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Abstract: Corrosion behavior of FeAl-based alloys containing carbon produced through arc melting
in argon atmosphere has been studied at 500 ◦C to 700 ◦C. The samples were tested in the aggressive
environment of molten salts (80%V2O5/20%Na2SO4). The corrosion behavior was observed by
weight change method and the layer products formed were examined by using X-ray diffraction
(XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The different
phase components were observed in the surface layer after the test in Fe-22Al alloy. A protective
Al2O3 layer was confirmed for Fe-22Al alloy containing carbon only. However, an additional TiO
layer was also observed in Fe-22Al alloy containing carbon with Ti addition. The microstructural
and XRD examinations revealed that this additional TiO layer protects better against penetration of
corrosive media. The corrosion resistance behavior of FeAl-based alloys were addressed on the basis
of microstructural evidence.

Keywords: FeAl intermetallic alloys; high-temperature corrosion; SEM with EDS; XRD

1. Introduction

Many industrial components of various engineering systems such as fuel sources
(oil and coal) used at high temperature, power generation devices, aircraft gas turbines,
fuel cells, etc. fail at high temperatures. The degradation of components occurred by
accelerated attack due to condensation of films composed of molten salts. Transition metal
aluminides such as Fe, Ti, Ni, etc. are potentially more suitable alternatives to superalloys
at high temperatures with applications in aggressive environmental conditions [1–3]. These
materials show excellent resistance to corrosion, oxidation, sulfidation, and carburizing
atmospheres, even at high temperatures, due to the formation of stable alumina layer [2,4].

Among these, iron aluminides with higher Al content such as Fe3Al (DO3) and FeAl
(B2) due to their low cost, are being possible substitute materials for high-temperature
applications up to 1000 ◦C in aggressive environment [5–9]. However, iron aluminides
have been poorly studied in the environment composed of (Na2SO4-V2O5) molten salt.
In the past, Baligidad et al. reported that carbon additions have significantly improved
the strength of Fe3Al-based alloys attributed to precipitation hardening due to carbide
and interstitial solid solution strengthening [10]. In the similar context, carbon addition to
FeAl-based alloys was tried but graphite precipitation limits further development of these
alloys [11]. Recently, it was reported that Ti addition together with carbon additions to
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FeAl-based alloys has successfully developed FeAl-based alloys with no graphite precipita-
tion [12]. Addition of Ti to iron aluminides containing carbon leads to improvement in the
mechanical properties [12,13], but it has been established that Ti could also improve the
oxidation and corrosion resistance [14,15]. Li et al. also found that Ti addition to Fe-36.5Al
alloy leads to improvement of oxidation resistance due to compactness of oxide scales on
the surface which deteriorate the further penetration of corrosive media [14,15].

Iron aluminide due to their better oxidation resistance at elevated temperature, are also
considered as replacements of ferritic/austenitic steels for applications up to about 500 ◦C.
Among iron aluminides, FeAl-based alloys with large amounts of Al (~37 wt.% or above)
are generally considered potential candidate for protection at elevated temperature applica-
tions [15–17]. Ti additions to FeAl alloys with carbon to enhance its mechanical properties
offers an excellent opportunity to improve its corrosion resistance especially supporting
oxide adherence [14].

Unfortunately, the literature on the effect of alloying addition on FeAl-based alloys
on its corrosion/oxidation behavior is limited. In the recent past, FeAl-based alloys
were successfully developed with carbon additions and studied their mechanical and
tribological behavior. However, these alloys are not studied for its corrosive behavior at
high temperatures. Since these alloys show good corrosion and sulfidation resistance and
therefore, it is necessary to study the behavior of these alloys in corrosive environment.
The present work aims to study the effect of Ti alloying element on the corrosion behavior
of FeAl alloys at high temperature.

