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Abstract: For planar closed-loop structures with clearances, the angular and positional error uncer-
tainties are studied. By using the vector translation method and geometric method, the boundaries
of the errors are analyzed. The joint clearance is considered as being distributed uniformly in a circle
area. A virtual link projection method is proposed to deal with the clearance affected length error
probability density function (PDF) for open-loop links. The error relationship between open loop and
closed loop is established. The open-loop length PDF and the closed-loop angular error PDF both
approach being Gaussian distribution if there are many clearances. The angular propagation error
of multi-loop structures is also investigated by using convolution. The positional errors of single
and multiple loops are both discussed as joint distribution functions. Monte Carlo simulations are
conducted to verify the proposed methods.

Keywords: closed-loop structure; joint clearance; angular and positional error; probability density
function

1. Introduction

Rigid links are often hinged together as a fixed structure to fulfill the requirements
of various tasks. If the structure is transformed from a deployable mechanism, which is
widely used in the space environment, such as the solar panel array system or an antenna
support structure, the possible joint clearances may have a great effect on its accuracy.

Open-loop or serial mechanisms with joint clearances have been studied recently.
Pandey and Zhang presented a method for computing the positional reliability of a ma-
nipulator with random joint clearances [1]. The joint axis orientation and link length
uncertainties were studied for a robot tolerance analysis and multibody dynamics method
was used [2]. Based on advanced first order second moment method, the position and
orientation kinematical reliabilities have been analyzed for a RRR manipulator [3]. Jawale
and Thorat [4–6] have studied the maximum positional errors of open chain and closed
chain manipulators in their researches. The kinematic accuracy reliability problem was also
analyzed by using hybrid dimension reduction method [7]. The mechanism kinematics
and dynamics uncertainties caused by a number of errors have been studied by Rao [8]
and Lai [9], respectively. Flores and Lankarani [10] have established the dynamic behavior
model of multibody systems with clearance joints. The joints in frictionless, lubricated
and dry situations were discussed respectively [11–15]. Furthermore, the dynamics of
flexible-rigid multibody systems [16,17] and flexible mechanisms [18,19] with joint clear-
ances has also been studied. Tsai and Lai used screw method to calculate the kinematics
error of multi-loop linkages [20,21]. Similarly, the maximum parallel platform error was
also investigated by using the screw method [22]. Furthermore, the inertial force and
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external force were considered [23,24]. In most of these studies, statics or dynamics are
used to calculate the angular or positional errors, which obviously is a kinematics prob-
lem. Venanzi and Parenti-Castelli have proposed a method to determine the maximum
displacement without considering force or torque [25]. Ting, Zhu and Watkins have shown
that the same dimension joint clearances contributed equally to the direction error in a
single loop structure [26]. Wu and Rao used interval method to analyze the tolerances
and clearances [27]. Other methods include Lie group and Lie algebra method, direct
linearization method [28–31], etc. In the authors’ previous work, the uncertainty angular
error of multiple-loop structures especially for an extendible support structure (ESS) is
analyzed [32]. But the pin (journal) of the clearance joint is assumed only goes around the
hole (bearing) inner surface.

In a mechanism system with uncertain joint clearances, besides the maximum error,
we are also interested in the error probabilities. The uncertainty analysis for closed-loop,
especially the multi-loop structure, is more difficult. Compared to the previous research,
a more general error analysis methodology for closed-loop structures is proposed in
this paper. Firstly, the clearance model is more general. The pin is assumed can stay
anywhere inside the hole uniformly. Secondly, the positional uncertainty error analysis
is added. By using the proposed virtual link projection method, the angular error and
the positional error of single-loop structures are determined with their probability density
functions (PDF), and the angular error propagation of multi-loop structures is also studied.
Finally, the multi-loop positional error is investigated. In order to verify the proposed
theoretical methodology, Monte Carlo simulations are conducted and compared to the
theoretical results.

The obtained results can be used to estimate how much the joint clearance affects the
error of the planar closed-loop structure. We will prove that the clearance of each joint
in the closed loop has the same effect on the overall error theoretically. This provides
theoretical basis for the manufacture of such planar closed-loop structure.

