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Abstract: The co-precipitation thermodynamics of the Li+–Fe2+/Fe3+–Al3+–F−–SO4
2−–PO4

3−–H2O
system at 298 K is studied, aiming to understand the precipitation characteristics. Based on the
principle of simultaneous equilibrium and the mass action law, the missing Ksp values of AlF3 and
FeF3 were estimated. The results of thermodynamic calculation demonstrate that Al3+ and F− in the
sulfuric acid leachate could be preferentially precipitated in the form of AlPO4 and FeF3 by the precise
adjustment of the final pH value. Only a small amount of P and Fe was lost by the precipitation of
Fe3(PO4)2·8H2O, FePO4, and Fe(OH)3 during the purification process. Controlling the oxidation
of ferrous ions effectively is of critical significance for the loss reduction of P and Fe. Precipitation
experiments at different pH value indicated that the concentration of Al3+ and F− in the leachate
decreased as the final pH value rose from 3.05 to 3.90. When the final pH value was around 3.75,
aluminum and fluoride ion impurities could be deeply purified, and the loss rate of phosphate ions
and iron ions could be reduced as much as possible. Relevant research results can provide theoretical
guidance for the purification of leachate in the wet recycling process of lithium-ion batteries.

Keywords: spent LiFePO4 battery; sulfuric acid leachate purification; co-precipitation thermodynam-
ics; aluminum precipitation; fluorine removal

1. Introduction

Greenhouse gas emissions are severely aggravating global climate change, and thus
all countries should formulate national policies to achieve zero carbon emissions [1,2].
China, for instance, has pledged to peak nationwide CO2 emissions by 2030 and achieve
carbon neutrality by 2060 [3,4]. Aimed at this goal, the zero-carbon industry represented
by clean and renewable energy is facing a critical moment of accelerated development [5].
In the past decade, China has become the world’s largest market of new energy vehicles
(EV) as its EV stock reached 3,810,000 in 2019, nearly half of the global stock [6]. Given
that the service life of power batteries is approximately 5–8 years, it is predicted that the
cumulative decommissioning of powder batteries in China will reach 90.5 GWh from 2020
to 2022, of which spent LiFePO4 batteries will account for 53.8% (48.7 GWh) [7].

Compared with traditional fuel vehicles, EV power battery systems use mineral re-
sources such as lithium, cobalt, nickel, manganese, copper, aluminum, iron, phosphorus,
and graphite [8]. Recycling valuable metal resources from discarded lithium batteries is
the key to the sustainable development of the EV industry. On the other hand, if not profes-
sionally treated, potentially toxic components inside them would be directly disposed of
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in the environment, causing serious damage to both humans and the environment [9–11].
Processes of dealing with spent LiFePO4 batteries are the direct regeneration process and
the hydrometallurgical method [12]. Although the direct regeneration process is relatively
simple and inexpensive, the long-term performance of repaired electrode materials could
hardly meet the standard of power battery materials [13]. The hydrometallurgical process
is the mainstream technology for lithium iron phosphate batteries treatment in Chinese
recycling enterprises because of its low energy consumption, high product purity, and wide
adaptability of raw materials. This process mainly involves pretreatment, leaching (selec-
tive leaching of Li or simultaneous leaching of Fe and Li), purification, and preparation of
battery materials. In the leaching process, mineral acids (H2SO4 [14–17], HCl [14,18,19],
HNO3 [14], H3PO4 [14,20–23]) and organic acids (oxalic acid [14,24,25], citric acid [14],
acetic acid [14], methyl sulfonic acid [26], and p-toluene sulfonic acid [26]) are used as
the leaching agent to dissolve the target metal in spent LiFePO4 battery powder. Among
them, H2SO4 is widely used as a leaching agent by lithium battery recycling companies
due to its low price, easy fabrication, and strong acidity. Various impurity ions, such
as Al, Cu, and F, will inevitably enter the leachate and finally affect the physicochemi-
cal properties of regenerated electrode materials. Current research on the purification
process of leachate largely focuses on spent LiCoO2 and ternary batteries; by contrast,
there are few reports on the purification of acid leachate of the spent LiFePO4 battery.
At present, the purification process of leachate includes solvent extraction, ion exchange
and chemical precipitation [27,28]. Solvent extraction and ion exchange can achieve deep
and stable removal of impurity elements, but they also have disadvantages such as high
operating costs and strict control requirements. According to the type of sediment, the
purification process of chemical precipitation can be divided into various methods, such as
hydrolyzation–precipitation [29–31], sulfide precipitation, halide precipitation [32], and
double salt precipitation [33]. Pagnanelli et al. [29] used the chemical precipitation to
preliminarily remove Cu, Fe, Ni, Mn and Al impurities from the leach liquor of LiCoO2
electrodic powder. The results showed that iron was fully removed when the pH value
increased to 3.8, but other metals were only partially removed. The increasing pH deter-
mined the abatement of metal impurities, but simultaneously the loss of Co. Joo et al. [30]
achieved effective removal of impurities including Al, Fe and Cu in pre-treated leach
liquors of ternary cathode material by precipitation at pH 4.8 adjusted by the addition of
4 M NaOH. Kang et al. [31] removed over 99% Fe, Cu and Al in their hydroxides form
by adjusting the pH of leach liquor to 6.5. Weng et al. [32] used Na2S as a precipitator to
effectively remove impurity copper ions in the form of CuS precipitation. Although the
chemical precipitation method is easy to operate and has a high removal efficiency, it is
generally accompanied by the loss of valuable metals. Owing to the complex composition
of the leachate and the strict impurity limits for electrode materials, the combined process
of chemical precipitation and organic solvent extraction is usually required to achieve deep
and stable removal of impurities.

