects. Due to the protective measures described in
Section 2.1, the used filters reduce the radiance beaming into the camera. This leads to an
extended form of Equation (1):

Lcam = τ
[
εLobj(Tobj) + (1− ε)Lamb(Tamb)

]
+ (1− τ)Lfilter(Tfilter) (2)

where Lfilter denotes the self-radiation of the filter depending on its temperature Tfilter. To
compensate for this effect, the transmittances of the plastic film and the laser protection filter
were measured in the laboratory. For this purpose, a comparative radiance measurement
with and without the filter element was performed using a setup with an infrared calibrator.
This allows Equation (2) to be solved for τ. The transmittance of the foil was determined as
τfoil = 0.78 and transmittance of the filter as τfilter = 0.73, resulting in a total transmittance
of τ = τfoil · τfilter = 0.57.

Table 1. Operating conditions.

Process/Operating Parameter Value/Setting

Laser power 1000 W
Laser spot size ~2 mm

Powder feed rate 12 g ·min−1

Traverse speed 10 mm · s−1

Argon gas flow rate (carrier) 20 L ·min−1

Argon gas flow rate (shielding) 25 L ·min−1

Powder material AISI 316 L
Powder size distribution 50 µm to 150 µm

Number of tracks 13
Length of each track 25 mm

Hatch spacing 2 mm
Scanning pattern mono-directional

Figure 3. Produced specimen.

According to Equation (2), the emissivity ε of the measured object is also required for
the quantitatively correct conversion of the measured radiance values into temperatures.
Unfortunately, due to the phase change of the metallic material, the required emissivity
changes in an unknown manner and is hard to determine by experiments [1,15]. One
way to approximate the emissivity is to use the characteristic point of the solidification
plateau [16,17]. The emissivity is scaled so that this plateau corresponds to the known
melting point temperature of 316L (≈1400 °C). This scaling was performed using the data
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from the first weld bead. Based on this procedure, an emissivity of ε = 0.40 is used within
the scope of this work.

The conversion of the radiance readings to the corresponding temperatures (according
to Equation (2)) is the first post-processing step. For example, Figure 4 depicts the resultant
temperature evolution in five pixels located at the first weld bead of the specimen showing
the characteristic heating and cooling periods at different spatial instances. Figure 5 shows
a resultant false color image for a time instance at the end of the fabrication. From Figure 4,
it becomes apparent that implausible temperature values result in parts of the measurement.
Firstly, a scattering around a temperature of approx. 1500 °C can be observed between
the rising and falling slopes of the individual curves. This can be explained by the phase
change of the metallic material and the changing emissivity as a consequence thereof,
resulting in a too low temperature value in the liquid phase (melt pool) [17]. Secondly,
there is a changing characteristic of the cooling rate below 225 °C. In this case, the object
temperature falls below the lower end of the calibrated temperature range of the infrared
camera. An exclusion of such values would result in an insufficient amount of remaining
data due to the spatial dependencies causing an ill-conditioned estimation problem in
the following modeling step (see Section 3). Hence, it was decided to correct the lower
temperature range by replacing the values below ambient temperature by a value of 26.6 °C
to get plausible output values in this range.

To correct the effects of the camera orientation, a geometric transformation of the
image coordinate system was performed by point matching. To receive data suitable for
system identification, appropriate resolutions of the temporally and spatially discretized
data were selected. Due to large gradients of the dependent variable, the sampling time of
∆t = 1/ fs = 1/300 s was kept for identification resulting in Nk = 14, 000 time instances.
The spatial resolution was chosen to be ∆x = 2 mm corresponding to the laser spot size
resulting in a Ns1 × Ns2 dimensional grid with Ns1 = Ns2 = 15. For example, Figure 6
shows the spatial discretization for one time instance in a false color image where the
measured temperature in each grid cell is averaged.
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Figure 4. Temperature evolution in five distinct points of the first weld bead.
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Figure 5. Resultant false color image of the specimen for time instance at the end of the build process.
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Figure 6. False color image with predefined grid before (a) and after (b) spatial downsampling at
time instance k = 4000.

