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Abstract: Friction Stir Welding (FSW) is a solid-state welding process that has multiple advantages
over fusion welding. The design of tools for the FSW process is a factor of interest, considering its
fundamental role in obtaining sound welds. There are some commercially available alternatives
for FSW tools, but unlike conventional fusion welding consumables, their use is limited to very
specific conditions. In this work, equations to act as guidelines in the design process for FSW tools
are proposed for the 2XXX, 5XXX, 6XXX, and 7XXX aluminum series and any given thickness to
determine: pin length, pin diameter, and shoulder diameter. Over 80 sources and 200 tests were used
and detailed to generate these expressions. As a verification approach, successful welds by authors
outside the scope of the original review and the tools used were evaluated under this development
and used as case studies or verification for the guidelines. Variations between designs made using
the guidelines and those reported by other researchers remain under 21%.
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1. Introduction

Friction Stir Welding (FSW) is a solid-state welding process patented in 1991 by
The Welding Institute (TWI). This method is performed by utilizing a non-consumable
cylindrical tool that rotates and advances in the material to be welded; this movement
produces heat through friction and mixes the softened material to produce the weld [1].
Aluminum alloys are the second most used metal after steel, due to their high strength-
to-weight ratio and thermal and electrical conductivities [2]. Annually, FSW applications
increase due to the excellent results obtained with these alloys [3]. They are used in the
railway [4], aerospace [5,6], automotive [7,8], and shipbuilding industries [9]. Table 1 shows
the different types of aluminum alloys that are commercially available, along with basic
conventional applications.

For FSW, the use of a tool is required, which plays an important role in the process [10]
and consists of a shoulder and a pin, both playing a crucial role in the welding process. The
shoulder is responsible for generating much of the heat required and the pin is responsible
for transporting the plasticized material [1]. The tool contributes to the joint soundness
since it directly impacts factors such as grain size, microstructure uniformity, and the way
the material flows through the joint. The importance of the tool can be observed in Table 2,
where the sum of the associated factors of it correspond to 75% [11].

Over the years, different tool features have been developed. Figures 1 and 2 show
some of the various pin and shoulder designs reported. Along with choosing particular
geometries, it is also necessary to select the pin length and both diameters. Selection is
based on the specific application, thicknesses and materials to be welded, to name a few
variables. Due to the reasons above, the tools are typically tailor made. The criteria used to
define these characteristics are based on trial and error and it can be challenging and costly
to develop cost-effective tools [12].
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Table 1. Aluminum alloys.

Featureless

Convex

Threaded

Aluminum Alloys

Alloying Element

Applications

2XXX

Alloys in which copper is the
principal alloying element [13],
other alloys can be specified such as
magnesium, silicon, manganese
and iron [2]

Structural applications due to
their good mechanical properties
[14]

5XXX

Alloys in which magnesium is the
principal alloying element [13]

6XXX

Magnesium and silicon are the
principal aluminum alloys [2]

Automotive and electronic
applications [15,16]

7XXX

Alloys in which zinc is the principal
alloying element [13]

Automotive and electronic
applications [15,17], aerospace
industry (aircraft frame, spars and
stringers) [18]
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Table 2. Percentage of butt joints parameters.

Parameter Percentage
Rotational speed 5%
Travel speed 5%
Tilt angle 4%
Pin penetration 28%
Shoulder/pin diameter ratio 14%
Rotational speed and pin penetration interaction 9%
Rotational speed and shoulder/pin diameter ratio interaction 8%
Travel speed and shoulder/pin diameter ratio interaction 15%

Seeking to identify patterns in tool design, authors such as Y. N. Zhang [19] have
made a compilation of the different characteristics such as shoulder and pin geometries.
El-Moayed et al. [20] took a sample of 30 different published articles and made a review of
the geometry of the tools used to then propose equations to determine the shoulder and
pin diameter.

Sevvel et al. [21] made welds with different shoulders to classify the welds; in this
way, they determined that the best D/T (shoulder diameter/thickness) ratio is 3.5. Authors
such as M. Mehta et al. [22] showed, by trial and error, that the most important geometrical
parameter in FSW tool design is the shoulder diameter. Tozaki et al. [23] tested different
pin lengths to examine the effect of that parameter on weld microstructure.