In this paper, sulfuric acid solution commonly used by lithium battery recycling com-
panies is used as the leaching agent to treat spent LiFePO4 battery powder, the leachate
contains various cations, such as Li+, Fe2+, Fe3+, Al3+ and several anions, such as F−,
SO4

2−, and PO4
3−. In the process of chemical precipitation or solvent extraction to re-

move aluminum and fluorine, ferric iron ions tend to preferentially enter the separated
phase, resulting in the loss of valuable elements and increased reagent consumption. In
this study, on the basis of the simultaneous equilibrium principle and mass action law,
the co-precipitation thermodynamics of the Li+–Fe2+/Fe3+–Al3+–F−–SO4

2−–PO4
3−–H2O

system is simulated and calculated to reveal the evolution law of the total equilibrium
concentration of Al, F, P, and Fe, and the phase composition of precipitates at different final
pH values, aiming to understand the precipitation characteristics. In addition, to validate
the feasibility of thermodynamic calculation, trisodium phosphate dodecahydrate was
used as neutralizer and ascorbic acid as a reducing agent to control the final pH value of
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sulfuric acid leachate within predetermined range in an inert atmosphere and monitor the
changes of Al, F, P and Fe contents in the leachate.

2. Experimental
2.1. Materials

Spent LiFePO4 cathode powder was provided by a battery recycling company
(Nantong, China), and it was separated from aluminum foils by thermal treatment and
screening. The composition of collected spent LiFePO4 cathode powder, determined by
inductively coupled plasma optical emission spectroscopy (ICP-OES, SPECTROBLUE SOP)
after leaching with aqua regia, is shown in Table 1. The sulfuric acid leaching solution is
prepared by the leaching reaction of spent LiFePO4 cathode powder with 2.5 M H2SO4
under the conditions of S/L = 1/7, leaching temperature 75 ◦C, and leaching time of 2 h.
Prior to the precipitation, a small amount of reductive iron powder was added to leachate
to remove the copper ions by replacement. It should be noted that since reductive iron
powder was used to remove the copper ion by replacement, the iron ions in the solution
mainly existed in the form of Fe2+. The concentrations of metal ions (Fe, Li, Cu, Al, Na,
K, Ca, Mg) and non-metal ions (P, S, Si) in the sulfuric acid leachate were examined by
ICP-OES. The F content of sulfuric acid leachate was obtained through the fluoride ion
selective electrode method. The composition of sulfuric acid leachate is shown in Table 2.
Aside from main elements P, Fe, Li, and S, the composition of the solution also contains a
small amount of impurity elements such as Al, F, Na, K, Ca, Si and Mg. Ascorbic acid and
trisodium phosphate dodecahydrate used in the experiments were of analytical grade. The
purity of high-purity argon gas was 99.99%.

Table 1. Chemical composition of the spent LiFePO4 cathode powder.

Elements P Fe Li Cu Al F

Wt.% 15.9 38.5 3.76 0.5 1.4 0.8

Table 2. Chemical composition of the sulfuric acid leachate.

Elements P Fe Li Cu Al F

mg/L 22785.0 56320.0 5365.0 0.5 1999.0 1003.1

Elements S Na K Ca Si Mg

mg/L 84749.0 5.5 6.3 24.2 12.5 9.3

2.2. Methods

On the basis of the simultaneous equilibrium principle and mass action law, the co-
precipitation thermodynamics of the Li+–Fe2+/Fe3+–Al3+–F−–SO4

2−–PO4
3−–H2O system

is simulated. The calculation process based on the Newton-Raphson iteration method was
carried out by using Microsoft Excel. Owing to the lack of complete data on the activity
component in the solution, the molar concentration of each species was used to replace the
activity coefficient in the thermodynamic calculation.

The schematic plot of the precipitation experiment set-up is illustrated in Figure 1. In
the bench-scale precipitation experiments, 250 mL of the sulfuric acid leachate was poured
into a three-necked flask immersed in a water bath at 25 ◦C. Afterward, 0.5 g of ascorbic
acid, a reducing agent, was added to the leachate to reduce ferric ions. Simultaneously,
high-purity argon was introduced to prevent the oxidation of ferrous ions. Na3PO4·12H2O
was added to the sulfuric acid leachate in real time to adjust the pH value of the system and
keep it constant at a predetermined value. After the predetermined time, the liquid-solid
separation of the feed solution was carried out, and then the composition of purified
solution was analyzed by ICP-OES and the fluoride ion selective electrode method. The
precipitate was vacuum dried at 60 ◦C for 24 h and then weighed and characterized.
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The phase compositions of the precipitation were studied by X-ray diffraction (XRD,
Rigaku D/max-2500, Rigaku Corporation, Tokyo, Japan) and Fourier transform infrared
spectrometry (FT-IR, Nicolet 6700, Thermo Fisher Scientific, Waltham, USA). The elemental
composition and chemical states on the surface of the electrode particles were detected
by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher Scientific,
Waltham, USA).
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The removal rate of Al3+ and F− as well as the loss rate of Fe during the purification
process were computed by Equation (1).

Ri =
Ci0 × V0 − Ci1 × V1

Ci0 × V0
× 100% (1)

where Ri (%) is the removal rate of Al3+ and F− as well as the loss rate of Fe2+, V0 (mL) is
the volume of sulfuric acid leachate, V1 (mL) is the volume of purified solution, Ci0 (mg/L)
is the concentration of Al3+, F−, and Fe2+ in the sulfuric acid leachate, and Ci1 (mg/L) is
the concentration of Al3+, F−, and Fe2+ in the purified solution.

The loss rate of PO4
3− in the purification process was calculated by Equation (2).

LP =
Cp0 × V0 − Cp1 × V1

CP0 × V0 +
mp×95

380

× 100% (2)

where LP (%) is the loss rate of PO4
3−, V0 (mL) is the volume of sulfuric acid leachate,

V1 (mL) is the volume of purified solution, Cp0 (mg/L) is the concentration of PO4
3− in the

sulfuric acid leachate, Cp1 (mg/L) is the concentration of PO4
3− in the purified solution,

and mp (g) is the Na3PO4·12H2O dosage.