In order to obtain the laser power input data, the trajectory of the laser was recon-
structed from the temperature profile. The laser power was assumed to be uniformly
distributed over the laser spot size which was confirmed by a caustic measurement. The
resultant thermal evolution in one point together with the excitation signal is shown in
Figure 7. The triangle shape of the input signal progress, which can be seen from Figure 7a
is a consequence of the spatial downsampling. In Figure 7b, the reheating related to the
subsequent deposition of further tracks can be observed.
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Figure 7. Thermal evolution in one discrete point (s1, s2) = (7, 2) after spatial downsampling. Left
axis (blue): Measured temperature (solid line) and corrected temperature values (dashed line). Right
axis (red): Corresponding laser power. (a) First 3 s of experiment; (b) Hole duration of experiment.
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3. Spatio Temporal Identification Fundamentals

In this section, the modeling approach and estimation procedure are described. In
order to perform predictions based on a partial differential equation (PDE) model, the
parameters of the model have to be known. As they are frequently hardly (or even not
at all) a priori known, system identification techniques extended to the consideration of
spatio-temporal dynamics can be used. In system identification, the behavior of a system
is identified by measuring the response of the plant y ∈ R to an excitation signal u ∈ R.
Based on the acquired data set D = {y(k), u(k)}Nk

k=1 with Nk elements at the respective
discrete time instances k, the aim is to find the unknown functional relationship:

y(k) = f (x(k)) + v(k) , k = 1, . . . , Nk (3)

where x(k) = [y(k− 1), . . . , y(k− ny), u(k− 1), . . . , u(k− nu)]> ∈ Rny+nu contains delayed
values of the measured system output and the input. Note, possible dead times are dropped
for brevity. The term v(k) is assumed to be independent and identically distributed noise
with zero mean and finite variance σ2. The function f : Rn → R represents the system
behavior to be modeled. For distributed systems, Equation (3) is extended to

y(k, s) = f (x(k, s)) + v(k, s) , k = 1, . . . , Nk , s = 1, . . . , Ns (4)

with the (discrete) spatial domain s of arbitrary dimension. The choice of f can either be
done based on physical insights or by using data-based approaches known from statistical
learning (see, e.g., [18–20]). The former is preferred in this contribution.

3.1. Considered Model

In this contribution, the Finite Difference (FD) method is used in a rectangular spatial
domain to discretize the partial derivatives of the governing PDE. To keep things simple,
the following explanations are stated for a one-dimensional spatial domain. However, the
approaches can be extended to the multidimensional case. We start from the well-known
heat conduction equation (assuming no mass transfer or radiation as well as an isotropic
and homogenous material)

∂T(t, x)
∂t

− κ1
∂2T(t, x)

∂x2 = κ2u(t, x) (5)

where T denotes temperature, t and x continuous time and space, respectively. κ1 and κ2 are
model coefficients containing the density, specific heat capacity, thermal conductivity, and
absorbed thermal flux. u describes the input heat. To approximate the partial derivatives
in Equation (5), the central differences(

∂T(t, x)
∂t

)
k,s

=
Tk+1,s − Tk,s

∆t
(6)

and (
∂2T(t, x)

∂x2

)
k,s

=
Tk,s−1 − 2Tk,s + Tk,s+1

∆x2 , (7)

with the discrete time k = tk/∆t ∈ Z+ and the discrete space s = xs/∆x ∈ Z, are used.
∆t is the sampling time and ∆x the spatial sampling distance. With Equations (6) and (7),
the solution of Equation (5) can be approximated at the instance (k, s) using the difference
equation

Tk+1,s = a1,−1Tk,s−1 + a1,0Tk,s + a1,1Tk,s+1 + b1,0uk,s. (8)