The cited research shows the importance of the development of FSW tools. This article
aims to guide the selection of some of the basic dimensions of conventional tools, for
different aluminum alloys and plate thicknesses based on the data collected. It should
be noted that in the literature there are not many approaches to tool design; most of the
cases of tool selection involve intuition and experience [22]. It should be mentioned that
FSW has multiple variants, such as bobbin and hybrid [24], which make use of tools with
different configurations [25]. The equations proposed do not cover these cases.

2. Definition of Guidelines by Design Parameter

Through a bibliographic compilation, including 87 authors reporting 216 welds made
by FSW in aluminum series 2XXX, 5XXX, 6XXX and 7XXX, with a butt joint configura-
tion [26-110], the following list presents the different variables considered:

Aluminum series;
Rotational speed (rpm);
Travel speed (mm/min);
Angle (°);

Pin diameter (mm);
Shoulder diameter (mm);
Pin type;

Pin length;

Shoulder type;

Weld efficiency;
Publication year.

Using this list, graphs were made to generate guidelines and patterns that facilitate the
designing process for FSW tools in order to minimize the amount of trial and error [18]. Due
to the amount of data, it was decided to average each variable according to the thickness of
the base material. For example, for a material thickness of 2 mm, the trial results were pin
diameters of 11.5, 10.5, 10, and 12 mm, and the final value of the pin diameter considered
was 11 mm.

The results reported below were analyzed using a coefficient of determination (R?),
which indicates the relationship that the variables had; if R? is equal to 1 it corresponds to a
perfect fit [111]. It should be noted that, for this study, an R? greater than 0.9 is considered
acceptable and, as can be seen, all the graphs in Figures 3-8 have admissible values.
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Figure 3. Pin diameter vs. thickness for series: (a) 2XXX; (b) 5XXX; (c) 6XXX, and (d) 7XXX.
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Figure 4. Summary of trend lines for pin diameter vs. thickness.
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Figure 8. Summary of trend lines for shoulder diameter vs. thickness.

2.1. Pin Diameter

The pin is in charge of transporting the plasticized material along the joint [112].
Figure 3a—d present the pin diameter relative to material thickness; if the trial reported
used a conical pin, the trend line included the largest diameter. It should be noted that
the lowest R? was 0.93, so these graphs are considered to be within the established limits.
Figure 7 shows a summary of the trend lines.
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2.2. Pin Length

According to Wronska et al. [113] the pin has a key effect on the microstructural
changes in the weld and thus impacts the strength of FSW joints. Pin length is usually
estimated in tool design based on achieving full penetration, making plate thickness its
essential variable [23]. Figure 5a—d have coefficients of determination (R?) of 0.9 or higher,
which means that the results comply with the defined criteria.

Figure 6 shows a summary of the trend lines presented previously; the overlapped
slopes indicate that pin length does not depend on the type of alloy, but mainly on the
thickness of the material to be welded. According to these, the difference between the
pin length and material thickness should be kept between 5 and 6%, regardless of the
aluminum series.

2.3. Shoulder Diameter

The shoulder is in contact with the surface during welding, and its function is to
keep the material in position and generate most of the heat produced during welding [21].
Figure 7a—d show, according to the series, the trend line for the shoulder diameter resulting
from the literature collection performed. Figure 8 is a summary of the shoulder diameter
trend lines for each series. According to the trendlines, the minimum coefficient of deter-
mination was 0.9142 and the maximum was 0.9457, which are acceptable according to the
threshold set.

In summary, the equations mentioned previously are shown in Table 3.

Table 3. Summary of equations by aluminum series and tool parameter.

Series Tool Feature Equation
Shoulder diameter y = 1.0449x + 13.156
2XXX Pin diameter y = 0.3945x + 6.1592
Pin length y = 0.9663x + 0.0602
Shoulder diameter y = 1.9129x + 7.5079
5XXX Pin diameter y = 0.1811x + 5.5237
Pin length y =0.9894x — 0.1755
Shoulder diameter y = 1.3412x + 10.726
6XXX Pin diameter y = 0.6837x + 2.5443
Pin length y =0.9732x — 0.2093
Shoulder diameter y =1.1311x + 11.291
7XXX Pin diameter y =0.6231x + 2.1772
Pin length y = 0.9464x — 0.0566

3. Results

3.1. Tool Design Example

To test the expressions previously developed, a tool was designed to weld a 6XXX
series aluminum, specifically, AA 6061-T6, with a 6.5 mm thickness. The tool dimensions
are proposed in Table 4. It is important to clarify that the expressions proposed only
account for the basic tool dimensions; other aspects such as threading, pin shape, shoulder
features, among others, were defined using trends identified in the literature review. For
these characteristics, no expressions were proposed in this work as they did not exceed the
threshold established for the coefficient of determination.