This paper is organized as follows. The general closed-loop error model is analyzed
in Section 2. The error PDF analysis and the numerical simulation method is presented in
Section 3. The comparison results of the numerical simulation and the theoretical results
are shown in Section 4.

2. Closed-Loop Error Model Analysis
2.1. Modelling Method

In a support structure, the stable triangle configuration is commonly applied. If a
deployable mechanism is locked as such a structure, the joint clearances are often intro-
duced inevitably. The following models are established according to this situation. We
have already known that the straight-line locked joints have a negligible error effect and a
multiple-joint can be simply seen as a series of single-joints [32]. Basically, a single clearance
joint needs to be studied.

A clearance revolute joint can be expressed as shown in Figure 1. The shaft center can
stay anywhere freely when k < R− r if all components are rigid.

y

xO
θ

R
r

Figure 1. The geometrical representation of clearance joints.
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In the space floating environment, it is reasonable to assume that the PDF of the pin
center is a uniform distribution function, and it can be given as

ρ(x, y) =
{ 1

πK2 ,
(
K = R− r, x2 + y2 ≤ K2)

0, (otherwise)
(1)

where, (x, y) is the coordinate of the pin center in frame xOy.
For a closed-loop structure with clearance joints, we could find two common expres-

sions of hinged joint with clearance, as shown in Figure 2.

(a) (b)

Figure 2. Two expression types of hinged joint with clearance. (a) Type 1. (b) Type 2.

The pin is connected to link 2 of type 1, while the pin of type 2 is an individual part
and it is widely used. However, type 2 can be seen as a connection of two sets of type 1.
For this reason, a basic model of a closed-loop structure with joint clearances is established
as shown in Figure 3.
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l1

B2
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C1
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l2

l3

A2

α 1β

Figure 3. The closed-loop model with joint clearances.

In this model, each joint clearance with its adjacent links can be seen as a RPR (Revolute
joint–Prismatic joint–Revolute joint) kinematic chain. In the closed loop, there are 8 movable
links (including virtual links) and 9 joints, the degree of freedom (DoF) thus is calculated
as [33]

F = 3× 8− 2× 9 = 6 (2)

Each clearance has two DoFs, means its direction and size can change independently.
Compared with the links, the clearance size is small enough, which ensures that the motion
induced by clearance is similar to that of a crank. In the system, point coordinates are
determined as

A1 =
[

0 0
]T (3)

B2 =
[

l1 0
]T (4)

B1 = B2 +
[

x1 y1
]T (5)
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Let α1 denote the angle between B1C2 and axis x, we have

C2 = B1 + l2
[

cos α1 sin α1
]T (6)

C1 = C2 +
[

x2 y2
]T (7)

A2 = A1 +
[

x3 y3
]T (8)

According to the structural constraint,

l3 − ‖A2C1‖ = 0 (9)

where, xi = ki cos θi, yi = ki sin θi. θi is the inclined angle of ki in the ground frame. ki
and li are labelled in Figure 3. Definitely, αi can be solved (two solution sets) from these
equations then all point locations will be determined accordingly.

Furthermore, a multi-loop structure model is established as shown in Figure 4.

Figure 4. The multi-loop model with joint clearances.

Reasonable simplification is applied in the model that it can be seen as a new single-
loop structure is attached to the previous model. Similar to most supporting structures,
in Figure 4, links B1C2 and E2D1 overlap each other. Points B1 and C2 have been solved
from the single-loop model, and in the new situation, they can be replaced by points E2
and D1, respectively. Then the loop D1E2E1F2F1D2 corresponds to the loop A1B2B1C2C1 A2.
Accordingly, all coordinates of the interested points are solved. It is also fine to attach more
loops in a similar manner. In the next subsection, simpler methods will be discussed to
determine the boundaries of the angular and positional errors. However, further statistic
simulations are on the basis of the proposed models in this subsection.

