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Abstract: The quality of a welded joint is determined by key attributes such as dilution and the
weld bead geometry. Achieving optimal values associated with the above-mentioned attributes of
welding is a challenging task. Selecting an appropriate method to derive the parameter optimality
is the key focus of this paper. This study analyzes several versatile parametric optimization and
prediction models as well as uses statistical and machine learning models for further processing.
Statistical methods like grey-based Taguchi optimization is used to optimize the input parameters
such as welding current, wire feed rate, welding speed, and contact tip to work distance (CTWD).
Advanced features of artificial neural network (ANN) and adaptive neuro-fuzzy interface system
(ANFIS) models are used to predict the values of dilution and the bead geometry obtained during
the welding process. The results corresponding to the initial design of the welding process are used
as training and testing data for ANN and ANFIS models. The proposed methodology is validated
with various experimental results outside as well as inside the initial design. From the observations,
the prediction results produced by machine learning models delivered significantly high relevance
with the experimental data over the regression analysis.

Keywords: dissimilar metal welding; gas metal arc welding; grey-based Taguchi optimization;
artificial neural network (ANN); adaptive neuro-fuzzy inference system (ANFIS)

1. Introduction

Welding techniques have been increasingly used in the automotive, aerospace, nuclear,
vessel production, railway, and other manufacturing industries because of their simplicity,
structural adaptability, and desired mechanical characteristics [1,2]. One of the most
effective techniques for welding different materials is GMAW welding. Because of their
low production costs and simplistic functionality, GMAW is used in a wide range of sectors.
One of the capabilities of GMAW is the welding of certain dissimilar metals exclusively
at less expense and without making the welding process more complicated. Moreover,
dissimilar metal welding (DMW) has highlighted a lot of metallurgical challenges causing
the formation of different intermetallic compounds, differences in metallic compositions,
mechanical and thermal properties. Another prime factor that affects the efficiency of
DMW is problems of corrosion, including the growth of brittle martensite [3,4], galvanic
corrosion, oxidation, and hydrogen-induced cracking [5]. Some of these complications are
also inevitable when it comes to DMW of stainless steel to low alloy steel when improper
process parameters are selected to perform the weld operation. These kinds of DMW have
intensive application in the power production [6], and petrochemical and construction
industries [3,7]. The maximizing demand for high-quality products has accelerated the
development of modern automated industrial operations. Overall quality indices of a
product are determined by the caliber of each sub-operation throughout the manufacturing
phase, and welding is clearly a significant sub-process in certain instances. Dissimilar
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stainless steels were welded using GMAW and obtained the most contributing parameters
among weld current, gas flow rate, and Z-distance [8]. Ramarao et al. obtained a dissimilar
joint from steel and stainless steel and optimized the input parameters based on impact
strength [9]. Weld irregularities and imperfections, which are the primary source of stress
corrosion cracking causing erosive underwater equipment, particularly in the oil and gas
industry [10].

The heat-recovery steam generators (HRSGs) are utilized in cycle power plants and
coal-fired power systems [11] and the pressure vessels can use thin plates for building their
walls [12]. The American Society of Mechanical Engineers (ASME) guideline is used to
manufacture HRSGs across European countries [13]. These applications indicate that there
is an obvious need for research related to thin plate welding. Generally, the mechanical
characteristics might vary dramatically based on the heating and cooling circumstances,
and also the structural as well as chemical characteristics of the test specimen [14,15]. In this
context, it is crucial to look at the effects of welding operation ultimate mechanical proper-
ties of the joint. Thus optimization of process parameters plays a crucial role in achieving
weldment of desired strength, weld bead characters [16], and defect-free joint [17]. The
key factors for achieving the desired integrity of the weldment, including hardness and
strength, are the geometric features of the weld bead, like penetration depth (P), bead
width (BW), bead height/reinforcement (R), and depth-to-width ratio (D/w) [18]. The
input variables that are used during the welding process mostly determine the weldment
characteristics. As a result, the optimal selection of input parameters and a technique
for evaluating the eventual weld geometry are the first phases in product design [19,20].
Moreover, the relationships of the output and input characteristics can sometimes be in-
compatible, causing an optimization technique much more difficult to solve. Multiobjective
optimization is the terminology for a method that optimizes multiple responses at the same
time. To address multiobjective functions, many techniques have been developed, with the
weighted additive utility function approach combing multiobjective problems to single
objective context are being widely utilized for weld situations [21].

The fourth industrial revolution urges towards the upcoming era of production tech-
nologies, in which intellectual optimization and smart input will boost innovative technolo-
gies. Because of the growing demand for higher production rates, lower operating costs,
and protracted quality, welding parameter prediction has become important. Meanwhile,
because of the nonlinear nature of the multi-input process, selecting and implementing an
appropriate and effective approach is critical to attaining better results [22]. As a result, ma-
chine learning techniques like ANN and ANFIS are required to predict the characteristics
of the obtained joint. Numerous methods for predicting and optimizing processes such as
the RSM technique, Taguchi method, artificial neural network (ANN), and adaptive neuro-
fuzzy interface system (ANFIS) were outlined in the various literature with satisfactory
results [23-25].

Hitherto, utilizing the most up-to-date predictive analytics methods and machine
learning concepts can help to improve welding management and oversight [26]. Such
machine learning concepts may save substantial amounts of time, expense, and waste
generation in the industry by reducing excessive experimentation. Weld techniques are
across-the-board to the use of sophisticated algorithms to estimate and improve the ge-
ometry, structural properties, and mechanical characteristics of a joint before the actual
welding of materials begins. By using the automated GMAW method, Xiong [27] used
ANN and regression analysis to determine the optimal weld parameters that affect the
shape factors of the weld bead. They observed that the ANN outperformed the regression
model because it can approximate nonlinear processes more effectively. However, for the
performance analysis, these methods are frequently coupled using sophisticated adaptive
optimization algorithms.