2. Materials and Methods

Iron aluminides containing carbon with and without Ti addition alloys were prepared
by arc melting under argon using pure iron (99.0%), pure aluminum (99.99%) and pure
titanium (99.9%) powders. Four different alloys with composition (in wt%) Fe-22Al-0.1C
(C010T), Fe-22Al-1C (C1T0), Fe-22Al-0.1-1Ti (C01T1) and Fe-22Al-1C-5Ti (C1T5) were
produced. All the alloys were homogenized, and small pieces were cut from each alloy
and grounded with emery paper of different grades and finally polished with fine alumina
powder. The polished specimens were etched with reagent having composition of 33%
CH3COOH + 33% HNO3 + 33% H2O +1% HF by volume. Microstructural examination
was done using electron microscope (FEI Qunta 200 F, FEI, The Netherlands) and elemental
analysis was done by using energy dispersion spectroscopy (EDS, FEI Qunta 200 F, FEI,
The Netherlands). Small sections with size of 10 × 10 × 20 mm3 were cut from the disc
using wire cut EDM for corrosion testing. The specimens were then polished with different
grade emery papers to finish. Before oxidation tests, the specimens were cleaned with
acetone and dried.

For the hot corrosion testing, the specimens were coated with a thin film of 80%V2O5/
20%Na2SO4 salt solution and then exposed to the environment at the desired temperature.
The specimens covered with the salt were isothermally heated in furnace, followed by
cooling down to room temperature. The corrosion tests were performed at temperatures of
500, 600, and 700 ◦C for 70 h. During the experiment, the specimens were first weighed, put
into an alumina crucible and then finally placed in the furnace at the desired temperature.
After the regular interval of time, the specimen was left to cool down outside the furnace
and then immediately reweighted. The change in the weight of the tested specimens were
measured in an electronic balance with an accuracy of 0.1 mg. After the completion of 70 h
study, the cross-sections of the oxidized surfaces were examined under scanning electron
microscope (SU8010 Series, Hitachi, Japan) to study the mechanism of oxide film. EDS
analysis was performed to analyze the distribution of various elements across the oxide
and substrate interface in oxidized specimens.

3. Results and Discussions

In Figure 1a, C01T0 exhibits the fine carbides particles at the grain boundaries with
coarse grain structure. In C1T0 alloy, an uneven distribution of course Fe3AlC0.5 particles
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with few graphite flakes are observed (Figure 1b). These Fe3AlC0.5 carbides are distributed
along the grain boundaries as well as inside the grains. With Ti additions in C01T1 and
C1T5 alloys, both TiC and Fe3AlC0.5 carbide particles are observed as shown in Figure 1c,d,
respectively. No graphite formation is found after Ti additions to FeAl-based alloys. Both
carbides are randomly distributed in the FeAl matrix, and their fractions increase with
carbon and Ti contents.
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Figure 1. SEM images of FeAl-based alloys (a) C01T0 with fine Fe3AlC0.5, (b) C1T0 with graphite and coarse Fe3AlC0.5,
(c) C01T1 with Fe3AlC0.5 and TiC and (d) C1T5 with Fe3AlC0.5 and TiC.

It has been found that carbon addition leads to Fe3AlC0.5 carbides and interstitial solid
solution strengthening observed in EDS analysis (Figure 2a). Higher carbon addition causes
graphite precipitation (Figure 1b). Incorporation of Ti eliminates the graphite precipitation
as evident from the above microstructures (Figure 1d). Furthermore, Ti content was chosen
such that the Ti:C ratios used for C01T1 and C1T5 were more than that for TiC formation.
This is due to fact that some part of Ti dissolve in the FeAl matrix. EDS analysis of C1T5
alloy, confirms the presence of Ti in the matrix (Figure 2b). The confirmation of these
carbide particles in C01T0 and C1T5 is done by EDS analysis and X-ray diffraction (XRD)
(Panalytical’s X’Pert Pro, Rigaku, Japan) which were reported elsewhere [12].