2.2. The Angular Error and Positional Error Boundaries

By using optimization methods, the extremal angular and positional errors are ob-
tained quickly. The boundary calculation is actually a workspace problem, and it is not easy
to be determined. In this section, a direct way is presented based on vector translations. In
Figure 3, we have β = ψ− α1, which is also shown in Figure 5.

All line segments in Figure 5 are seen as vectors. After the translations, β is not
changed. The maximum and minimum of β are shown in (a) and (b) in Figure 6, respectively.

The angular error boundaries caused by joint clearances, obviously are determined by
the extremal values. The equivalent opposite link to β is a critical factor. β grows larger if
the length of the opposite link becomes longer. This conclusion is also suitable for multi-
loop situations. For example, in Figure 4, α2 = π − β1 − β2. β1 and β2 are in separated
single loops, and their maximal values can be obtained accordingly to minimize α2.
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k1k2
k3

A1

l1

C1

C2

l2
l3

B2

β
A2

B1

Figure 5. Equivalent β after vector translations.

(a) (b)

Figure 6. The extremal configurations. (a) Maximum. (b) Minimum.

For the positional error boundary analysis, the workspace of point C1 is studied in
Figure 7 first.

A1

C1

B2

Figure 7. Workspace of point C1.

In Figures 5 and 7, C1 is the intersection point of A1C1 and B2C1. As can be seen, the
length of the two line segments varies in the intervals of [l3 − k3, l3 + k3], [l2 − k1 − k2, l2 +
k1 + k2]. As a result, C1 must lie in the contour shading area. The four intersected points
are called key points here. While for multi-loop structures, the positional analysis is more
complicated. Possible locations of point F1 are analyzed in Figure 8.
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Figure 8. The positional analysis for multi-loop structures.

If C2 stays at C
′
2, B1 will move to B

′
1. Based on the analysis of Figure 7, an area section

of F1 with four new key points is drawn in Figure 8. Similarly, if C2 moves to other three
key points, we could find 16 new key points in total for F1, as shown in Figure 9.

Figure 9. Area sections of F1 with 16 key points.

The workspace of F1 can be expressed approximately by an area that could encircle
the 16 points. In fact, the clearance size is much smaller than the links, so all the arcs
between the key points can be replaced by straight lines. Based on the above knowledge,
the boundary problems are simplified accordingly.

3. Error PDF Analysis and Simulation Method

In the last section, we have investigated a convenient method of estimating error
boundaries. Furthermore, the error probability density function (PDF) is always a challeng-
ing problem, especially for closed-loop structures. In order to further analyze the PDF, we
present the equivalent opposite link to β in dashed line as shown in Figure 10.

k1k2k3

l3

β

l'3

Figure 10. Equivalent opposite link.
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The equivalent link includes many uncertain errors and it needs to be simplified. The
projection method is applied for this purpose. The adjacent connected error virtual links ki
are projected onto line l3 respectively, in order to simplify the expressions. Figure 11 shows
such simplification. We use k

′
3 to represent the new error virtual link transformed from the

three error virtual links. It is seen that the sum of the length of l3 and the projection lines

will replace the length of l
′
3 as l

′
3 =

√(
l3 + k′3x

)2
+ k′3y

2
, which includes k

′
3y

2
. As k

′
3y is a

small item, its square is negligible. The simplified expression of l
′
3 can thus be written as

l
′
3 =

√(
l3 + k′3x

)2
+ k′3y

2 ≈ l3 + k
′
3x (10)

k'3

l3

l'3

k'3x

k'3y

Figure 11. Representation of equivalent linkage length.

In a uniformly distributed circle as shown in Figure 12, the PDF along axis x can be
calculated as ∫ +∞

−∞ ρ(x1)dx1 =
∫ K
−K c · 2

√
K2 − x2

1 · dx1

= c
[

x1

√
K2 − x2

1 + K2 arcsin x1
K

]∣∣∣∣ K
−K

= c · πK2 = 1

(11)

where
c =

1
πK2 (12)

y

x
O

Figure 12. The PDF along axis x.