Some sophisticated investigations were conducted by Sreeraj and his research group.
They developed an optimization model and a prediction model for characteristics such
as bead geometry and Dilution percentage. The research proposed optimal input param-
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eters for obtaining minimum dilution and optimal bead geometry using particle swarm
optimization [28] and ANN integrated with genetic algorithm [29].

The purpose of this article is to develop statistical optimization and machine learning
prediction models for determining the optimum GMAW operating conditions, such as
welding current (I), wire feed rate (F), welding speed (S), and contact tip to work distance
(CTWD)(Z-dist.). Obtained results illustrate the role of the optimum weld bead geometry
(BG) such as reinforcement, penetration, bead width including dilution percentage. Multi-
objective optimization is conducted using the Grey-based Taguchi method. A comparative
prediction model is developed using statistical regression analysis (RA), machine learning
algorithms like ANN and ANFIS. This research is the first of its kind to perform statistical
optimization and artificial intelligence-based prediction for thin dissimilar welding.

2. Research Methodology
2.1. Plan of Investigation

The current research was divided into four phases. The metals to be welded were first
chosen following a comprehensive literature review. After a number of trial runs, the design
of the experiment and process parameters for the welding process was selected. A tradi-
tional welding torch was mounted to the Z-axis of the table CNC machine and controlled
to complete the welding process. As per early test trail runs, the welding speed range of
350 to 450 mm/min provided a sound weld for the examinations. Figure 1 illustrates the
architectural layout of the experimental process carried out in the current research.

15tphase 2nd i hase

| Literature survey |

Automated
IIdentifying the range of parameters | :':tl:::;:ﬂon
| Design of Experiment (DOE) |
Speed
3rd phase 4t phase
N )
Prediction Models * Result Analysis
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Responses: o / p—
D% & BG | comparison
— e Confirmatory
s T O Test
RA ANN ANFIS
S’ ~_/ ~_/

Figure 1. Architecture of the current investigation.

Secondly, the responses such as R, P, BW, and their respective dilution % were mea-
sured and optimized collectively using the grey-based Taguchi method, and prediction
of responses was carried out with regression analysis, ANN, and ANFIS respectively.
Only the bead characters and dilution percentage were optimized in this current study;,
whereas the strength responses will be optimized in the future study. Finally, to determine
the efficacy of the obtained results, a confirmatory test was performed using the optimal
process parameters.

2.2. Workpiece Nomenclature

The present work aims to optimize process variables of the GMAW process for the
application of dissimilar welding of stainless steel 304 and low-carbon steel AISI1008. As
substrates, rectangular specimens from the base metals of 300 mm x 60 mm x 1.5 mm
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(length, breadth, thickness) were utilized. Welding was performed in a heterogeneous man-
ner with an ER705-6 filler wire of diameter 1.2 mm. For all experimental runs, a root gap of
about 1 mm was maintained between weld samples. A preferable joint design was selected
based on the initial trial runs to provide better penetration quality and bead formation [30].
Automated welding techniques ensure reliability and also uniformity. The experimental
runs were conducted with fixed process variables like welding voltage of 56 V, welding
torch angle of 45°, and shielding gas flow rate of 18 L/min (80% Argon + 20% CQO,). Argon
is a commonly employed shielding gas in the GMAW process, and it can be mixed with
15-25 wt% CO, gas to achieve the appropriate bead geometry and penetration. As a result,
in most of the manufacturing sectors, the recommended shielding gas is Argon + CO, gas
combination [8,31]. Telwin® digital SuperMig 610 power source (Telwin®, Villaveria; Italy)
is used to perform the welding processes at a constant voltage. The welding torch was
mounted to the Z-axis of a table CNC machine (Openbuilds® Workbee, Monroeville, PA,
USA) (Figure 2).

Figure 2. Welding apparatus—1. weld machine with the controller; 2. self-build table CNC machine;
3. Z-axis coupled with weld torch; 4. personal computer.

Welding current (I), torch travel speed (S), filler wire feed rate (F), and CTWD (Z)
were among the input factors subjected to optimization. The morphological characteristics
of weld bead, such as reinforcement (R), bead width (BW), penetration (P), and dilution
percentage, are the responses. Trial runs were used to assess the values of input factors.
The experiments were carried out adopting experimental design. An experimental design
for the parameters using the L16 orthogonal array is shown in Table 1.

The chemical composition of the base metals was calculated using an energy-dispersive
X-ray fluorescence spectrometer (EDX-7000, Shimadzu Corporation, Kyoto, Japan) and
optical emission spectrometry (SPECTROMAXx, SPECTRO Analytical Instruments GmbH,
Kleve, Germany). Table 2 shows the metallurgical constituents by weight proportion for
low-carbon steel AISI 1008, stainless steel AISI 304, and filler wire ER70S-6.

2.3. Weld Bead Geometry and Dilution Percentage

The fundamental understanding is that the mass transfer processes, involved in the
deposition of molten metal on a weld surface, have a direct relationship with weld bead
geometry [32]. The weld geometry is assessed through bead width, depth of penetration,
and reinforcement (Figure 3).
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Table 1. L9 orthogonal array for the experimental run.
Sample Welding Current Wire Feed Rate =~ Welding Speed CTWD
No. A m/min mm/min mm

DM-1 60 3.1 360 1

DM-2 60 33 380 2

DM-3 60 3.5 400 3

DM-4 60 3.7 420 4

DM-5 70 3.1 380 3

DM-6 70 3.3 360 4

DM-7 70 3.5 420 1

DM-8 * 70 3.7 400 2

DM-9 80 3.1 400 4

DM-10 80 3.3 420 3

DM-11 80 3.5 360 2

DM-12 80 3.7 380 1

DM-13 90 3.1 420 2

DM-14 90 3.3 400 1

DM-15 90 3.5 380 4

DM-16 90 3.7 360 3

* Initial design run.
Table 2. Chemical composition of base metal and filler material (% by wt.).