3. Thermodynamic Data and Calculation Model
3.1. Ion Species and Their Thermodynamic Data

In the Li+–Fe2+/Fe3+–Al3+–PO4
3−–SO4

2−–F−–H2O system, the main species in the so-
lution were assumed to be H+, OH−, F−, PO4

3−, HPO4
2−, H2PO4

−, H3PO4, H2SO4, HSO4
−,

Fe2+, SO4
2−, FeSO4(aq), FeOH+, Fe(OH)2(aq), Fe(OH)3

−, Fe(OH)4
2−, FeHPO4(aq), FeH2PO4

+,
FeF+, Fe3+, FeSO4

+, Fe(SO4)2
−, FeOH2+, Fe(OH)2

+, Fe(OH)4
−, Fe2(OH)2

4+, Fe3(OH)4
5+,

FeHPO4
+, FeH2PO4

2+, FeF2+, FeF2
+, FeF3(aq), Li+, LiSO4

−, Li(OH)(aq), LiHPO4
−, Al(OH)2+,

Al(OH)2
+, Al(OH)3(aq), Al(OH)4

−, Al2(OH)2
4+, Al3(OH)4

5+, AlF2+, AlF2
+, AlF3(aq), AlF4

−,
AlF5

2−, and AlF6
3−. The reaction equations among these species and their equilibrium

constant (K) are shown in Table 3.
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Table 3. Thermodynamic equilibrium equations and their equilibrium constants in the Li+–Fe2+/Fe3+–Al3+–PO4
3−–SO4

2−–
F−–H2O system (298 K) [34–36].