In this case, a1,−1 = a1,1 = κ1
∆t

∆x2 , a1,0 = 1− 2κ1
∆t

∆x2 , and b1,0 = κ2∆t.
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The generalized form of Equation (8) is given by

yk,s = − ∑
(ik ,is)∈My

aik ,is y(k− ik, s− is) + ∑
(jk ,js)∈Mu

bjk ,js u(k− jk, s− js) + v(k, s) (9)

where y(k− ik, s− is) ∈ R and u(k− jk, s− js) ∈ R are shifted versions of the output and
input, respectively, aik ,is ∈ R and bjk ,js ∈ R are the corresponding parameters, and an
additional noise term v(k, s) is incorporated [21,22]. My andMu define the spatial and
temporal horizon of the output and the input, respectively, contributing to the dynamics
of the output at instances (k, s). For instance, for a two-dimensional system described by
Equation (9), My andMu are defined as subsets of the two-dimensional space, which
include the indices of the coefficients of input and output terms in the difference equation.
For instance, considering the discretized heat conduction Equation (8), the index setsMy
andMu (given in Figure 8) are defined as

My = {(ik, is)|(1,−1), (1, 0), (1, 1)},
Mu = {(jk, js)|(1, 0)}

(10)

indicating the temporally and spatially shifted inputs and outputs required for calculating
the output at instance (k, s). By introduction of the temporal and spatial shift operators qk
and qs, Equation (9) can be written in transfer function form:

yk,s =
B(qk, qs)

A(qk, qs)
u(k, s) + H(qk, qs)e(k, s) (11)

where

A(qk, qs) = 1 + ∑
(ik ,is)∈My

aik ,is q−ik
k q−is

s

B(qk, qs) = ∑
(jk ,js)∈Mu

bjk ,js q−jk
k q−js

s

(12)

define the plant transfer function and H(qk, qs) defines the noise transfer function. If
H(qk, qs) =

1
A(qk ,qs)

and e(k, s) represents a white noise signal, Equation (11) results in the

so-called AutoRegressive with eXogenous input (ARX) model. The operators q−ik
k and q−is

s

introduce a shift of ik in the temporal and is in the spatial domain (i.e., q−ik
k q−is

s y(k, s) =
y(k− ik, s− is)).

(a) (b)
Figure 8. Illustration of required input and output lags (filled circles) for calculation of y(k, s) based
on Equation (8) on two-dimensional lattice. (a) Index setMy; (b) index setMu.

In order to obtain a more realistic noise assumption, the so-called Output Error (OE)
model can be used. In this case, H(qk, qs) = 1 such that the noise is assumed to disturb the
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process additively at the output. Furthermore, in the OE model, the denominator of the
plant transfer function is denoted as F(qk, qs) resulting in:

yk,s =
B(qk, qs)

F(qk, qs)
u(k, s) + e(k, s) (13)

Note, as the noise model of the output error model does not include the process denomina-
tor dynamics 1/A(qk, qs), it is nonlinear in its parameters (see, e.g., [23]), and thus, much
harder to estimate (cf. Section 3.3).

3.2. Spatial Discretization and Boundary Conditions

The approximation of a distributed system has to be restricted to a well-defined spatial do-
main. In this contribution, a grid partitioning of the spatial domain Ω = {x|r1 < x < r2} ⊂ R
within the bounds r1 and r2 is considered, defined by

ΩGrid = {x ∈ Ω| x = r1 + s∆x, s ∈ Z} ⊂ Ω. (14)

In order to get a unique solution to a PDE, the initial states as well as the boundary
conditions have to be specified. Common choices of boundary conditions are Dirichlet or
Neumann conditions [24]. The former specifies the values that the solution of the PDE has
to take along the boundary ∂Ω of the spatial domain

y(t, x) = φ(t, x) ∀ x ∈ ∂Ω, (15)

with known function φ(t, x) on ∂Ω, whereas the latter imposes values of the derivative of
the solution

∂y(t, x)
∂n

= φ(t, x) ∀ x ∈ ∂Ω (16)

where n denotes the normal vector to the boundary ∂Ω. In this contribution, y(t, x) = 0
and ∂y(t, x)/∂n = 0 are investigated. Furthermore, the initial states are assumed to be
zero as well which is a common way in lumped system identification [25]. Figure 9 shows
an exemplary grid partitioning for a weld bead together with the bounds in the two-
dimensional spatial domain where the boundary conditions are defined on the fictional
grid points ∂ΩGrid. In Figure 10, the partitioning for the complete layer, as considered in
this contribution (cf. Section 3.5), is illustrated.