Composition Cr Ni C Mn S P Si Mo Ti Cu Al N Fe
AISI 304 19.7 809  0.02-008 08 0.03 0.04 035 0.208 - 044 0003 0.1 Bal.
AISI 1008 0.032 0.014 0.082 0.316 0.012 0.018 0.02 0.003 - 0.04 0.02 - Bal.
ER70S-6 <0.15 <0.15 0.06-0.14 14-16 <0.025 <0.025 0.8-1.0 <0.15 <0.15 <05 - - Bal.

Figure 3. Bead geometry, W—width; R—reinforcement; P—penetration; g—root gap.

Dilution is the measure of the ratio of the area of base metal melted (B+D) to the total
weld bead area (A + B + C + D) as represented in Figure 3. Area B and D are considered as
right-angled triangles and the reinforcement area is approximated by W*R/2. The formula
for calculating dilution percentage (D%) is

Area of base metal fused (B + D)
total weld bead area (A +B + C + D)

D% = 100 x 1)

2.4. Developing Statistical Model Using Grey-Based Taguchi Method

GRA approach was invented by Julong Deng in the late 1990s. It is generally used
to study the effect of input factors on several outputs if information is incomplete and
the operation is complex [33]. GRA is involved with the linear normalization of acquired
outputs inside a range from 0 to 1. GRA solves multiobjective problems by combining all
features into a specific objective. As an outcome, the GRA enhances decision-making and
effectiveness of results [34,35].
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Only penetration belongs to the larger-is-better category, whereas the remainder of the
responses falls into the smaller-is-better category. A variety of functional equations were
used, including normalization for larger-is-better that was calculated using Equation (2).

_ xi (k) — min x;(k)
max X; (k) — min x; (k)

xi(n) )

Bead width, reinforcement, and dilution percentage (D%) follow the smaller-is-better
criterion. Accordingly, normalization for smaller-is-better is determined using Equation (3).

o maxxi(k) —xi(k)
xi(n) = max x; (k) — min x; (k) ®)
Whereas, max x;(k) and min x; (k) are maximum and minimum normalized values
for the kth response.
The grey relational coefficient can be calculated using Equation (4).

Arnin +‘DAmax

(k) =
51( ) AOi +@Amax

4)

Whereas, Ag; is the absolute difference between Oth and ith iteration; Apax and Apin
are highest and lowest normalized values of Ay; and @ is a distinguishing coefficient
(0 < @ <1). Finally, ranking is done by utilizing grey relational grade (t;) (Equation (9))
by calculating the mean of grey relational coefficient.

1 8
T = é Z ei(k) ®)

k=1

where Q is the total number of responses. An intensive relational degree in between
provided series and the reference series translates to a higher grey relational grade. These
grades are optimized in Taguchi optimization and optimal process parameters are predicted
using design expert software “MINITAB 17”.

2.5. Development of the Prediction Models
2.5.1. Regression Analysis

The conventional statistical regression model explains the fundamental workflow or
quantitative relationship which ultimately resulted from interactions of the dependent and
independent factors. The development of regression models using observational results or
test information gathered through the design of experiments procedure is an established
practice [36,37]. In this study, the data obtained from traditional testing was used to build
regression equations for predicting the weld bead geometry and dilution percentage. Both
linear and quadratic regression analyses are performed in MINITAB software. Based on
the better R-sq. value of the respective regression model, one out of these two regression
equations is selected.

2.5.2. Weld Bead Geometry and Dilution Prediction—ANN Approach

ANN models are predictions that mimic the behavior of a human brain neuron system
and are effectively utilized to solve complicated problems in a variety of areas. Basic
synchronized units inspired by the natural nervous system make up neural network models.
Synapses are the linkages that interconnect neurons, and each synapse has a weighting
related to them. The artificial neural modeling technique is elaborated herein [38,39].
The hidden layers and neurons throughout the neural network influence the functioning
of the ANN. As a consequence, numerous efforts must be made to determine the best
configuration for the neural network by varying the number of layers and neurons. The
range of design input data in this research is four, and the results are the weld geometry
as well as dilution, which are four in number. A trial-and-error approach has been used
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to choose the best neural network topology to predict bead geometry and dilution, this
leads to an architecture of ANN used in this study to be 4-12;-4 (Figure 4), which has four
input parameters, 12 hidden neurons, and four output responses. The input layer neurons
possess a transfer function, whereas the other layer utilizes a logarithmic sigmoid (log-sig)
function. The chance of overloading the information while applying a regression model as
an input in ANN is a challenge and this restricts the using regression equation in ANN. To
minimize this, all experimental values are categorized into two groups: one for training,
another for testing. The training data is utilized to construct the ANN model; the latter
test data is to evaluate the performance of the ANN network. The inputs and outputs are
normalized to a value between 0 and 1. The data are randomized and divided into two
groups: one for training and the other for testing.

| CURRENT |
( 12)
‘ Neurons
FEED RATE’ ,
WELD SPEED“
‘Transfer function |
CTWD ’

Figure 4. Model of a classical artificial neural network.