In quaternary Fe-Al-Ti-C system, TiC has large negative free energy of formation [18]
and thus, TiC may be precipitate from the supersaturated solution. During solidification,
both C and Ti may lose its solubility and therefore, Ti and C lead to formation of TiC
particles. The reinforcing components in these alloys are formed through an in-situ process
by solution precipitation or a solid-dissolving mechanism. It has been further observed
that TiC bond strength is higher than C-C and Ti-Ti bonds. Thus, the graphite flakes in
the alloy may reacts with Ti to form TiC and the residual C utilized to form Fe3AlC0.5
carbides. For higher Ti and C contents alloy (C1T5), TiC particles appear to be nucleated
adjacent to existing TiC particles resulting agglomeration of TiC particles. This is called
sympathetic nucleation and may lead to precipitate at the interphase boundary of already
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existing precipitate with same phase. This is mainly attributed to lower activation energy
barrier for precipitate–precipitate interface than precipitate–matrix interface [19].
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The specific weight gains as a function of exposure time for FeAl alloys at temperatures
of 500 ◦C, 600 ◦C, and 700 ◦C, respectively, are shown in Figure 3. From the figure, it is
found that the mass gain increases paralinearly with increasing exposure time for all
temperatures. The deviations from the parabolic behavior initially corresponds to existence
of growing alumina phase at the time during oxidation process. However, various types of
behaviors such as exponential, linear, and parabolic behaviors have been noticed during
the oxidation kinetics at high temperatures [20]. The parabolic nature of curve is the most
commonly kinetics behavior of the layer products that can cover and shield the entire
exposed surface of metallic counterpart [21]. The initial linear behavior of the kinetics
due to the deposition of oxide layer product on the metallic surface and then reduced
due to decrease in the exposed areas. The mass gain is significantly higher in C01T0 and
C1T0 (without Ti) than that C01T1 and C1T5 (with Ti) at various temperatures. Among all
of the alloys, C1T0 with Fe3AlC0.5 carbide shows highest weight gain. This is attributed
to coarse and large number of Fe3AlC0.5 carbides as compared to C01T0. A. Raja et al.
have also reported that the mass gain in iron aluminides was found to be increased with
carbon content [22]. Isothermal mass gains were obtained at different temperatures and
alloys acquired more mass gain at 700 ◦C than they did at other temperatures. However,
both C01T1 and C1T5 (with Ti) showed lower weight gain than their corresponding alloys
(C01T0 and C1T0). The increase in the slope was low for FeAl alloys containing Ti than
their counterparts. This decrease in the value of slopes is mainly attributed to the present
of small amount of Ti in the matrix. It resulted in the formation of additional TiO layer
which causes the compactness of the oxidized layer and may decrease the further corrosion
of the alloy. Based on the microstructural and compositional characterization of different
alloys, the process of hot corrosion can be understood.
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Figure 4 shows the comparative weight gain of C01T0 and C1T5 at different temper-
atures. It is evident from the curve that the weight gain was found to be increased with
increasing temperature. This increase in the weight gain of the alloys due to increase in
the reaction rate and thus causes higher corrosion of the specimens. It can be seen that the
corrosion rate increases with temperature, which indicates the diffusion rate is accelerated
to produce the oxide-forming components. It has been found that the higher melting point
of the salt may act as barrier to oxidation and limits the diffusion rate at lower temperature.
This may lead to reduction of rate of reaction compared to that of metal with no Na2SO4
deposit [23]. In alloy C01T0, the oxide surface was composed of thin, adherent oxide-based
Al2O3 layer, as evidenced by the cross-section view of the oxidized specimen. On the
other hand, oxide surface of C1T5 alloy composed of dense adherent oxides with TiO in
addition to Al2O3 layer. The formation of both Al2O3 and TiO oxides layers as oxidation
products during hot corrosion, are in agreement with other hot corrosion studies of iron
aluminides [14]. The better adhesion of complex oxide formed containing both aluminum
and titanium (C1T5) may lead to higher oxidation resistance than pure Al2O3 layer as in
case of C01T0 alloy. The cross-sectional view of the oxidized specimens further confirms
that stable and adhered oxide layer was formed on the surface only. In C01T0 and C1T0,
the layer was found to be Al-rich scale while in C01T1 and C1T5, an oxide layer of Ti-rich
was formed in addition to Al-rich scale. This additional oxide layer containing Ti helps to
improve the high-temperature oxidation resistance of C1T5 alloy. XRD analysis of oxide
layer further confirms the formation of titanium oxide layer in C1T5 (Figure 5).
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In molten salt (80%V2O5/20%Na2SO4), the corrosion process takes place in two steps
i.e., oxidation of the alloy, and then decomposition of the protective oxides deposits which
can occurs either by basic or acidic reactions by the molten salt [24]. The reaction occurs
may result the formation of oxide film by consumption of oxide ions in the melt and may
release the complex ions. Now, in alloy with no titanium, their hot corrosion resistance
depends upon the formation of Al2O3 layer on the alloy surface only. However, with the
presence of titanium in the alloy, there is an establishment of additional layer on the
alloy surface. This would help to increase the compactness of the oxide layer and thus
increases the corrosion resistance of the alloy. Further, more the aluminum (Al) or titanium
(Ti) contents, thicker would be the oxide layer and thus, corrosion resistance of the alloy
improved. For alloy without titanium i.e., C01T0 and C1T0 which forms only Al2O3 oxide
layer, have lower compactness (Figure 6a) and may undergo dissolution of the oxide layer
more rapidly at metal/melt interface and thus, leads to more weight gain. On the other
hand, Ti-containing alloys more compact and adhere oxide layer is formed which reduces
the dissolution rate and thus, decreases the rate of weight gain.