Figure 9. Illustration of spatial discretization for one weld bead.
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(a) (b)
Figure 10. Illustration of spatial discretization for one layer: (a) Schematic of specimen with grid,
(b) corresponding false color image with grid.

3.3. Identification Approach

Once the initial states and considered spatial domain as well as the model structure by
means ofMy andMu are properly selected, the unknown coefficients of the model can be
estimated within the Prediction Error Minimization (PEM) framework. In this contribution,
a basic least squares approach introduced in [21] is used for ARX model identification and
compared with a nonlinear optimization of the simulation error to obtain an OE model.

Introducing

ϕ(k, s) =
[
−y(k− ik, s− is)
u(k− jk, s− js)

]
∀(ik ,is)∈My ,(jk ,js)∈Mu

∈ Rnp , (17)

where np =
∣∣My

∣∣+∣∣Mu
∣∣, and the parameter vector

θ =

[
aik ,is
bjk ,js

]
∀(ik ,is)∈My ,(jk ,js)∈Mu

∈ Rnp , (18)

Equation (9) can be written in its linear regression form

y(k, s) = ϕ>(k, s)θ + v(k, s). (19)

The predicted output of the model is given by

ŷ(k, s) = ϕ>(k, s)θ, (20)

such that the prediction error ε(k, s) = y(k, s)− ŷ(k, s) can be calculated. For a given input-
output data set D ∈ RNk×Ns the unknown parameters (18) can be estimated by minimizing
a quadratic cost function

J(θ, ε) =
1

Nk Ns

Nk

∑
k=1

Ns

∑
s=1

ε2(k, s, θ). (21)

In case of the ARX model, the least squares estimator can be used where the parameter
estimates are obtained as

θ̂LS =

[
1

Nk Ns

Nk

∑
k=1

Ns

∑
s=1

ϕ>(k, s)ϕ(k, s)

]−1[
1

Nk Ns

Nk

∑
k=1

Ns

∑
s=1

ϕ>(k, s)y(k, s)

]
. (22)
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In case of output error model identification, the prediction error ε in Equation (21) is

calculated using the simulated output ŷ(k, s) = B̂(qk ,qs)

F̂(qk ,qs)
u(k, s) and the minimization of

Equation (21) is done using nonlinear optimization. In this work, the trust region reflective
method implemented in Matlab’s optimization toolbox is used where the solution of
Equation (22) is used to initialize B̂(qk, qs) and F̂(qk, qs).

3.4. Model Validation

In order to assess the resultant model, a visual inspection of the model predictions
compared to the measured values of the temperature will be done. Furthermore, the
following quantitative evaluation criteria are considered for model validation: (1) the Root
Mean Square Error (RMSE) given by

RMSE =

√√√√ 1
Nk Ns

Nk

∑
k=1

Ns

∑
s=1

(y(k, s)− ŷ(k, s))2 (23)

and (2) the Best Fit Rate (BFR) given by

BFR = 100% ·max

1−

√√√√∑Nk
k=1 ∑Ns

s=1(y(k, s)− ŷ(k, s))2

∑Nk
k=1 ∑Ns

s=1(y(k, s)− ȳ(k, s))2 , 0

 (24)

with ȳ(k, s) being the mean value of the output.