Back-propagation neural network (BPNN) is a frequently used classification algorithm.
The BP method with feed-forward four-layered was employed in this research with a hid-
den neuron layer that is upgraded using Levenberg-Marquardt (LM) classical optimization
methods in MATLAB 2020. Using a learning algorithm, BPNN transforms the weight
matrix of the input to hidden units data that is then turned into the response of the output
layer. After successful training, the neural network provided in this article was utilized to
estimate the dilution % and bead geometry welded joints of dissimilar metal within the
learned limit. The findings of the network are compared using statistical methods. The
difference between predicted output (O) and experimental data (E) is denoted as an error.
Mean square error (MSE) is used to obtain the total squared error of the neural network
(Equation (6)).
n
MSE = %Z(En ori_in (6)
i=1
where 7 is the total number of data given for training of NN and i is the iteration number.
The fact is MSE gets minimized throughout the training phase through continuous
updating of units per iterations satisfying the convergence criterion. Different weight
update methodologies have been used to increase prediction performance and computing
efficiency. The simplicity, where an ANN will recognize a given collection of data, is
indicated by its training performance. However, the effectiveness of a trained ANN is
determined by its performance in an unfamiliar environment. Whenever a trained ANN
meets a collection of a new dataset (i.e., test cases), it is evaluated in the testing process by
determining predictive accuracy.

2.5.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS is a hybrid intelligent system possessing a multilayered feed-forward
system with nodes. It is developed by an interconnection that integrates both training and
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logical thinking of neural networks and fuzzy logic. When compared to employing a single
approach, ANFIS combines the learning skills of a neural network with the understanding
capacities of fuzzy logic to provide better predictive accuracy. ANFIS uses input—-output
collections and a combination of IF-THEN fuzzy decision logic to provide a thinking
approach of prediction models like a human brain. This heterogeneous network model
possesses the potential to expand the predictive skills of ANFIS exceeding ANN and fuzzy
inference system approaches [40]. ANFIS can determine the best range of membership
functions by evaluating the translation correlation among the input and output values
as well as using a back-propagation approach or in tandem with a regression model
approach. This significantly decreases prediction error and increases flexibility to dynamic
circumstances. This integrated system is basically considered to have two inputs (x & y)
and one output (f) (Figure 5). A traditional framework for an initial level with two fuzzy
if-then conditions, Sugeno-type fuzzy inference [23] system may be described as follows:

Condition 1: f1 =p1+q1 +11, ifx= Aq and y = B;.

Condition 2: fz =p2+q +12, ifx= Ay and y = Bo.

where p1, P2, q1, q2, 11, and 1y represent linear variables inside the following section, while
A1, Ay, By, and By are nonlinear parameters.

—
N

|

w, w., Y

W
D—(n)—— iy,

@—<®L W, f
W 212

Figure 5. Structural representation of ANFIS.

The functionality of all layers in ANFIS is outlined as follows;

The first layer in the ANFIS layout is called the fuzzy layer. The modifiable elements
were illustrated as squared nodes having x and y inputs and are labeled as Aj, Ay, B;, and
B, (Figure 5). A node in this layer represents a membership grade and has an adaptable
local function (Equation (7)).

Of = pa, (%) )

where O} represents output functions, j4, represents relevant membership functions, and
x refers to the input of the first node.

The second layer is named the product layer because the outcome of this layer is the
products of the input, and each node is a static component (Equation (8)). The weighted
factors of the subsequent layer are outputs W1 and Wj.

O? = pa(x).up,(y), giveni=1, 2 8)

The third layer represents normalized mode and has fixed nodes (Equation (9)). By
computing the relation of converting the ability of a single node to the total strengths, these
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can be normalized. The ratio of the ith firing value to the sum of all firing values was
determined by:
L
Oi w1 + wy ©)
The fourth layer is the defuzzification phase, which is denoted by rectangular vertices
and has adaptable nodes (Equation (10)). The function of the node is determined by a

nonfuzzy equation, which indicates the contributions of an ith rule to the total output.
0% = O3 (pix + qiy + i) (10)

The last layer essentially adds up all of the inputs to get the system calculated result
(Equation (11)). The signaling node is a circular node defined by Z,

Of =) 0. f; (11)

In the current study, MATLABR2020 was utilized to create the ANFIS model. An
ANFIS system, like ANNSs, could be built using classification techniques to go beyond a
given input to a certain desired output. Subtractive clustering is the approach used in the
MATLAB ANFIS framework. Depending on the specific training set, there is considerable
progress to be made to reach the convergence of the model.

3. Results and Discussion
3.1. Multiobjective Optimization—Statistical Model

The responses such as D%, R, P, and WB were obtained from the experimental run
(Table 3). For the context of this research, penetration should be increased, so larger-the-
better formulations were utilized to determine optimal parameters. For D%, R, and BW,
smaller-is-better conditions were employed as they need to be minimized. The wire feed
rate and welding speed were determined to be the most important aspects affecting the
outcomes, but other input variables also certainly contributed. The GRC and GRG of
operations are tabulated in Table 3. The joint with specimen id DM-13 had the highest GRG
value in the Taguchi L16 orthogonal array of 0.767.

Table 3. Responses from experimental runs and grey relational analysis.