Equation No. Reaction log K Chemical Equilibrium Constant Relationship

(3) H2O = H+ + OH− −14 [H2O] = [H+] × [OH−] × 1014

(4) H3PO4 = H+ + H2PO4
− −2.04 [H3PO4] = [H+] × [H2PO4

−] × 102.04

(5) H2PO4
− = H+ + HPO4

2− −7.2 [H2PO4
−] = [H+] × [HPO4

2−] × 107.2

(6) HPO4
2− = H+ + PO4

3− −12.36 [HPO4
2−] = [H+] × [PO4

3−] × 1012.36

(7) H2SO4 = HSO4
− + H+ 3 [H2SO4] = [HSO4

−] × [H+] × 10−3

(8) HSO4
− = SO4

2− + H+ −1.99 [HSO4
−] = [SO4

2−] × [H+] × 101.99

(9) FeSO4(aq) = SO4
2− + Fe2+ −2.2 [FeSO4(aq)] = [SO4

2−] × [Fe2+] × 102.2

(10) FeOH+ = Fe2+ + OH− −4.5 [FeOH+] = [Fe2+] ×[OH−] × 104.5

(11) Fe(OH)2(aq) = Fe2+ + 2OH− −7.4 [Fe(OH)2(aq)] = [Fe2+] ×[OH−]2 × 107.4

(12) Fe(OH)3
− = Fe2+ + 3OH− −10.0 [Fe(OH)3

−] = [Fe2+] × [OH−]3 × 1010.0

(13) Fe(OH)4
2− = Fe2+ + 4OH− −9.6 [Fe(OH)4

2−] = [Fe2+] × [OH−]4 × 109.6

(14) FeHPO4(aq) = Fe2+ + HPO4
2− −3.6 [FeHPO4(aq)] = [Fe2+] × [HPO4

2−] × 103.6

(15) FeH2PO4
+ = Fe2+ + H2PO4

− −2.7 [FeH2PO4
+] = [Fe2+] × [H2PO4

−] × 102.7

(16) FeF+ = Fe2+ + F− −0.8 [FeF+] = [Fe2+] × [F−] × 100.8

(17) FeSO4
+ = Fe3+ + SO4

2− −4.04 [FeSO4
+] = [Fe3+] × [SO4

2−] × 104.04

(18) Fe(SO4)2
− = Fe3+ + 2SO4

2− −5.38 [Fe(SO4)2
−] = [Fe3+] × [SO4

2−]2 × 105.38

(19) FeOH2+ = Fe3+ + OH− −11.81 [FeOH2+] = [Fe3+] × [OH−] × 1011.81

(20) Fe(OH)2
+ = Fe3+ + 2OH− −22.3 [Fe(OH)2

+] = [Fe3+] × [OH−]2 × 1022.3

(21) Fe(OH)4
− = Fe3+ + 4OH− −34.4 [Fe(OH)4

−] = [Fe3+] × [OH−]4 × 1034.4

(22) Fe2(OH)2
4+ = 2Fe3+ + 2OH− −25.1 [Fe2(OH)2

4+] = [Fe3+]2 × [OH−]2 × 1025.1

(23) Fe3(OH)4
5+ = 3Fe3+ + 4OH− −49.7 [Fe3(OH)4

5+] = [Fe3+]3 × [OH−]4 × 1049.7

(24) FeHPO4
+ = Fe3+ + HPO4

2− −8.30 [FeHPO4
+] = [Fe3+] × [HPO4

2−] × 108.30

(25) FeH2PO4
2+ = Fe3+ + H2PO4

− −3.47 [FeH2PO4
2+] = [Fe3+] × [H2PO4

−] × 103.47

(26) FeF2+ = Fe3+ + F− −6.0 [FeF2+] = [Fe3+] × [F−] × 106.0

(27) FeF2
+ = Fe3+ + 2F− −9.07 [FeF2

+] = [Fe3+] × [F−]2 × 109.07

(28) FeF3(aq) = Fe3+ + 3F− −12.1 [FeF3(aq)] = [Fe3+] × [F−]3 × 1012.1

(29) Li(OH)(aq) = Li+ + OH− −0.36 [Li(OH)(aq)] = [Li+] × [OH−] × 100.36

(30) LiSO4
− = SO4

2− + Li+ −0.64 [LiSO4
−] = [SO4

2−] × [Li+] × 100.64

(31) LiHPO4
− = Li+ + HPO4

2− −0.72 [LiHPO4
−] = [Li+] × [HPO4

2−] × 100.72

(32) Al(OH)2+ = Al3+ + OH− −9.01 [Al(OH)2+] = [Al3+] × [OH−] × 109.01

(33) Al(OH)2
+ = Al3+ + 2OH− −18.7 [Al(OH)2

+] = [Al3+] × [OH−]2 × 1018.7

(34) Al(OH)3(aq) = Al3+ + 3OH− −27.0 [Al(OH)3(aq)] = [Al3+] × [OH−]3 × 1027.0

(35) Al(OH)4
− = Al3+ + 4OH− −33.0 [Al(OH)4

−] = [Al3+] × [OH−]4 × 1033.0

(36) Al2(OH)2
4+ = 2Al3+ + 2OH− −20.3 [Al2(OH)2

4+] = [Al3+]2 × [OH−]2 × 1020.3

(37) Al3(OH)4
5+ = 3Al3+ + 4OH− −42.1 [Al3(OH)4

5+] = [Al3+]3 × [OH−]4 × 1042.1

(38) AlF2+ = Al3+ + F− −6.09 [AlF2+] = [Al3+] × [F−] × 106.09

(39) AlF2
+ = Al3+ + 2F− −11.12 [AlF2

+] = [Al3+] ×[F−]2 × 1011.12

(40) AlF3(aq) = Al3+ + 3F− −15 [AlF3(aq)] = [Al3+] ×[F−]3 × 1015

(41) AlF4
− = Al3+ + 4F− −18 [AlF4

−] = [Al3+] ×[F−]4 × 1018

(42) AlF5
2− = Al3+ + 5F− −19.4 [AlF5

2−] = [Al3+] ×[F−]5 × 1019.4

(43) AlF6
3− = Al3+ + 6F− −19.8 [AlF6

3−] = [Al3+] ×[F−]6 × 1019.8

3.2. Solid Species and Their Thermodynamic Data

In the Li+–Fe2+/Fe3+–Al3+–PO4
3−–SO4

2−–F−–H2O system, Fe3(PO4)2·8H2O,
FePO4·2H2O, Al(OH)3, AlPO4, Li3PO4, AlF3, FeF3, FeF2, LiF, Fe(OH)2, and Fe(OH)3
precipitations formed as the pH value and ion concentration in the solution changed.
The solubility product constants Ksp of AlF3 and FeF3, as well as their thermodynamic
data ∆fGi

θ and ∆fSi
θ, have not been reported before in the literature. In this paper, the

Ksp value of AlF3 and FeF3 was estimated according to their solubility and the equilibrium
model of gradual dissociation.
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3.2.1. Calculation of Ksp value of AlF3

Assuming that a certain amount of AlF3 was added to deionized water, when AlF3
reached dissolution equilibrium, the main species in the solution and their equilibrium
equations can be shown in Equations (38)–(43) in Table 2.

According to the simultaneous equilibrium principle and mass action law, the mass
balance equations of F and Al are given as follows:

[F]T = [F−] + [AlF2+] + 2[AlF2
+] + 3[AlF3] + 4[AlF4

−] + 5[AlF5
2−] + 6[AlF6

3−] (44)

[Al]T = [Al3+] + [AlF2+] + [AlF2
+] + [AlF3] + [AlF4

−] + [AlF5
2−] + [AlF6

3−] (45)

where [F]T and [Al]T are designated as the total concentration of F and Al in equilibrium
conditions; [Al3+], [F−], [AlF2+], [AlF2

+], [AlF3], [AlF4
−], [AlF5

2−], and [AlF6
3−] are defined

as the equilibrium concentration for each species in equilibrium conditions.
The chemical equilibrium constant relationship of Equations (38)–(43) in Table 1 is

substituted into Equations (44) and (45) to obtain Equations (46) and (47).

[F]T = [F−] + [Al3+] × [F−] × 106.09 + 2([Al3+] × [F−]2 × 1011.12) + 3([Al3+] × [F−]3 × 1015)
+ 4([Al3+] × [F−]4 × 1018) + 5([Al3+] × [F−]5 × 1019.4) + 6([Al3+] × [F−]6 × 1019.8)

(46)

[Al]T = [Al3+] + [Al3+] × [F−] × 106.09+ [Al3+] × [F−]2 × 1011.12 + [Al3+] × [F−]3 × 1015

+ [Al3+] × [F−]4 × 1018 + [Al3+] × [F−]5 × 1019.4 + [Al3+] × [F−]6 × 1019.8 (47)

According to the literature, the solubility of AlF3 is 0.67 g/100 mL of water at
20 ◦C [34]. Below this temperature, when AlF3 reached dissolution equilibrium, the
[F]T and [Al]T values would be 0.239352 and 0.079784 mol/L, respectively. Combined
with Equations (46) and (47), the [F−] and [Al3+] values were 3.965 × 10−4 mol/L and
9.43 × 10−7 mol/L when AlF3 reached dissolution equilibrium.

The Ksp definition of AlF3(s) is shown in Equation (48). The Ksp value of AlF3(s) was
calculated to be 4.53 × 10−17.

Ksp = [F−]3 × [Al3+] (48)

3.2.2. Calculation of Ksp value of FeF3

Given that a certain amount of FeF3 was added to deionized water, when FeF3 reached
dissolution equilibrium, the main species in the solution and their equilibrium equations
can be shown in Equations (26)–(28) in Table 2.

On the basis of the simultaneous equilibrium principle and mass action law, the mass
balance equations of F and Fe are given as follows:

[F]T = [F−] + [FeF2+] + 2[FeF2
+] + 3[FeF3] (49)

[Fe]T = [Fe3+] + [FeF2+] + [FeF2
+] + [FeF3] (50)

where [F]T and [Fe]T are designated as the total concentration of F and Fe in equilib-
rium conditions; [Fe3+], [F−], [FeF2+], [FeF2

+], and [FeF3] are defined as the equilibrium
concentration for each species in equilibrium conditions.

The chemical equilibrium constant relationship of Equations (26)–(28) in Table 2 is
substituted into Equations (49) and (50) to obtain Equations (51) and (52).

[F]T = [F−] + ([Fe3+] × [F−] × 106.0) + 2([Fe3+] × [F−]2 × 109.07) + 3([Fe3+] × [F−]3 × 1012.1) (51)

[Fe]T = [Fe3+] + [Fe3+] × [F−] × 106.0 + [Fe3+] × [F−]2 × 109.07 + [Fe3+] × [F−]3 × 1012.1 (52)

According to the literature, the solubility of FeF3 is 0.091 g/100 mL of water at 20 ◦C [34].
In this case, when FeF3 reached dissolution equilibrium, the [F]T and [Fe]T values would be
0.024193503 and 0.008064501 mol/L, respectively. From Equations (51) and (52), the [F−]
and [Fe3+] values were 7.52 × 10−6 mol/L and 8.51 × 10−10 mol/L when FeF3 reached
dissolution equilibrium.
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The Ksp definition of FeF3(s) is presented in Equation (53). The Ksp value of FeF3(s)
was calculated to be 3.623 × 10−25.