3.5. 2D Thermal Model

For the sake of completeness, the considered model is given in the two-dimensional
spatial domain as follows:

yk,s1,s2 =− ∑
(ik ,is1 ,is2 )∈My

aik ,is1 ,is2
y(k− ik, s1 − is1 , s2 − is2)

+ ∑
(jk ,js1 ,js2 )∈Mu

bjk ,js1 ,js2
u(k− jk, s1 − js1 , s2 − js2) + v(k, s1, s2)

(25)

with

My = {(ik, is1 , is2)|(1, 0, 0), (1,−1, 0), (1, 1, 0), (1, 0,−1), (1, 0, 1)},
Mu = {(jk, js1 , js2)|(1, 0, 0)}.

(26)

The data set is given by

D = {y(k, s1, s2), u(k, s1, s2) ∈ R|k = 1, . . . , Nk, s1 = 1, . . . , Ns1 , s2 = 1, . . . , Ns2}, (27)

with Nk = 14,000 and Ns1 = Ns2 .

4. Results and Discussion

In this section, the modeling approaches introduced in Section 3 are utilized in order
to obtain mathematical models of the temperature evolution during the LMD process. For
this, single tracks of the layer are considered firstly enabling an isolated examination and
assessment of the modeling approaches where the inter-track dynamics and reheating
effects are neglected. In a second consideration, the modeling approaches are examined
on the whole layer experiment. Each model is given by Equations (25) and (26), with
the measured temperature as output variable yk,s1,s2 and the laser power as input uk,s1,s2 .
The model parameters are estimated using both ARX and OE configuration. The results
(predicted values and evaluation criteria) reported in this section are based on the simulated
output, i.e., the output is calculated based on the given input value and previous predictions
of the output (OE configuration), imposing higher requirements on the model performances.
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As boundary conditions, Dirichlet conditions with φ(k, s1, s2) = 0 ∀ s1, s2 ∈ ∂ΩGrid and
Neumann conditions with φ(k, s1, s2) = 0 ∀ s1, s2 ∈ ∂ΩGrid were tested and compared. The
results given in the following subsections are limited to the use of Dirichlet conditions as
they are slightly better.

4.1. Single Track Case

The results shown in this section are obtained when data corresponding to the spatial
and time instances of welding the second track are used for model training. In order to
validate the models on unseen data, the spatial and time instances corresponding to the
welding of the fourth track are used. To account for the influences of the adjacent tracks,
these are also included in the data sets, resulting in Dt = {y(k, s1, s2), u(k, s1, s2) ⊂ D|k =
1001, . . . , 2000, s1 = 1, . . . , 15, s2 = 2, . . . , 4} for training andDv = {y(k, s1, s2), u(k, s1, s2) ⊂
D|k = 3001, . . . , 4000, s1 = 1, . . . , 15, s2 = 4, . . . , 6} for validation. Figure 11 illustrates the
used grid, i.e., the considered spatial instances, for the training data. Note, a slight error
may be obtained due to the used boundary conditions. However, as the adjacent tracks are
also considered, the virtual boundary is not restricted to the geometrical boundary of the
second weld bead and the measured values are used instead. The resultant performance
criteria are summarized in Table 2. The estimated model coefficients are given in Table 3.
From Table 2, it becomes apparent that a considerably better performance can be obtained
if the model is trained in output error configuration. More particular, the low BFR value
for the ARX model indicates that this modeling assumption is not suitable to obtain an
adequate simulation model useful for the process under consideration. With respect to the
estimated model coefficients given in Table 3, the estimated values of the OE model are
one order of magnitude greater than the ones obtained for the ARX model despite for a1,0,0.
More critically, the estimated value of a1,0,1 is positive. From a physical point of view, all
parameters corresponding to shifted versions of the output should have negative values.
In addition, parameters being the spatially counterpart of one another should have similar
values which is the case for the OE model.

(a) (b)

Figure 11. Illustration of spatial discretization of training data for single track case: (a) Schematic of
specimen with grid (white circles represent fictional boundary grid points), (b) corresponding false
color image with grid.
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Table 2. Performance of ARX and OE models for simulation assessed for training and validation
data, respectively, for single track case.