Sample Experimental Results Grey Coefficient
No. D% R P WB D% R P WB

DM-1 2713 228 145  4.02 1.00 0.39 0.33 0.71 0.6095 9
DM-2 2795 215 148 400 0.59 0.52 0.38 0.76 0.5616 11
DM-3 28.63  2.09 151 410 044 0.61 0.44 0.58 0.5179 12
DM-4 2893 212 153 431 0.40 0.56 0.49 0.39 0.4590 16
DM-5 27.60 218 155 4.01 0.72 0.48 0.55 0.74 0.6207 5
DM-6 2761 231 154 432 071 0.37 0.52 0.38 0.4954 14
DM-7 29.51  1.96 1.56 413  0.33 1.00 0.59 0.54 0.6158 8
DM-8* 2913  2.09 155 433 037 0.61 0.55 0.38 0.4780 15
DM-9 2757 213 1.58 392 0.73 0.55 0.68 1.00 0.7392 2
DM-10 28.04 2.08 1.57 395 057 0.63 0.63 0.89 0.6800 3

GRG Rank

DM-11 2724 233 1.60 430 092 0.36 0.81 0.40 0.6196 6
DM-12 2791 2.25 157 432  0.60 0.41 0.63 0.38 0.5081 13
DM-13 2784  2.08 1.60 392  0.63 0.63 0.81 1.00 0.7667 1
DM-14 2789 218 1.61 418 0.1 0.48 0.89 0.49 0.6194 7

DM-15 2724 235 1.60 435 092 0.34 0.81 0.37 0.6093 10
DM-16 2722 237 162 442 093 0.33 1.00 0.33 0.6491 4

* Initial design run (R, P & WB are in mm).

As per the average table (Table 4), the optimal configuration of input variables for ideal
results was 14F15473, which had welding current 90A, wire feed rate 3.1 m/min, welding
speed 420 mm/min, and CTWD of 3 mm. However, the efficiency of the optimal input
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parameters can only be validated by a confirmation test. To improve overall weld efficiency,
suitable input welding conditions have to be determined in order to achieve optimal weld
bead. The welding current and welding speed significantly affected the bead width. If the
welding speed was high, the time of electrode contacting the weld puddle was less and the
amount of metal deposited on the weld pool per unit length decreased, thereby affecting
the reinforcement and bead width. As the welding speed increased reinforcement and
weld bead decreased. Similarly, increasing the wire feed rate increased the quantity of filler
wire deposited to the weld zone, resulting in increased width and reinforcement. Figure 6
shows the micrographic images of obtained weld beads from the experimental runs.

Table 4. Response table for average GRG.

Response Table
Level L1 L2 L3 L4 diff Optimal Rank
Welding current 0.54 0.55 0.64 0.66 0.124 14 2
Wire feed rate 0.68 0.59 0.59 0.52  0.160 F1 1
Welding speed 0.59 0.57 0.59 0.63  0.06 S4 3
CTWD 0.59 0.61 0.62 0.58  0.041 Z3 4
Optimal condition Level
Based on Response table 14F15473 Sample ID: C-1
Based on original L9 14F15472 Sample ID: DM-13

(d)

Figure 6. Macroscopic images of the weld bead: (a) sample DM7; (b) sample C1; (c) sample DM2
(d) sample DM9.

In the case of penetration in the welded plates, welding current was the significant
parameter. The penetration is directly proportional to welding current and we aimed to
increase it in the current study. An increase in welding current and feed rate increased the
heat input during the welding process. This increase in the heat input will cause the filler
wire to deposit more molten metal inside the root gap and increase the penetration.

Determining GRG Using S/N Ratio

The average of all the levels of process variables was used to calculate the mean
GRG. The GRG indicates the significance of the association between variables and the
effectiveness of the input parameters. It demonstrates that 14F154Z3 was the best set
of input parameters. The results of the grey-based Taguchi optimization were corrobo-
rated by these optimized values. From Figure 7, it is evident that the wire feed rate was
the most important factor for determining GRG, accompanied by welding current and
welding speed.
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Current W.F.R Speed CTWD
) GRG
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Figure 7. S/N ratio results for GRG.

3.2. Regression Analysis

Linear regression models were postulated for all of these characteristics by taking
into account all major and multiple interrelationships. For predicting and evaluating input
variables, several scholars have been using multiple regression [41-43]. The data from the
design of experiment in Table 1 and the responses in Table 3 were utilized to generate the
formulas. The input parameters are symbolically represented before performing regression
analysis (Table 5).

Table 5. Notation for input parameters.

Input Parameters Notation
Welding current x(1)
Feed rate x(2)
Welding speed x(3)
CTWD x(4)

The prediction model was developed using linear and quadratic regression equations
to examine the relationship among the independent factors and their multiple responses.
The regression model was developed using only the significant parameter within the
0.05 P-value. Based on the results from the least-square approach (R-Sq.) for all the output
variables, a quadratic regression model was found to have higher R-Sq value than the
linear model of the developed model (Tables 6 and 7). Such regression models were then
used to estimate weld bead shape characteristics and dilution percentage. The postulated
equations for the bead geometry are:

Table 6. Developed linear regression equations for responses.

SI. No Response R-Sq (%) Regression Equation
1 Dilution% 87.44 17.08 — 0.02616 *x(1) + 1.290 *x(2) + 0.02232 *x(3) — 0.0998 *x(4)
2 Reinforcement 91.2 3.439 + 0.003175 *x(1) + 0.0612 *x(2) — 0.004487 *x(3) + 0.01975 *x(4)
3 Penetration 90.2 1.022 + 0.003750 *x(1) + 0.0425 *x(2) + 0.000250 *x(3) + 0.00500 *x(4)
4 Bead Width 87.01 2.990 + 0.00255 *x(1) + 0.6200 *x(2) — 0.003000 *x(3) + 0.0170 *x(4)

Many researchers have used regression models for modeling and analyzing welding
parameters [41-44]. It has been suggested that relative error should be less than 20% for
statistical analysis to consider it to be reliable. Moreover, as wire feed rate and welding cur-
rent were found to be most influential factors for multiobjective optimization in Section 3.1,
additional levels of welding speed (420 mm/min) and welding current (100A) were used to
determine the efficacy of the regression equation to predict other values outside L16 orthog-
onal array. Some additional experimental trials were therefore conducted and provided
with a respective sample id (E) (Table 8).
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Table 7. Quadratic regression equations for responses.