Therefore we have,

ρ1(x1) =

{
2

πK2

√
K2 − x2

1, x1 ∈ [−K, K]
0, otherwise

(13)

where x1 is the x component of the clearance −1. Accordingly, the average and variance of
x1 are

µ1 =
∫ +∞

−∞
x1 · ρ1 · dx1 =

∫ K

−K
x1 ·

2
πK2

√
K2 − x2

1 · dx1 = 0 (14)
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σ2
1 =

∫ +∞

−∞
x2

1 · ρ1 · dx1 =
∫ K

−K
x2

1 ·
2

πK2

√
K2 − x2

1 · dx1 =
K2

4
(15)

If there are more joint clearances, the propagation of them in convolution form is as

ρ1,2(X) = ρ1 ∗ ρ2(X) =
∫ +∞

−∞
ρ1(x1) · ρ2(X− x1) · dx1 (16)

ρ1,2,...,n(X) = ρ1 ∗ ρ2 ∗ · · · ∗ ρn(X) (17)

where,

X =
n

∑
i=1

xi (18)

where xi is the x component of the clearance −i.
Substituting Equations (13)–(16), then the integral equation is difficult to solve even

by using numerical methods. Fortunately, if we assume all joint clearances are in the same
size, according to Lindeberg-Levy central limit theorem, Equation (17) can be expressed as

ρ1,2,...,n(X) ≈ 1√
2nπσ1

e
−X2

2nσ2
1 (19)

As can be seen, the length error of a single link with many clearances will approach
the Gaussian distribution. The relationship between the open link and the closed-loop
needs to be bridged. If y = f (x), then

ρy(Y) = ρx

(
f−1(Y)

)∣∣∣∣d f−1(Y)
dY

∣∣∣∣ (20)

From Figure 10 and Equation (10), we already have

l′3 =
√

l2
1 + l2

2 − 2l1l2 cos β ≈ l3 + X (21)

Then according to Equation (20), we arrive at,

ρ(β) = ρ

(√
l2
1 + l2

2 − 2l1l2 cos β− l3

)
· l1l2 sin β√

l2
1 + l2

2 − 2l1l2 cos β
(22)

This equation can be simplified. Let β0 be the nominal value of the studied angle, and

β ≈ f (X) = arccos
l2
1 + l2

2 − (l3 + X)2

2l1l2
(23)

By using the Taylor series expansion at X = 0, we get

β = arccos
l2
1 + l2

2 − l32

2l1l2
+

l3 + X

l1l2

√
1−

(
l2
1+l2

2−(l3+X)2

2l1l2

)2
X (24)

If the small coefficients of X are ignored, we can obtain

ε1 = β− β0 ≈
l3

l1l2|sin β0|
X (25)

where, ε1 denotes the angular error. As can be seen from Equation (25), ε1 has the same
PDF form with X, and

µ(ε1) =
l3

l1l2|sin β0|
µ(X) = 0 (26)
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σ2(ε1) =

(
l3

l1l2 sin β0

)2
σ2(X) = n

(
l3K

2l1l2 sin β0

)2
(27)

For a multi-loop structure, as shown in Figure 4, a single loop is stacked on the other.
Similar to Equation (16), the propagation angular error E is

ρ1,2(E) = ρ1 ∗ ρ2(E) =
∫ +∞

−∞
ρ1(ε1) · ρ2(E− ε1) · dε1 (28)

Particularly, if the two PDFs are both in Gaussian distribution, such as{
ρ1(ε) ∼ N

(
µε1, σ2

ε1
)

ρ2(ε) ∼ N
(
µε2, σ2

ε2
) (29)

Then the convolution also will be in Gaussian distribution as

ρ1,2(E) ∼ N
(

µε1 + µε2, σ2
ε1 + σ2

ε2

)
(30)

It is obvious that the analysis can be extended to the structures with more loops.
Compared to the angular distribution, the positional PDF is a two-dimensional prob-

lem and is more complicated. For a single-loop, the calculation is simplified by using the
proposed projection distribution method. The position of point C1 is given in Figure 13.

A1

l1

C1

l2
l3

B2

Figure 13. The position of C1.