RMSE in °C BFR in % RMSE in °C BFR in %
(Training) (Training) (Validation) (Validation)

ARX 325.47 11.21 343.84 7.76
OE 126.21 79.37 96.60 74.09

Table 3. Estimated model coefficients in single track case. Note, for brevity the same denotation of
the parameters corresponding to shifted output values is used for both, ARX and OE case.

a1,0,0 a1,−1,0 a1,1,0 a1,0,−1 a1,0,1 b1,0,0

ARX −0.993 −0.002 −0.002 −0.009 0.005 0.009
OE −0.871 −0.051 −0.041 −0.026 −0.027 0.148

Figure 12 shows the corresponding observed versus predicted plots for the models. As
indicated by the performance criteria in Table 2, the ARX model is not capable to predict
the correct response values in a simulation setting. This is confirmed by the simulation
results depict in Figure 13a,b for one spatial instance. In fact, the model (25) represents a
superposition of spatially distributed transfer functions characterized by their individual
parameters aik ,is1 ,is2

and the b parameter. While transfer functions of each spatial location
with negative a parameter contribute a positive response value to the model output, the one
with positive sign yield an inverse response behavior resulting in this unwanted aggregated
model response. For the OE model, the scattering around the ideal prediction is acceptable
(cf. Figure 12c,d). Merely in the upper range of the output, a trend of underestimating to
overestimating the response value becomes apparent. This also comes up when considering
the simulated output in Figure 13c. Due to the chosen model structure, the model is restricted
to non-changing monotonicity behavior and, as a consequence, tries to average the effects
occurring in the upper temperature ranges. However, a much better model fit can be obtained
compared to the ARX model identification. On the validation data, the OE model shows a
comparable simulation performance as on the training data (cf., Figure 13d).

4.2. Multiple Tracks Case

In this section, the former results are generalized to the whole layer. Of course,
the limitations of the models stated before continue to apply. However, it is of great
interest how the model behaves in this setting, as a lumped model would not be able to
capture the inter-track relationship caused by the spatial dynamics. Therefore, for model
training Dt = {y(k, s1, s2), u(k, s1, s2) ⊂ D|k = 1, . . . ,10000,s1 = 1, . . . , 15, s2 = 1, . . . , 15}
is used and the models are cross validated using Dv = {y(k, s1, s2), u(k, s1, s2) ⊂ D|k =
10001,. . . ,14000,s1 = 1, . . . , 15, s2 = 1, . . . , 15}. The corresponding grid partitioning has
already been shown in Figure 10. The resulting performance criteria are summarized in
Table 4. The estimated model coefficients are given in Table 5. Again, the ARX model
is not capable to predict the temperature for the data at hand. Whereas, the OE model
shows a moderate simulation performance regarding the evaluation criteria. Compared to
the single track results, the BFR and RMSE on training data decrease while on validation
data the RMSE increases and the BFR decreases. The simultaneous decrease of RMSE
and BFR on training data seem counter-intuitive but can be explained by the changing
properties of the considered data sets. The RMSE is the square root of the sum of squared
residuals divided by Nk · Ns, therefore a measure of the variation not explained by the
model. Thus, while the squared residuals increase just slightly considering the multiple
tracks experiment, the amount of data compensates for that effect resulting in a lower
RMSE value, i.e., the predictions are closer to the observed values on average. On the
other hand, the BFR measures the percentage of variance of y explained by the model, i.e.,
how close the predictions are to the observed values. This effect becomes clear taking a
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look on the observed versus predicted values in Figure 14. Basically, similar patterns as
for the single track consideration can be seen. The ARX model tends to underestimate
the temperature evolution, which can be explained following the explanations given in
the previous section and considering the estimated model parameters in Table 5. For the
OE model, a wider scattering around the ideal black dashed line confirm the lower BFR
value. But most of the predictions seem as close to the observed values as for the single
track experiment confirming the lower RMSE value on the training data. On the other
hand, the predictions on the validation data set seem slightly biased, i.e., the model tends
to underestimate the temperature. However, the qualitative progression of the temperature
evolution is captured by the model.
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ŷ