SI. No Response R-Sq (%) Regression Equation
1 Dilution % 97.1 8.54 — 0.03363*x(1) + 1.290*x(2) + 0.04567*x(3) + 3.542*x(4) — 0.00934*x(3)*x(4)
_ —714 +0.2221%x(1) + 11.22*x(2) + 0.2637*x(3) — 3.28*x(4) — 0.001519*x(1)*x(1) —
2 Reinforcement  98.53 0.000195*x(3)*x(3) + 0.0812*x(4)*x(4) — 0.0341*x(2)*x(3) + 0.850*x(2)*x(4)
—1.451 + 0.06365*x(1) + 0.0645*x(2) + 0.001988*x(3) + 0.07569*x(4) —
3 Penetration 99.98 0.000069*x(1)*x(1) + 0.000003*x(3)*x(3) — 0.003750*x(4)*x(4) — 0.004593*x(1)*x(2) —
0.000086*x(1)*x(3) — 0.000159*x(1)*x(4) + 0.000625*x(2)*x(3) — 0.000125*x(3)*x(4)
150.98 — 0.33441%*x(1) — 23.148*x(2) — 0.5267*x(3) + 4.994*x(4) + 0.002562*x(1)*x(1) —
4 Bead Width 99.99 0.125*x(2)*x(2) + 0.000344*x(3)*x(3) — 0.115*x(4)*x(4) — 0.012316*x(1)*x(2) +

0.000047*x(1)*x(3) — 0.000909*x(1)*x(4) + 0.07375*x(2)*x(3) — 1.275*x(2)*x(4)

Table 8. Experimental runs outside the orthogonal array.

Sample No. I F S V4 D% R P WB
C-1 90 3.1 420 3 27.47 2.06 1.61 3.78
E-1 100 3.1 420 2 27.71 2.13 1.61 4
E-2 100 33 400 1 28.23 2.15 1.62 424
E-3 100 35 380 4 27.19 241 1.67 4.58
E-4 100 3.7 360 3 26.49 25 1.66 4.5
E-5 90 3.9 360 3 26.49 2.45 1.67 4.38
E-6 90 3.1 440 3 28.60 2.01 1.58 3.98
E-7 90 3.1 420 5 28.68 2.06 1.55 4.09

From Table 9, it can be observed that the regression equation can effectively predict
the output response from the input parameters range used for the regression analysis
well within 20%, whereas the prediction was dramatically reduced for test runs outside
those input ranges. Table 9 also illustrates the results of the prediction model created from
regression analysis and their performance by calculating mean relative error (MRE) and
root mean square error (RMSE). As the regression model could not predict the responses
outside the initial design effectively, this shows the need for machine learning artificial
intelligence that can better understand the correlation between dependent and independent
variables. The square root of the average variation of a dataset from the measured value to
the predicted value is known as the root mean square error. The following equation gives
the RMSE (Equation (12)):

. B 2
(predicted value — measured value) } (12)

where # is the number of test results.

3.3. ANN Prediction Model

In the artificial neural configuration, the number of hidden layers and neurons are
key aspects. Till now there has been no suitable technique for assessing such network
aspects [45]. After many trial-and-error evaluations, the number of neurons in the hidden
layer was set to 12 in this study since any higher number increased the computing time
without reducing the overall percent error significantly. Furthermore, increasing the
number of neurons to more than 12 had no influence on the outcomes. Moreover, when
the number of hidden layers was increased to two, the findings were worse than when the
layer was only one. Noted that the purpose of this research is to predict the weld bead
characteristics of dissimilar joints, 75% of the test results were used as training data in the
first network, and 25% were used to validate the trained network, i.e., a total of 12 out
of 16 data sets were trained, with four data sets used for validation. This decision was
premised on the reality that our training set was not noisy.
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Table 9. Tabulation of results obtained from developed prediction models within the input design range.
Regression Analysis ANN ANFIS
Sample No. ™o R P WB | D% K P _WB | D% R P___WB
DM-1 27.14 2.28 1.43 4.05 27.24 216 149 4.31 27.13 2.28 1.45 4.02
DM-2 28.12 2.15 1.46 4.04 27.94 214 149 4.00 27.95 2.15 1.48 4.00
DM-3 28.72 2.08 1.48 4.14 28.86 207  1.50 411 28.50 2.14 15 415
DM-4 28.95 2.10 1.50 4.35 28.93 212 149 431 28.93 2.12 1.53 431
DM-5 27.52 2.16 1.52 4.05 27.59 217  1.54 4.01 27.60 2.18 1.55 4.01
DM-6 27.60 2.28 1.52 4.35 27.61 230 155 4.30 27.61 2.31 1.54 4.32
DM-7 29.50 1.98 1.53 4.17 28.28 224 155 3.93 29.51 1.96 1.56 413
DM-8 * 28.84 2.08 1.52 4.37 27.71 232 153 4.28 28.20 1.88 1.49 3.94
DM-9 27.34 2.14 1.55 3.96 27.56 212 157 3.94 27.57 2.13 1.58 3.92
DM-10 28.15 2.07 1.54 3.99 28.04 207  1.58 3.94 28.04 2.08 1.57 3.95
DM-11 27.17 2.33 1.58 4.33 27.27 234  1.56 431 27.24 2.33 1.60 4.30
DM-12 27.97 2.21 1.54 4.36 27.33 233 155 4.28 28.70 2.45 1.68 4.52
DM-13 27.93 2.06 1.57 3.97 28.27 212 1.60 4.09 27.84 2.08 1.60 3.92
DM-14 27.84 2.19 1.58 422 27.89 218 1.1 4.19 27.89 2.18 1.61 418
DM-15 27.35 2.33 1.57 4.39 27.35 233 157 4.39 28.60 2.49 1.7 4.65
DM-16 27.27 2.36 1.59 4.45 27.43 2.35 1.54 4.38 27.22 2.37 1.62 4.42
Max. Error % 1.01 1.78 2.06 1.15 4.89 14.2 5.1 7.31 4.9 10 7 9