Ksp = [F−]3 × [Fe3+] (53)

3.2.3. Solid-State Reactions and Their Equilibrium Constant

The possible solid-state reactions among the species in the Li+–Fe2+/Fe3+–Al3+–PO4
3−–

SO4
2−–F−–H2O system and their corresponding equilibrium constants are listed in Table 4.

Table 4. Solid-state reactions and their equilibrium constant of Li+–Fe2+/Fe3+–Al3+–PO4
3−–SO4

2−–F−–H2O system
(298 K) [34–36].

Equation No. Reaction log K Chemical Equilibrium
Constant Relationship

(54) Fe3(PO4)2·8H2O(s) = 3Fe2+ + 2PO4
3− + 8H2O −36.85 [Fe2+]3 × [PO4

3−]2 = 10−36.85

(55) FePO4·2H2O(s) = Fe3+ + PO4
3− + 2H2O −15.0039 [Fe3+] × [PO4

3−] = 10−15.0039

(56) FePO4(s) = Fe3+ + PO4
3− −21.886 [Fe3+] × [PO4

3−] = 10−21.886

(57) Al(OH)3 = Al3+ + 3OH− −32.89 [Al3+] × [OH−]3 = 10−32.89

(58) AlPO4(s) = Al3+ + PO4
3− −20.007 [Al3+] × [PO4

3−] = 10−20.007

(59) Li3PO4(s) = 3Li+ + PO4
3− −10.6253 [Li+]3 × [PO4

3−] = 10−10.6253

(60) AlF3(s) = Al3+ + 3F− −16.3439 [Al3+] × [F−]3 = 10−16.3439

(61) FeF3(s) = Fe3+ + 3F− −24.4409 [Fe3+] × [F−]3 = 10−24.4409

(62) FeF2(s) = Fe2+ + 2F− −5.62709 [Fe2+] × [F−]2 = 10−5.62709

(63) LiF(s) = Li+ + F− −2.77 [Li+] × [F−] = 10−2.77

(64) Fe(OH)2(s) = Fe2+ + 2OH− −16.31 [Fe2+] × [OH−]2 = 10−16.31

(65) Fe(OH)3(s) = Fe3+ + 3OH− −38.8 [Fe3+] × [OH−]3 = 10−38.8

3.3. Thermodynamic model of the Li+–Fe2+–Al3+–PO4
3−–SO4

2−–F−–H2O System

The soluble species in the Li+–Fe2+–Al3+–PO4
3−–SO4

2−–F−–H2O system and their
equilibrium equations are shown in Equations (3)–(16) and (29)–(43) in Table 2, respectively.
Via the simultaneous equilibrium principle, mass action law, and electroneutrality principle,
Equations (66)–(72) were obtained.

[P]T = [PO4
3−] + [HPO4

2−] + [H2PO4
−] + [H3PO4] + [LiHPO4

−] + [FeHPO4(aq)] + [FeH2PO4
+] (66)

[Fe(II)]T = [Fe2+] + [FeSO4(aq)] + [FeOH+] + [Fe(OH)2(aq)] + [Fe(OH)3
−]

+ [Fe(OH)4
2−] + [FeHPO4(aq)] + [FeH2PO4

+] + [FeF+]
(67)

[Li]T = [Li+] + [Li(OH)(aq)] + [LiSO4
−] + [LiHPO4

−] (68)

[S]T = [SO4
2−] + [H2SO4] + [HSO4

−] + [FeSO4(aq)] + [LiSO4
−] (69)

[Al]T = [Al3+] + [AlF2+] + [AlF2
+] + [AlF3(aq)] + [AlF4

−] + [AlF5
2−] + [AlF6

3−]
+ [Al(OH)2+] + [Al(OH)2

+] + [Al(OH)3(aq)] + [Al(OH)4
−] + 2[Al2(OH)2

4+] + 3[Al3(OH)4
5+]

(70)

[F]T = [F−] + [AlF2+] + 2[AlF2
+] + 3[AlF3(aq)] + 4[AlF4

−] + 5[AlF5
2−] + 6[AlF6

3−] + [FeF+] (71)

2[Fe2+] + [FeOH+] + [FeH2PO4
+] + [Li+] + 3[Al3+] + 2[Al(OH)2+] + [Al(OH)2

+] + 4[Al2(OH)2
4+]

+ 5[Al3(OH)4
5+] + 2[AlF2+] + [AlF2

+] + [FeF+] + [H+] = [Fe(OH)3
−] + 2[Fe(OH)4

2−]
+ [H2PO4

−] + 2[HPO4
2−] + 3[PO4

3−] + [LiHPO4
−] + [LiSO4

−] +[Al(OH)4
−] + [F−]

+ [AlF4
−] + 2[AlF5

2−] + 3[AlF6
3−]+2[SO4

2−] + [HSO4
−] + [OH−]

(72)

When a solid phase is formed in the system, each component in the solid phase stable
region must satisfy not only Equations (3)–(16), (29)–(43), and (66)–(72) but also their
corresponding constraint equations. The constraint equations for different solid phase
stable regions are provided in Table 5.
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Table 5. Constraint equations for different solid phase stable region.

Eq no. Equation

(73) ([Fe(II)]O–[Fe(II)]T)/([P]O–[P]T) = 3/2
(74) [Fe2+]3 × [PO4

3−]2 = 10−36.85

(75) [Al]O–[Al]T = [P]O–[P]T
(76) [Al3+] × [PO4

3−] = 9.84 × 10−21

(77) ([Al]O–[Al]T)/([F]O–[F]T) = 1/3
(78) [Al3+] × [F−]3 = 4.53 × 10−17

(79) [([P]O–[P]T) –([Al]O–[Al]T)]/([Fe(II)]O–[Fe(II)]T)) = 2/3
(80) [([Al]O–[Al]T) –([P]O–[P]T)]/([F]O–[F]T)) = 1/3

Where [M] is the equilibrium concentration for each species; [P]T, [Fe(II)]T, [Li]T, [S]T,
[Al]T, and [F]T are designated as the total concentration of phosphate, Fe, Li, sulfate, Al, and
F in equilibrium conditions; [P]O, [Fe(II)]O, [Li]O, [S]O, [Al]O, and [F]O are defined as the
initial total concentrations of phosphate, Fe, Li, sulfate, Al, and F before the precipitation of
solid phases.