0 500 1000 1500 2000 2500

y

500

1000

1500

2000

2500

ŷ
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Figure 12. y versus ŷ plots for single track case. (a) ARX model predictions on training data; (b) ARX
model predictions on validation data; (c) OE model predictions on training data; (d) OE model
predictions on validation data.
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Figure 13. Time series for single track case at spatial instance (s1, s2) = (5, 2) for both, training
and validation data. Left axis (blue): Observed temperature y (solid line), predicted temperature ŷ
(dashed line), and absolute value of residuals ε (dotted line). Right axis (red): Corresponding laser
power. (a) ARX model, training data; (b) ARX model, validation data; (c) OE model, training data;
(d) OE model, validation data.

Table 4. Performance of ARX and OE models for simulation assessed for training and validation
data, respectively, for multiple tracks case.

RMSE in °C BFR in % RMSE in °C BFR in %
(Training) (Training) (Validation) (Validation)

ARX 159.13 19.37 211.49 0.83
OE 69.67 64.61 115.12 46.02

Table 5. Estimated model coefficients. Note, for brevity the same denotation of the parameters
corresponding to shifted output values is used for both, ARX and OE case.

a1,0,0 a1,−1,0 a1,1,0 a1,0,−1 a1,0,1 b1,0,0

ARX −0.989 −0.002 −0.001 −0.010 0.003 0.018
OE −0.902 −0.019 −0.016 −0.029 −0.030 0.140

Figure 15a,b show the simulation results of the OE model for different spatial instances
on the training data. Figure 15c shows the results for one spatial instance on the validation
data. Note that there are changing x axis from Figure 15a–c. Compared to the single
track case, the resultant time series show multiple peaks due to pre- and reheating in the
individual cells by the energy input of the laser into the surrounding ones. This effect
can be well predicted by the model. Solely with ongoing progressive duration of the
experiment, a slight misalignment of the predicted and observed peaks occur. To be more
precise, cells corresponding to locations produced at later time instances show a slight
offset of the observed temperature after the energy input, which is not captured by the
model. Additionally, the model underestimates the main peaks on the validation data
which has been already observed in Figure 14d. Apparently, the former effect can not
simply be explained by the changing initial conditions of spatially interconnected cells
taken into account by the model. Probably, this effect can be dealt with by incorporating
a parameter varying offset term in the model. Furthermore, note that there are multiple
input peaks in each spatial instance shown in Figure 15. This is caused by the misalignment
of the reconstructed input (or melt pool) trajectory relative to the grid chosen for spatial
discretization. The maximum value of 1 kW of the laser power will only be reached when
the laser track goes through the center of the grid cells. If there is a relative shift, the laser
power is additionally distributed to adjacent tracks.
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Figure 14. y versus ŷ plots for multiple tracks experiment. (a) ARX model predictions on training
data; (b) ARX model predictions on validation data; (c) OE model predictions on training data; (d)
OE model predictions on validation data.
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Figure 15. y versus ŷ plots for single track case. (a) ARX model predictions on training data; (b) ARX
model predictions on validation data; (c) OE model predictions on training data; (d) OE model
predictions on validation data.

Figure 14. y versus ŷ plots for multiple tracks experiment. (a) ARX model predictions on training
data; (b) ARX model predictions on validation data; (c) OE model predictions on training data; (d)
OE model predictions on validation data.
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Figure 15. Time series for multiple tracks case at spatial instances (s1, s2) = {(3, 3), (7, 7)} on training
and (s1, s2) = (12, 12) on validation data. Left axis (blue): Observed temperature y (solid line),
predicted temperature ŷ (dashed line), and absolute value of residual ε (dotted line). Right axis (red):
Corresponding laser power. (a) Time series at spatial instance (3,3) on training data; (b) Time series
at spatial instance (7,7) on training data; (c) Time series at spatial instance (12,12) on validation data.