MRE 0.32 0.66 1.77 0.91 0.96 255  1.34 1.37 0.72 1.71 1.11 1.36
RMSE 0.12 0.02 0.03 0.04 0.51 0.1 0.03 0.1 0.53 0.09 0.05 0.15

* Initial design run.

The network is trained for 1000 iterations to ensure that the network was well trained
before testing and validation. Further training of the neural network seemed to have no
influence on the prediction efficiency. The prediction efficacy of ANN was verified by the
percentage of error obtained from the validation data and also by predicting from data sets
outside the original L16 orthogonal inputs. The experimental runs performed outside the
L16 array were given with sample id of E, before measuring the output characteristics. As
shown in Figure 8, the regression coefficient of the network during training, testing and
validation were 0.99998, 0.99927, and 1 respectively.
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Figure 8. ANN output prediction in training, testing, and validating phase versus experimental results.
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CURRENT

Table 9 shows the predicted outcomes from the feed-forward back-propagation neural
network. The maximum relative error of projected values from the neural network was
only 10%, so it is capable of predicting reasonably well. The responses predicted for the
optimal parameter [4F15473 were found to be 28.47% of dilution, 2.09 mm of reinforcement,
1.58 mm of penetration, and 3.98 mm weld bead. The root mean square error of the
ANN model was in the range of 0.07 to 0.63, which is far below the error range of the
regression model.

3.4. The Adaptive Neuro-Fuzzy Inference System (ANFIS)

The available data set, which comprises 16 input data and their respective output data
from the experiments conducted, was segregated into training and test sets to construct
an ANFIS model for the welded dissimilar joint. The training set was assigned to 75% of
the data set at arbitrary, whereas the other 25% was used to evaluate the efficacy of the
network. The number of epochs was set to 1000 to assure that the learning process had
adequate iterations. As illustrated in Figure 9, the fuzzy inference system had inputs that
include welding current, feed rate, welding speed, and CTWD, whereas the output was
the acquired dilution % or bead geometry generated by defuzzification. The Gaussian
function was utilized as the membership function for the input variables. The Gaussian
membership function was selected because the prediction error within the predicted and
experimental data was the lowest of all the membership functions evaluated. The ANFIS
model for the surface plot of the dilution % from proposed ANFIS is shown in Figure 10.

inputmf
INPUT  lpgum! RULE Outputmf Dilution/Bead
geometry

Logical Operations
and

O or

not

Q ) ."éx ZZZ&%Y (X ‘x‘)’n‘:zlzzmixsié

Figure 9. Architecture of developed ANFIS model for predicting the output.
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Figure 10. Surface plot of proposed ANFIS model for dilution.
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Figure 11 depicts the membership functions for dilution, which are made up of
clustered linguistic variables. In comparison to grid partition, the subtractive clustering
developing approach was more appropriate. The weighted average approach was used to
defuzzify the data. Following that, the data were used to construct a hybrid algorithm that
used the least square technique with the back-propagation conjugate gradient approach for
training and improvement to determine the parameters of a Sugeno-type fuzzy system.
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Figure 11. Membership function for welding current on the Matlab interface.

The predicted outcomes from the ANFIS model are compiled in Table 9. The prediction
result of the ANFIS model was more accurate than ANN because it had a unique logic
interface to understand the basic correlation between the dependent and independent
variables. According to Table 9, the maximum relative errors of prediction for dilution,
reinforcement, penetration, and bead width were 6%, 10%, 7%, and 9% respectively. The
RMSE of the ANFIS model was in the range of 0.05 to 0.58, which is far lower than the
ANN model.

Comparison between the Prediction Models

It is challenging to develop a predictive model that characterizes the relationship
between process factors and weld bead properties because of their nonlinearity and un-
certainties. This is the prime motive for using computational intelligence models (e.g.,
ANFIS and ANN) to create prediction models, but still both the predictive models should
be compared to verify their efficiency of prediction.

The mean relative error percentage and root mean squared error data were used to
evaluate the effectiveness of the two models. The relationship between experimentally
observed and estimated weld bead shape and dilution percent predicted by ANN and
ANFIS outside the input design is depicted in Figure 12.
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Figure 12. Comparison between experimental and prediction models for runs outside the input experimental design.

The ANFIS is a hybrid intelligent system that combines artificial neural networks and
fuzzy logic to effectively incorporate nonlinear effects in complicated processes. This is the
fundamental reason that ANFIS has a higher prediction rate than ANN. The experimental
results within the input design are compared to the predicted values in Table 9 and the
variances are determined. It can be inferred from Table 9, that the prediction process
performed by regression analysis was better with MRE in the range of 0.31-1.77 and RSME
in the range of 0.02-0.12. Overall, the variance value (MRE and RMSE) indicates that the
predicted rates appear to be effective. The performance of both the ANN and ANFIS model
could be increased by utilizing data from additional trial runs.