Metals 2021, 11, 2040 7 of 9

Metals 2021, 11, x FOR PEER REVIEW 7 of 10 
 

 

  
(a) (b) 

Figure 4. Comparative study showing the weight gain of (a) C01T0 and (b) C1T5 at different temperatures (Lines joining 
the data points are for visual aid only). 

 
Figure 5. X-ray diffraction (XRD) patterns of oxidized samples. 

In molten salt (80%V2O5/20%Na2SO4), the corrosion process takes place in two steps 
i.e., oxidation of the alloy, and then decomposition of the protective oxides deposits which 
can occurs either by basic or acidic reactions by the molten salt [24]. The reaction occurs 
may result the formation of oxide film by consumption of oxide ions in the melt and may 
release the complex ions. Now, in alloy with no titanium, their hot corrosion resistance 
depends upon the formation of Al2O3 layer on the alloy surface only. However, with the 
presence of titanium in the alloy, there is an establishment of additional layer on the alloy 
surface. This would help to increase the compactness of the oxide layer and thus increases 
the corrosion resistance of the alloy. Further, more the aluminum (Al) or titanium (Ti) 
contents, thicker would be the oxide layer and thus, corrosion resistance of the alloy im-
proved. For alloy without titanium i.e., C01T0 and C1T0 which forms only Al2O3 oxide 
layer, have lower compactness (Figure 6a) and may undergo dissolution of the oxide layer 
more rapidly at metal/melt interface and thus, leads to more weight gain. On the other 
hand, Ti-containing alloys more compact and adhere oxide layer is formed which reduces 
the dissolution rate and thus, decreases the rate of weight gain. 

Figure 5. X-ray diffraction (XRD) patterns of oxidized samples.

Metals 2021, 11, x FOR PEER REVIEW 8 of 10 
 

 

 

 
Figure 6. SEM Micrographs of (a) C01T0 and (b) C1T5 after oxidation at 700 °C /70 h and EDS elements analysis of cross-
sections show the presence of Fe, O and Al in C01T0 and Fe, O, Ti and Al in C1T5. 

The examination of the cross-sectional areas of oxidized specimen exposed the oxide 
layers were formed on the surface at different temperatures. The microstructures of cross-
sectional areas show that no penetration to the interior of the specimen was observed. The 
further confirmation was done by the EDS mapping of element distribution and detailed 
study on the element analysis of the oxidized layer is shown in Figure 6. In both the sam-
ples, it can be observed that there is reduction in the oxygen content and associated drop 
in aluminum content during movement from layer to matrix. No iron content was ob-
served in the formed layers and appeared only in the region immediately adjacent to the 
surface. This clearly indicates that the aluminum ions penetrate the nascent oxide layer, 
possibly accelerating the formation of Al2O3 layer in both the samples (C01T0 and C1T0). 
The formation of oxide layer is correlated using XRD diffraction pattern as shown in Fig-
ure 5. The unidentified peaks in the data may be related to Na2SO4 or complex compounds 
of V2O5 and Na2SO4. 