4.3. Discussion

As already discussed in the previous subsections, the investigated modeling ap-
proaches show promising results, but are not capable to account for each phenomena
contained in the data. From the single track case, it becomes evident that the changing
characteristics of the temperature evolution in the upper range can not be captured suf-
ficiently by the model. In fact, the observed behavior of the temperature evolution in
this range is based on the globally fixed emissivity ε at the solidification plateau for the
conversion of radiance to temperature (see Section 2.3) and thus is limiting the plausi-
bility of the results from a physical perspective. As a recent work with a multispectral
sensing approach indicates [26], the emissivity can vary significantly during the build
process. In particular, the phase transition in the melt pool and the progressing oxidation
of the workpiece influence the optical surface properties (and thus the emissivity). The
temperature readings are therefore more likely to be correct on the falling slope of the
temperature profile, but at other positions the temperature output of the camera is only
an apparent temperature. It will be part of future work to integrate a visual camera in the
process in order to be able to observe effects influencing the emissivity (such as oxidation)
and subsequently adapt the emissivity spatially and temporally resolved. For two reasons,
the modeling approach presented here can still be used to control the process in the future.
At first, the temperature gradients during cooling, which are well represented by the
model, are most important for the subsequent mechanical properties of the workpiece.
Secondly, the absolute temperature may not be as relevant for a later process control as step
changes of the temperature or temperature gradients. In order to deal with the changing
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monotonicity in areas of phase transition, the model structure has to be adapted, at least by
allowing for higher order dynamics in the temporal domain which will be investigated
in future work. To deal with the increasing temperature offset observed in the multiple
tracks consideration, a linear parameter varying model structure could be assumed as
proposed by [27]. However, altogether an adequate simulation performance is already
obtained although the used model greatly simplifies the occurring physical phenomena
of the LMD process. Of course, the non-contacting thermal measurement is restricted to
surface temperatures. However, from a control-oriented perspective, the proposed model
would drastically reduce the computational burden for a layer-wise control update while
preserving the consideration of inter-track dynamics. From a modeling point of view, the
next step would be the consideration of inter-layer dynamics, at least by predicting the
initial and boundary conditions for a subsequent layer, which will be part of future work.

5. Conclusions

In this work, spatio-temporal measurements of the temperature evolution were con-
ducted by using an infrared camera in order to model the thermal characteristics of the
LMD process by using data-driven approaches. A complete pre-processing scheme is
proposed enabling the generation of data suitable for identification of spatio-temporal mod-
els. As models, the class of spatio-temporal input–output models represented by partial
difference equations are considered. Different model classes—namely, ARX and OE—were
investigated accounting for different noise assumptions. The model structure was derived
from the general heat conduction equation. In order to enable isolated investigations, the
single track as well as multiple tracks case was considered. It was shown that:

• The ARX model assumption yields insufficient results when used for simulation
purposes, whereas, acceptable results can be obtained using OE models.

• A significant change in the thermal behavior measured with the IR camera in areas of
phase transitions results when assuming a globally fixed emissivity.

• The model structure derived from the general heat conduction equation restricts
the obtained results to first order temporal dynamics resulting in a mismatch of the
predictions in periods of phase transitions.

• Pre- and reheating effects can be mostly predicted by the resultant model when
considering the multiple tracks case. However, a changing offset of the observed tem-
perature with ongoing progressive duration of the experiment could not be described
by incorporation of the spatial dynamics into the model so far.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Additive manufacturing
ARX Autoregressive with exogenous input
BFR Best fit rate
CFD Computational fluid dynamics
FD Finite difference
FEM Finite element method
IR Infrared
LMD Laser metal deposition
MIMO Multi-input multi-output
MWIR Mid-wave infrared
OE Output error
PDE Partial difference equation
PEM Prediction error minimization
PID Proportional-integral-derivative
RMSE Root mean squared error
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