In Figure 13, C1 is the intersection point of lines A1C1 and B2C1. The point is deter-
mined when the length of the two lines is assigned. Accordingly, the joint probability
distribution for C1(C1x, C1y) is equivalent to the joint distribution for the two independent
lengths. In Figure 13,

lAC =
√
(C1x −A1x)

2 +
(
C1y −A1y

)2 ≈ l3 + X1 (31)

lBC =
√
(C1x − B1x)

2 +
(
C1y − B1y

)2 ≈ l2 + X2 (32)

where, X1 and X2 are the clearance projections onto line l3 and l2, respectively. If the length
relationship is written uniformly as l

′ ≈ l + X, by using Equation (20), we obtain

ρ
(
l′
)
≈ ρ(l + X) = ρ(X) (33)

The joint distribution can be expressed simply as

ρ
(
C1x, C1y

)
= ρ(lAC) · ρ(lBC) = ρ(lAC − l3) · ρ(lBC − l2) ≈ ρ(X1) · ρ(X2) (34)
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For the multi-loop positional analysis, such as point F1 in Figure 4, a more complicated
method needs to be developed which will be included in our future work. However, in the
following section, a specific case of multi-loop positional error is studied by fitting method.

Monte Carlo method relies on repeated random sampling and it is often used in
generating draws from a probability distribution. The initial input clearance PDFs should
distribute uniformly in circles, such as being shown in Equation (1). If (xi, yi) is expressed
in a polar coordinate as (ki, θi), then{

xi = ki cos θi
yi = ki sin θi

, ki ∈ [0, Ki], θi ∈ [0, 2π) (35)

Hence we have,

ρ(ki, θi) = ρ(xi, yi)
∣∣∣ ∂(xi ,yi)

∂(ki ,θi)

∣∣∣
= 1

πKi
2

∣∣∣∣∣
∂xi
∂ki

∂xi
∂θi

∂yi
∂ki

∂yi
∂θi

∣∣∣∣∣ = ki
πKi

2

(36)

Clearly, in the polar system, the distribution density is higher with ki growing. It is
not convenient when running the simulations in programs. While in Cartesian coordinates,
xi and yi both distribute uniformly in the interval [−Ki, Ki]. If xi + yi > Ki, the result
will be discarded. The method is easier and it is an important reason that the model
is established in a Cartesian coordinate. Furthermore, during the simulations, solution
of Equations (3)–(9) may be used. The proposed calculation process is summarized in
Figure 14.

Figure 14. The calculation process.

4. Numerical Simulations

The above analysis should be verified in steps using Monte Carlo method. The joint
clearance is simulated first according to the method presented at the end of last section.
Let K be 1 mm, then ρ(x, y) = 1/π ≈ 0.32. While in Figure 15, after 105 times of randomly
generating of point (x, y), it is found that about 7.86× 104 points are in the unit circle, and
the average density of these points are about 0.31.

Along x axis, if the interval [−1, 1] is divided into smaller intervals, count of the point
densities in the small intervals and the values are plotted as a bar chart in Figure 16. The
theoretical curve according to Equation (13) is also painted in this figure.
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Figure 15. The probability density simulation of a clearance joint.

-1 -0.5 0 0.5 1
X / mm

0

0.2

0.4

0.6

0.8

1(X
)

Figure 16. The PDF ρ1(X) along axis x.

If more clearances are stacked, first their densities are simulated respectively. Let
X = x1 + x2 + x3 and X = x1 + x2. Again, the statistics bar charts are plotted in
Figure 17a,b.

As can be found in Figure 17, the shapes of the bars are closed to Gaussian functions.
According to Equation (19), the curve of N (0, 0.5) is plotted in Figure 17a and the curve of
N (0, 0.75) is plotted in Figure 17b. The results show that, in Equation (19), when n ≥ 2,
the equation is accurate enough.