The prediction of trail runs outside the L16 set was also better performed by the
ANFIS model with less prediction error than the ANN model. According to this assess-
ment (Table 10), ANFIS appears to provide a slightly better response than the ANN for
penetration and bead width as well as much better than regression analysis with RSME
values of 0.06 and 0.09 respectively. For the prediction of dilution and reinforcement, ANN
seems to provide better results with less RSME values of 0.65 and 0.07 respectively. This
improvement is because of the fine experimental data used for the analysis.

Table 10. Tabulation of results obtained from developed prediction models outside input design range.

Regression Analysis ANN ANFIS
Sample No.

D% R P WB D% R P WB D% R P WB
C-1 27.55 1.82 1.56 435 28.47 2.09 1.58 3.98 27.9 2.08 1.6 3.93
E-1 27.60 1.39 1.57 5.29 27.96 2.16 1.61 419 28.00 2.09 1.61 3.94
E-2 27.51 1.52 1.59 5.52 27.84 2.18 1.61 425 28.00 2.19 1.62 42
E-3 27.02 1.66 1.58 5.62 27.37 2.34 1.55 4.40 28.8 2.51 1.72 4.68
E-4 26.93 1.70 1.61 5.66 27.54 2.35 1.55 4.42 27.4 2.39 1.63 4.45
E-5 27.52 2.66 1.57 3.96 27.34 2.35 1.50 4.40 27.2 2.37 1.62 4.42
E-6 27.90 1.63 1.52 4.39 29.03 2.00 1.55 3.96 29.2 2.18 1.67 41
E-7 26.79 1.83 1.51 4.43 28.27 2.02 1.56 3.96 29 2.24 1.66 413
Max. Error % 6.59 3453  6.05 32.16 4.89 1426  9.98 7.31 591 10.05 7.01 9.01
MRE 2.31 2217 347 19.27 2.08 2.47 3.68 2.49 1.26 2.49 1.59 1.50
RMSE 0.86 0.55 0.06 0.90 0.65 0.07 0.08 0.13 0.77 0.11 0.06 0.09
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The ANFIS is a hybrid intelligent system that combines artificial neural networks and
fuzzy logic to effectively incorporate nonlinear effects in complicated processes. This is
the fundamental reason that ANFIS has a higher prediction rate than ANN. During the
design of ANN and ANFIS models, the selection of ANN parameters starts with a minimal
number and gradually increased based on the performance of the tool. The objective of
this task is to minimize the effect of overfitting. Yet it can be observed, for example, in
predicting penetration by ANFIS.

3.5. Confirmatory Test

After the optimum parameters were identified from the grey-based Taguchi method,
the final part of the study predicted and assessed the operational efficiencies of the out-
comes. Confirmative testing was carried out based on the optimal parameters to verify the
findings. The context of the overall study is determined from the relative error from the
experimental trials. Moreover, the outcomes of the confirmation experiment appear to be
in good agreement with the predicted outcomes (Table 11).

Table 11. Confirmatory test results and GRG.

Improvement from

Response Initial Design Run ANN Model ANFIS Model Exp. Result Initial Condition (%)
Optimal parameters DMS8-12F45372 C1-14F15473 C1-14F15473 C1-14F15473
Dilution % 29.13 28.47 27.9 27.47 57
Reinforcement 2.09 2.09 2.08 2.06 14
Penetration 1.55 1.58 1.6 1.61 3.9
Bead Width 4.33 3.98 3.93 3.78 12.7
GRG 0.48 - - 0.769 60.2

4. Conclusions

This study examines different optimization and prediction models for dilution and
weld bead geometry of a dissimilar joint produced using stainless steel SS304 and mild
steel AISI1008.

Multiobjective optimization of the input parameters of the GMAW process was per-
formed using the grey-based Taguchi optimization method. The optimization search was
implemented to design the decision space variables such as welding current, wire feed rate,
welding speed, and CTWD for improving the dilution and weld bead geometry features,
without sacrificing the mechanical properties. Further, the study identified that welding
speed and welding current had an impact on bead width and reinforcement. Welding
current was found to be the key influential factor of penetration in the weldment. The
results obtained from the optimization model identified that the parametric optimal set is
14F1547Z3 which denotes welding current 90 A, wire feed rate 3.1 m/min, welding speed
420 mm/min, and CTWD of 3 mm. Experimental analysis performed using these opti-
mized parameters improved the performance of the welding process to an appreciable
extent, for example, 5.7% was achieved for dilution and bead width improved by 12.7%.

Though regression analysis predicted effectively within the initial experimental design,
the prediction failed tremendously for experiments outside it. Due to this lower prediction
accuracy obtained from regression analysis outside the initial design range, machine
learning models like ANN and ANFIS were used in this study. From the comparative
study among machine learning models, it can be inferred that the predictions from the
ANFIS model usually agreed well with the experimental data. The prediction performed
outside the initial experimental design had minimum root mean square error of 0.06 and
mean relative error of 1.79%, which are less than the ANN model that had minimum RSME
and MRE in the range of 0.07 and 2.08% respectively.

The results exemplify that the ANFIS logic generated a slightly better prediction than
the ANN for penetration and bead width. ANN model provided better prediction for
dilution % and reinforcement, whereas both ANFIS and ANN performed much better than
regression analysis outside the initial experimental design range. In this context, prediction
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from the ANFIS model is only considerably better than the ANN model, hence the research
is inconclusive in determining which method is superior to the other.

It is worth mentioning that overfitting could be a limitation of the ANN and AN-
FIS models, the selection of ANN parameters should start with a minimal number and
gradually increased with guidance of the ANN performance.

In the future, the study is planning to optimize mechanical properties associated with
the welding process. This strategy will enhance the performance of the welded joint used
in different manufacturing-oriented applications.
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