Table 4. Proposed dimensions for a tool using the suggested guidelines.

Tool Parameter Dimension (mm)

Shoulder diameter 19
Pin diameter 6.5
Pin length 45
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Using the information in Table 4, an AISI H13 tool with a removable pin was made.
Figure 9a shows the proposed pin, and Figure 9b the shoulder design. A scroll, whose
main advantage is that no tilt angle is required, was included as well.

(a) (b)
Figure 9. Tool design: (a) pin; (b) shoulder.

3.2. Validation through Experiments by Authors Outside the Initial Review

For verification purposes, comparisons were made with various tests carried out by
authors outside the initial review [114-117]. The basic dimensions of FSW tools were
calculated, according to the material and thickness to be welded, and compared with
those used by the researchers and deemed as adequate, in some cases using the efficiency
of the joints. Efficiency is defined as the strength of a welded joint with respect to the
strength of the base metal [118]. Due to its material dependence, each researcher proposed
their acceptable efficiency [119]. Tables 5-8 show the comparison between the of results
tool design guidelines and experimental work. The “objective” column values were
obtained using the expression in the column called “equation”; thus, in each case, the x
was replaced by the thickness used in the test, and the column designated with the name
“real” corresponds to the dimensions used in each experimental work.

3.2.1. Serie 2XXX

The study carried out by Z. Zhang, B. L. Xiao and Z. Y. Ma, used Al 2219-T6 plates,
which were 5.6 mm thick and reached an efficiency of 79%; in their work, an acceptable
efficiency starts at 65% [114]. Table 5 shows the variations for shoulder diameter, pin
diameter and pin length, and the highest error obtained was 5%.

Table 5. Comparison between tool design guidelines and experimental work by other authors for
series 2XXX.

Tool Feature Equation Objective Real Error
Shoulder y = 1.0449x + 13.156 19.01 20 4.96%
diameter

Pin diameter y = 0.3945x + 6.1592 8.37 8 4.61%

Pin length y = 0.9663x + 0.0602 5.47 5.4 1.32%

Table 6. Comparison between tool design guidelines and experimental work by other authors for
series 5XXX.

Tool Feature Equation Objective Real Error
Shoulder y = 1.9129x + 7.5079 17.07 15 13.82%
diameter

Pin diameter y = 0.1811x + 5.5237 6.43 6 7.15%

Pin length y =0.9894x — 0.1755 4.77 45 6.03%
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Table 7. Comparison between tool design guidelines and experimental work by other authors for
series 6XXX.

Tool Feature Equation Objective Real Error
Shoulder y = 1.3412x + 10.726 19.43 16 21.44%
diameter

Pin diameter y = 0.6837x + 2.5443 6.99 8 12.65%
Pin length y =0.9732x — 0.2093 6.12 5.8 5.46%

Table 8. Comparison between tool design guidelines and experimental work by other authors for
series 7XXX.

Tool Feature Equation Objective Real Error
Shoulder y = 1.1311x + 11.291 16.7 20 16.6%
diameter

Pin diameter y =0.6231x +2.1772 51 6 14.3%
Pin length y = 0.9464x — 0.0566 4.5 5 11.0%

3.2.2. Serie 5XXX

The paper “The effects of processing environments on the microstructure and mechanical
properties of the Ti/5083Al composites produced by friction stir processing” shows different trials
with 5 mm thick Al 5083 [115]. Table 6 shows the error resulting in the comparison between
calculated and experimentally verified tools; the maximum was 13.82%.

3.2.3. Serie 6XXX

The purpose of the previous work titled “Implementation of Friction Stir Welding (FSW)
in the Colombian rail transport sector” was to weld a piece of “Metro de Medellin” that
had 6.5 mm thickness and AA 6082-T6 material [116]. It should be noticed that this
comparison has the biggest error (21.44%), which is for the shoulder diameter. It is worth
mentioning that the shoulder diameter selected in this application obeys a specific aspect
of the geometry of the part to be welded, which limited its dimensions.

3.2.4. Serie 7XXX

The tests carried out were made with 7075-T6 aluminum and a plate thickness of 3/16
in (4.8 mm approximately) [117], with a minimum efficiency of 60%, observing the AWS
D17.3 code for a 6XXX series with T6 tempering [120]. An X-ray of the weld can be seen in
Figure 10, and Table 8 shows the comparison between the experiment and the basic tool
design equations proposed.