-2 -1 0 1 2
X / mm

0

0.1

0.2

0.3

0.4

0.5

0.6

1,
2(X

)

(a)

-3 -2 -1 0 1 2 3
X / mm

0

0.1

0.2

0.3

0.4

1,
2,

3(X
)

(b)

Figure 17. The PDFs along axis x. (a) ρ1,2(X) curve and bar chart. (b) ρ1,2,3(X) curve and bar chart.
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Furthermore, the PDF of ε1is tested. In this case, let l1, l2 and l3 be 200 mm, then the
nominal value β0 is π/3. In Figure 18, the simulation result is drawn, while according
to Equations (26) and (27), the Gaussian function curve ρ1(E) is obtained with µ(ε1) = 0
and σ2(ε1) = 2.5× 10−5. In the simulations, the maximum and minimum values of β are
1.0633 rad and 1.0314 rad, respectively. While in Figure 6, the theoretical values should be
βmax = 1.0646 rad and βmin = 1.0299 rad. The results are close enough. Accordingly, the
theoretical boundary of the error is determined as [−0.0173 rad, 0.0174 rad].

-0.02 -0.01 0 0.01 0.02
Angular Error / rad

0

20

40

60

80

1

Figure 18. The angular error PDF of single closed-loop.

For multiple loops, assuming the two individual loops are the same, then according to
Equation (30), we have ρ1,2(E) (0, 5× 10−5), and the propagation boundary is [−0.0346 rad,
0.0347 rad]. The function is plotted with simulation result in Figure 19.

-0.02 0 0.02 0.04
Angular Error / rad

10

20

30

40

50

60

1,
2

Figure 19. The propagation angular error PDF of two closed-loops.

The distribution statistics of point C1 is as shown in Figure 20a, while by using
Equation (34), the PDF of the point is calculated, as shown in Figure 20b. For a small area
section, the PDF is expressed by its height.

(a) (b)

Figure 20. The PDF of Point C1. (a) Simulation result. (b) Theoretical result.
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The workspace of C1 determined by the method of Figure 7 is plotted in Figure 21
with the above simulation result. The theoretical boundary is in dashed lines.

Figure 21. The theoretical boundary of C1.

Similarly, according to Figure 9, the 16 points for the studied two loops are determined,
as shown in Figure 22. The points labelled from 1 to 10 are connected in order as the
simplified boundary for F1. In the simulation tests for F1, 7.5× 104 random points are
obtained and their densities are calculated. The result is also plotted in Figure 22.

Figure 22. The simplified boundary and the simulation for point F1.

As can be seen, nearly all the simulation points are located in the boundary, and in the
boundary-neared area, the possibility of a point appearing is very small. In the previous sec-
tions, although the theoretical PDFs for multi-loop points are not given, the PDF can be ob-
tained by the fitting method. According to the simulation data of F1 = (F1x, F1y), the means
of the coordinates (omitting measure units) are µ(F1x) = 299.9970 and µ(F1y) = 173.1990.
The covariance values of the two samples are σ2(F1x) = 1.0002, σ2(F1y) = 1.5003 and
σ(F1x, F1y) = σ(F1y, F1x) = −0.7241. In the simulation figure, the PDF can be seen as a
multivariate Gaussian distribution. Accordingly, with the mean and the covariance, the
fitting PDF pattern is drawn in Figure 23.

The two similar figures show that the PDF of F1 is close to a two dimensional Gaussian
distribution function. It is important to the future theoretical calculation work.
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Figure 23. The fitting PDF pattern.

5. Conclusions

A general model for planar closed-loop structures with joint clearances is established
to solve the uncertainty problem. By using the vector translation method, the boundaries of
angular errors of both single-loop and multi-loop structures and the boundary of positional
error of single-loop structures can be easily determined. Furthermore, the approximate
boundary of the multi-loop positional error is studied by connecting several key points. The
clearances are analyzed as uniformly distributed in a circle area. The virtual link projection
method is used to calculate the PDF of link length. The length PDF approaches Gaussian
distribution if there are two more random clearances. Then functions between open loop
and closed-loop errors are deduced. The PDFs of the angular error and its opposite link
have the same form. The positional errors are investigated as joint distributions. All of
the proposed methods are verified by Monte Carlo method. Future work includes the
error uncertainty analysis of such closed-loop structure under the influence of varying
temperature and gravity, as the closed-loop structure is widely used in space environments.
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