The possible stable regions of the Li+–Fe2+–Al3+–PO4
3−–SO4

2−–F−–H2O system and
their corresponding constraint equations are given in Table 6. By assigning values to
[P]O, [Fe(II)]O, [Li]O, [S]O, [Al]O, and [F]O, the equations were solved using Microsoft
Excel in accordance with the Newton-Raphson iteration method. In addition, the most
thermodynamically stable region among all those possible corresponded to the lowest
[Al]T and [F]T at a given pH value.

Table 6. Possible stable regions of Li+–Fe2+–Al3+–PO4
3−–SO4

2−–F−–H2O system and their corresponding constraint
equations.

No. Stable Regions Constraint Equations

1 Liquid phase (3–16) + (29–43) + (66–72)
2 Fe3(PO4)2·8H2O(s) (3–16) + (29–43) + (66–74)
3 AlPO4(s) (3–16) + (29–43) + (66–72) + (75–76)
4 AlF3(s) (3–16) + (29–43) + (66–72) + (77–78)
5 Fe3(PO4)2·8H2O(s) + AlPO4(s) (3–16) + (29–43) + (66–72) + (74) + (76) + (79)
6 Fe3(PO4)2·8H2O(s) + AlF3(s) (3–16) + (29–43) + (66–74) + (77–78)
7 AlPO4(s) + AlF3(s) (3–16) + (29–43) + (66–72) + (76) + (78) + (80)
8 Fe3(PO4)2·8H2O(s) + AlPO4(s) + AlF3(s) (3–16) + (29–43) + (66–72) + (74) + (76) + (78–79) + (80)

3.4. Thermodynamic Model of the Li+–Fe3+–Al3+–PO4
3−–SO4

2−–F−–H2O System

The species in the solution of the Li+–Fe3+–Al3+–PO4
3−–SO4

2−–F−–H2O system and
their equilibrium equations are shown in Equations (3)–(8) and (17)–(43) in Table 1, respec-
tively. In accordance with the simultaneous equilibrium principle, mass action law, and
electroneutrality principle, Equations (81)–(87) were obtained.

[P]T = [PO4
3−] + [HPO4

2−] + [H2PO4
−] + [H3PO4] + [LiHPO4

−] + [FeHPO4
+] + [FeH2PO4

2+] (81)

[Fe(III)]T = [Fe3+] + [FeOH2+] + [Fe(OH)2
+] + [Fe(OH)4

−] + 2[Fe2(OH)2
4+]

+ 3[Fe3(OH)4
5+] + [FeHPO4

+] + [FeH2PO4
2+] + [FeF2+]+ [FeF2

+] + [FeF3(aq)] + [FeSO4
+] + [Fe(SO4)2

−]
(82)

[Li]T = [Li+] + [Li(OH)(aq)] + [LiSO4
−] + [LiHPO4

−] (83)

[S]T = [SO4
2−] + [H2SO4] + [HSO4

−] + [FeSO4
+] +2[Fe(SO4)2

−] + [LiSO4
−] (84)

[Al]T = [Al3+] + [AlF2+] + [AlF2
+] + [AlF3(aq)] + [AlF4

−] + [AlF5
2−] + [AlF6

3−]
+ [Al(OH)2+] + [Al(OH)2

+] + [Al(OH)3(aq)] + [Al(OH)4
−] + 2[Al2(OH)2

4+] + 3[Al3(OH)4
5+]

(85)

[F]T = [F−] + [AlF2+] + 2[AlF2
+] + 3[AlF3(aq)] + 4[AlF4

−] + 5[AlF5
2−] + 6[AlF6

3−] + [FeF+] (86)
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3[Fe3+] + 2[FeOH2+] + [Fe(OH)2
+] + 4[Fe2(OH)2

4+] + 5[Fe3(OH)4
5+] + [FeHPO4

+]
+ 2[FeH2PO4

2+] + [FeSO4
+] + 2[FeF2+] + [FeF2

+] + [Li+] + 3[Al3+] + 2[Al(OH)2+] + [Al(OH)2
+]

+ 4[Al2(OH)2
4+] + 5[Al3(OH)4

5+] + 2[AlF2+] + [AlF2
+] + 2[FeF2+] + [FeF2

+] + [H+] = [Fe(OH)4
−]

+ [H2PO4
−] + 2[HPO4

2−] + 3[PO4
3−] + [LiHPO4

−] + [Fe(SO4)2
−] + [LiSO4

−] +[Al(OH)4
−]

+ [F−] + [AlF4
−] + 2[AlF5

2−] + 3[AlF6
3−] + 2[SO4

2−] + [HSO4
−] + [OH−]

(87)

When a solid phase is formed in the system, each component in the solid phase stable
region must meet Equations (3)–(8), (17)–(43), and (81)–(87), as well as their corresponding
constraint equations. The constraint equations for different solid phase stable regions are
given in Table 7.

Table 7. Constraint equations for different solid phase stable region.

Eq no Equation

(88) [Fe(III)]O–[Fe(III)]T = [P]O–[P]T
(89) [Fe3+] × [PO4

3−] = 1.3 × 10−22

(90) [Al]O–[Al]T = [P]O–[P]T
(91) [Al3+] × [PO4

3−] = 9.84 × 10−21

(92) ([Fe(III)]O–[Fe(III)]T)/([F]O–[F]T) = 1/3
(93) [Fe3+] × [F−]3 = 1.089 × 10−36

(94) [Fe3+] × [OH−]3 = 10−38.8

(95) ([P]O–[P]T)/[([Fe(III)]O–[Fe(III)]T) + ([Al]O–[Al]T)] = 1
(96) ([Fe(III)]O–[Fe(III)]T)/[([P]O–[P]T) + ([F]O–[F]T)] = 1

Where [M] is the equilibrium concentration for each species; [P]T, [Fe(III)]T, [Li]T, [S]T,
[Al]T, and [F]T are designated as the total concentration of phosphate, Fe, Li, sulfate, Al, and
F in equilibrium conditions; [P]O, [Fe(III)]O, [Li]O, [S]O, [Al]O, and [F]O are defined as the
initial total concentrations of phosphate, Fe, Li, sulfate, Al, and F before the precipitation of
solid phases.