Figure 10. X-ray of an AA7075-T6 aluminum FSW weld [117].

4. Welding Experimental Validation

To validate the equations proposed previously for different aluminum alloys (Table 3),
welds were performed with 3/16” thick AA 6061-T6 aluminum. The test plate dimensions
are presented in Figure 11. Table 9 shows the mechanical properties of the material.
Different tools were used for each of the welds, and only different pin lengths and other
dimensions (shoulder and pin diameter) were preserved. According to this, Tool 1 had an
18.1 mm shoulder diameter; the pin diameter was 6.4 mm and the pin length was 4.4 mm
(view Figure 12). All dimensions were calculated with the equations of Table 3. Tool 2 had



Metals 2021, 11, 2042 10 of 17

a pin length of 2.2 mm and underwent a 50% reduction. A rotational speed of 650 rpm and
a travel speed of 45 mm/min were the parameters used for the welds.

150.0

50.0

(S
Z/

50.0

Figure 11. Test plate dimensions (all units in mm).

Table 9. Mechanical properties of Al 6061-T6 [121].

Microhardness, Yield Strength
HV (Mpa)

Al 6061-T6 107 290 255 12

Base Material UTS, Mpa Elongation (%)

Figure 12. Tool 1 design: (a) shoulder and (b) pin.
4.1. Non-Destructive Tests (NDT)

Non-destructive tests were employed to verify the test weld soundness as follows.

4.1.1. X-rays

Radiography tests are non-destructive and use electromagnetic radiation with wave-
lengths shorter than those of ultraviolet light [122]. Figure 13 shows the X-ray correspond-
ing to the weld made with Tool 1, and it can be said that the weld has no volumetric
discontinuities; therefore, it is a sound weld.
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Figure 13. Tool 1 trial—X-ray of an AA 6061-T6 aluminum FSW weld.

The X-ray results according to trial 2 are shown in Figure 14, indicating a discontinuity
(box in red).

6.4 mm

Figure 14. Tool 2 trial—X-ray of an AA 6061-T6 aluminum FSW weld.

4.1.2. Ultrasound

According to NDT Resource Center, ultrasound tests are non-destructive and use
ultrasonic waves to create an image of the inside of an object [123]. The ultrasonic test
performed for Tool 2 results (view Figure 15) indicated a cavity along the weld (view
Figure 16). The ultrasound obtained for a weld made using Tool 1 does not show any
indication of volumetric discontinuities.

i L:

Figure 16. Cavity location for Tool 2 trial, according to ultrasound results (EPOCH 4 ultrasound system).
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References

By considering the results of the non-destructive tests, it can be concluded that the
equations developed and used for dimensioning FSW Tool 1 can be useful. No disconti-
nuities were found in the weld made with Tool 1; on the other hand, Tool 2, which has
non-corresponding dimensions and was used with the same welding parameters, pre-
sented major discontinuities that can be observed in Figures 15 and 16. It is clear that
there are multiple causes of potential discontinuities and failure in general for FSW, so
the proposed exercise can be expanded using direct experimentation and a bibliographic
review that considers additional tool variations than those used in this work.

5. Conclusions

FSW tool design requires the consideration of various factors and involves multiple
features to be defined. The results from this work allow obtaining basic tool dimensions
that serve as a first step in design, based on the thickness to be welded and the series of
aluminum used. Other factors such as pin shape, shoulder design, and whether or not an
inter-changeable pin is used are at the discretion of the designer. As mentioned previously,
aspects such as these can be defined using the trends identified in the literature review.
However, in this work, no expressions were proposed since the coefficient of determination
found in their analyses did not exceed the threshold established. The collection of more
data in the future could allow this additional progress.

Some interesting aspects to consider are that the length of the pin does not depend on
the aluminum series but mainly on the thickness of the material to be welded; also, the
difference between the length of the pin and the thickness should be kept between 5 and
6%. The 5XXX series requires smaller shoulder and pin diameters than the 2XXX, 6XXX
and 7XXX series. Similar shoulder diameters are used for series 2XXX and 7XXX.

The verifications carried out using the successful tools reported by researchers, outside
the sources initially used, considered for the design of the guidelines, have variations in
dimensions between 0 and 21.44%, although this high value can be explained considering
the specific space restrictions of the part being welded. Additionally, the tests carried out
with the tool manufactured using the proposed guidelines generated sound welds after
being evaluated using X-rays and ultrasound.
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