In C1T5 sample (Figure 6b), the oxide layer shows an extra element corresponding to 
titanium. At elevated temperature exposure of alloys to oxygen-bearing medium, the alu-
minum present in matrix is preferentially oxidized which leads to the formation of alu-
mina (Al2O3) layer. But due to thermodynamically possibility, the presence of the iron in 
the matrix may also lead to formation of iron oxide (Fe2O3) layer. It has been found from 
the previous studies that major oxidized surface product forms between 500 and 700 °C 
has been reported to be α-Al2O3 [20]. The EDS results also confirm the formation of Al2O3 
layer in all the samples. This agrees with the observations of others, where it was found 

Figure 6. SEM Micrographs of (a) C01T0 and (b) C1T5 after oxidation at 700 ◦C /70 h and EDS elements analysis of
cross-sections show the presence of Fe, O and Al in C01T0 and Fe, O, Ti and Al in C1T5.



Metals 2021, 11, 2040 8 of 9

The examination of the cross-sectional areas of oxidized specimen exposed the oxide
layers were formed on the surface at different temperatures. The microstructures of cross-
sectional areas show that no penetration to the interior of the specimen was observed.
The further confirmation was done by the EDS mapping of element distribution and
detailed study on the element analysis of the oxidized layer is shown in Figure 6. In both
the samples, it can be observed that there is reduction in the oxygen content and associated
drop in aluminum content during movement from layer to matrix. No iron content was
observed in the formed layers and appeared only in the region immediately adjacent to
the surface. This clearly indicates that the aluminum ions penetrate the nascent oxide
layer, possibly accelerating the formation of Al2O3 layer in both the samples (C01T0 and
C1T0). The formation of oxide layer is correlated using XRD diffraction pattern as shown
in Figure 5. The unidentified peaks in the data may be related to Na2SO4 or complex
compounds of V2O5 and Na2SO4.

In C1T5 sample (Figure 6b), the oxide layer shows an extra element corresponding
to titanium. At elevated temperature exposure of alloys to oxygen-bearing medium,
the aluminum present in matrix is preferentially oxidized which leads to the formation of
alumina (Al2O3) layer. But due to thermodynamically possibility, the presence of the iron
in the matrix may also lead to formation of iron oxide (Fe2O3) layer. It has been found from
the previous studies that major oxidized surface product forms between 500 and 700 ◦C
has been reported to be α-Al2O3 [20]. The EDS results also confirm the formation of Al2O3
layer in all the samples. This agrees with the observations of others, where it was found
that in addition to Al2O3 oxides, as well as other metal oxides. Transient formation of
aluminium oxides act as nucleation sites for Al2O3, and titanium present in the matrix leads
to the formation of more stable TiO layer. The dense concentration of titanium shows the
present of the TiO oxide layer in addition to Al2O3 layer in C1T5 (Figure 6b). The formation
of additional TiO layer was also observed in Fe-36.5Al-2Ti alloy as reported elsewhere [13].
This additional TiO layer leads to better corrosion resistance of Ti containing alloys (C01T1
and C1T5) as compared to without Ti alloy (C01T0 and C1T0) at elevated temperature in
molten salt applications.

4. Conclusions

Addition of Ti to iron aluminide containing carbon leads to formation of carbides
namely TiC and Fe3AlC0.5. Further, the incorporation of Ti is also found in FeAl matrix leads
to refining in the grain of the alloy. The difference between alloys on Ti addition is not only
the morphology of surface but also in phases present in the matrix. After corrosion test, only
Al2O3 layer was observed on the surfaces of C01T0 and C1T0, while Ti addition leads to
formation of an additional layer of TiO with Al2O3 oxides for C01T1 and C1T5, respectively.
Thus, Ti addition to iron aluminides with carbon leads to significantly improvement in the
compactness of oxide scales in the surface of FeAl-based alloys. The compactness of layer
formed shows better protective effect. Further, the better adherence of TiO to the substrate
of FeAl alloy makes more difficult of scale spalling. The high-temperature corrosion
behavior of the FeAl-based alloys confirms that the Al2O3 and TiO oxide layers play
significant role in the corrosion protection in corrosive environment at high-temperature
applications.
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