The possible stable regions of the Li+–Fe3+–Al3+–PO4
3−–SO4

2−–F−–H2O system and
their corresponding constraint equations are presented in Table 8. The equations were
solved using Microsoft Excel by assigning values to [P]O, [Fe(III)]O, [Li]O, [S]O, [Al]O,
and [F]O on the basis of the Newton-Raphson iteration method. Moreover, the most
thermodynamically stable region among all possible ones corresponded to the lowest [Al]T
and [F]T at a given pH value.

Table 8. Possible stable regions of Li+–Fe3+–Al3+–PO4
3−–SO4

2−–F−–H2O system and their corresponding constraint
equations.

No. Stable Regions Constraint Equations

1 Liquid phase (3–8) + (17–43) + (81–87)
2 FePO4(s) (3–8) + (17–43) +(81–87)
3 AlPO4(s) (3–8) + (17–43) + (81–87)+ (90–91)
4 FeF3(s) (3–8) + (17–43) + (81–87)+ (92–93)
5 Fe(OH)3(s) (3–8) + (17–43) + (81–87) + (94)
6 FePO4(s) + AlPO4(s) (3–8) + (17–43) + (81–87) + (89) + (91) + (95)
7 FePO4(s) + FeF3(s) (3–8) + (17–43) + (81–87) +(89) + (93) + (96)
8 FePO4(s) + Fe(OH)3(s) (3–8) + (17–43) + (81–87) + (89) + (94)
9 AlPO4(s) + FeF3(s) (3–8) + (17–43) + (81–87) + (90–93)

10 AlPO4(s) + Fe(OH)3(s) (3–8) + (17–43) + (81–87) + (90–91) + (94)
11 FeF3(s) + Fe(OH)3(s) (3–8) + (17–43) + (81–87) + (93–94)
12 FePO4(s) + AlPO4(s) + FeF3(s) (3–8) + (17–43) + (81–87) + (89) + (91) + (93) + (95) + (96)
13 FePO4(s) + AlPO4(s) + Fe(OH)3(s) (3–8) + (17–43) + (81–87) +(89) + (91) + (94)
14 AlPO4(s) + FeF3(s) + Fe(OH)3(s) (3–8) + (17–43) + (81–87) + (90–91) + (93–94)
15 FePO4(s) + FeF3(s) + Fe(OH)3(s) (3–8) + (17–43) + (81–87) + (89) + (93–94)
16 FePO4(s) + AlPO4(s) + FeF3(s) + Fe(OH)3(s) (3–8) + (17–43) + (81–87) + (89) + (91) + (93–94)
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4. Results and Discussion

4.1. Li+–Fe2+–Al3+–PO4
3−–SO4

2−–F−–H2O System

Figure 2 shows the element equilibrium total concentration and the solid phases
distribution of the Li+–Fe2+–Al3+–PO4

3−–SO4
2−–F−–H2O system at the initial concentra-

tion of 1 M [P]O, 1 M [Fe]O, 0.8 M [Li]O, 1.5 M [S]O, 0.02 M [Al]O, and 0.02 M [F]O. At
pH < 1.5, the total concentration of each element in the solution remained constant and
no precipitation was generated. At 1.5 ≤ pH ≤ 2.6, the total concentration of aluminum
ions and phosphate ions decreased because the reaction of aluminum ions and phosphate
ions formed AlPO4 precipitate (Figure 2b). AlPO4 was the main precipitate at pH = 1.5–2.6.
At pH ≥ 2.6, the total concentration of iron ions decreased and that of phosphate ions
decreased more sharply because the reaction of ferrous ions and phosphate ions formed
Fe3(PO4)2·8H2O precipitate. Accordingly, the precipitates generated in the solution in-
cluded AlPO4 and Fe3(PO4)2·8H2O when the pH value was above 2.5, and the molar
proportion of Fe3(PO4)2·8H2O increased as the final pH value increased. At pH ≥3.0, the
molar proportion of Fe3(PO4)2·8H2O and AlPO4 remained stable, and Fe3(PO4)2·8H2O
was the main precipitate, AlPO4 was the minor precipitate.
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Figure 2. (a) Elements equilibrium total concentration and (b) solid phases distribution of the
Li+–Fe2+–Al3+–PO4

3−–SO4
2−–F−–H2O system (298 K, [P]O = [Fe(II)]O = 1 M, [Li]O = 0.8 M,

[S]O = 1.5 M, [Al]O = [F]O = 0.02 M).

4.2. Li+–Fe3+–Al3+–PO4
3−–SO4

2−–F−–H2O System

Figure 3 presents the element equilibrium total concentration and the solid phases dis-
tribution of the Li+–Fe3+–Al3+–PO4

3−–SO4
2−–F−–H2O system at the initial concentration

of 1 M [P]O, 1 M [Fe]O, 0.8 M [Li]O, 1.5 M [S]O, 0.02 M [Al]O, and 0.02 M [F]O. At pH = 0,
the total concentration of iron and fluoride ions was lower than the initial value, indicating
that the formation of FeF3 precipitate in the Li+–Fe3+–Al3+–PO4

3−–SO4
2−–F−–H2O system

decreased the total concentration of ferric ions and fluorine ions (Figure 3b). FeF3 was
the only precipitate at pH ≤ 0.8. At pH = 0–1.4, the total concentration of fluoride ion
continuously increased, suggesting that the increase in pH value within the range was
not conducive to the formation of FeF3. At pH ≥ 0.8, the total concentration of phosphate
ions and iron ions substantially decreased because of the formation of FePO4. At pH ≥ 1.4,
the total concentration of aluminum ions began to decrease owing to the formation of
AlPO4, whereas the concentration of fluoride ions also began to decrease because of the
formation of FeF3. At pH = 1.0–3.9, FePO4 was the main precipitate, FeF3 and AlPO4 were
the minor precipitate. At pH ≥ 3.9, the total concentration of phosphate ions started to
increase, because of the disappearance of FePO4 and the mass formation of Fe(OH)3 with
the increase in concentration of hydroxide ions. At pH ≥ 4.0, the molar proportion of FeF3,
AlPO4, and Fe(OH)3 precipitate remained stable, and Fe(OH)3 was the main precipitate,
FeF3 and AlPO4 was the minor precipitate.
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Figure 3. (a) Elements equilibrium total concentration and (b) solid phases distribution of the
Li+–Fe3+–Al3+–PO4

3−–SO4
2−–F−–H2O system (298 K, [P]O = [Fe(III)]O = 1 M, [Li]O = 0.8 M,

[S]O = 1.5 M, [Al]O = [F]O = 0.02 M).

4.3. Precipitation Experiments

Based on the results of above thermodynamic modeling calculation, the sulfuric
acid leachate of spent LiFePO4 battery powder was employed to conduct bench-scale
experiments to validate the feasibility of the separation and purification technology under
the conditions of the reaction temperature of 25 ◦C, reaction time of 5 min, and agitation
rate of 400 rpm.

Figure 4 shows the effects of Na3PO4·12H2O dosage on the final pH value and pre-
cipitation behavior of each element in the solution. Figure 4a depicts the relationship
between Na3PO4·12H2O dosage and the final pH value of the 250 mL solution. As in-
dicated in Figure 4b,c, the final pH value of the solution had a considerable effect on
the removal of aluminum and fluorine impurities by chemical precipitation. When the
amount of Na3PO4·12H2O added was increased from 21.4 g to 25.3 g, the final pH value
increased from 3.05 to 3.77. Correspondingly, the concentration of residual aluminum ions
in the solution decreased from 890.5 mg/L to 27.55 mg/L. Moreover, the removal rate of
aluminum ions increased from 55.48% to 98.62%, the concentration of residual fluoride
ions decreased from 490.5 mg/L to 46.0 mg/L, and the removal rate of aluminum ions
increased from 51.1% to 95.41%. By comparison, when the final pH value increased to 3.90,
the concentration of residual aluminum and fluoride ions only slightly decreased from
27.55 mg/L to 15.95 mg/L and from 46.0 mg/L to 39.78 mg/L, respectively. The effects
of the final pH value on PO4

3−, Fe2+, and Li+ in the solution are illustrated in Figure 4d–f,
respectively. As presented in Figure 4d, e, the loss rate of PO4

3− and Fe2+ increased, when
the final pH value increased from 3.05 to 3.77. Combined with the results of thermody-
namic calculation, the increase in the loss rate of PO4

3− and Fe2+ should be resulted by
the formation of FeF3, AlPO4, Fe3(PO4)2·8H2O, FePO4, and Fe(OH)3. When the final pH
value increased from 3.05 to 3.90, the loss rate of Li+ slightly increased from 0.21% to 2.28%
(Figure 4f). The high final pH value probably resulted in an increase in the amount of
precipitation that contained lithium ions. In conclusion, the final pH value at about 3.77
could deeply purify the aluminum ions and fluoride ions, as well as reduce the loss rate of
phosphate ions and iron ions as much as possible.

The XRD patterns and FT-IR spectra of precipitation obtained at different final pH
values are plotted in Figure 5. As shown in Figure 5a, no obvious characteristic diffraction
peak appeared on the XRD pattern, demonstrating that the precipitation had an amorphous
structure. Figure 5b shows the FTIR spectra of precipitation. The wide absorption peak
at 3424 cm−1 and the small absorption peak at 1630 cm−1 corresponded to the O–H
bond stretching and bending vibrations in the precipitation, respectively [12]. The strong
absorption peak at 1090 cm−1 was attributed to the P–O stretching vibrations in PO4

3− [37].
The small absorption peak at 617 cm−1 represented the Al–O stretching vibrations in
tetrahedral AlO4

5− [38], and the absorption peak at 530 cm−1 corresponded to the Fe–O
stretching vibrations [38]. According to the FTIR spectra of precipitation and the results
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of thermodynamic simulation calculation, the main compositions of precipitation were
AlPO4, Fe3(PO4)2·8H2O, FePO4, and Fe(OH)3.
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Figure 4. Effects of (a) Na3PO4·12H2O dosage on the final pH value and precipitation behavior of (b) Al3+, (c) F−,
(d) PO4

3− and (e) Fe2+ and (f) Li+.
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Figure 5. (a) X-ray diffraction (XRD) patterns and (b) Fourier transform infrared (FTIR) spectra of
precipitate at different final pH value. (agitation rate = 400 rpm, reaction time = 5 min, and reaction
temperature = 25 ◦C).

The SEM–EDS spectra of precipitation under the optimal conditions are presented in
Figure 6. Figure 6a shows that the precipitation was inside small irregular particles. Figure 6b
is a partially enlarged map of precipitation, and its EDS mapping indicated that the precipi-
tation contained various elements, such as P, Fe, O, Al, and F.

The phase composition and surface chemical states of precipitation was further char-
acterized via XPS analysis (Figure 7). The P 2p spectrum in Figure 7a shows that the
peaks corresponding to the binding energies of P 2p3/2 and P 2p1/2 were located at 133.6
and 134.4 eV, respectively, which were caused by spin-orbit coupling. This result was
consistent with the reported binding energies of P–O in PO4

3− [39]. The Fe 2P spectrum
in Figure 7b shows that the spin-orbit doublets of Fe 2p3/2 and Fe 2p1/2 were situated at
approximately 712.0 and 725.0 eV, respectively. Each of them consisted of two main peaks
(709.4 and 711.3 eV for Fe 2p3/2, 722.5 and 724.4 eV for Fe 2p1/2) and two satellites (713.9
and 717.3 eV for Fe 2p3/2, 727.0 and 730.4 eV for Fe 2p1/2) [40]. The results indicated that
the iron element in the precipitation existed in the form of Fe2+ and Fe3+, and the Fe3+/Fe2+

molar ratio was 1.35. Owing to the overlapping photoelectron spectra of Li 1s and Fe 3p,
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Gaussian peak fitting was performed for Li 1s (Figure 7c). The characteristic peak of Li
1s located at 56.6 eV was attributed to Li+ [40]. The O 1s spectrum was fitted with two
peaks (Figure 7d). The strong peak at 531.3 eV was related to the P–O of phosphate groups,
whereas the weak peak at 532.8 eV was associated with O–H. The characteristic peaks
of Al 2p that appeared at 74.7 and 75.1 eV were related to Al–O from AlPO4 (Figure 7e),
indicating that the aluminum element in the precipitation existed in the form of AlPO4.
Figure 7f shows the spectrum of F 1s. The characteristic peak of F 1s centered at 68.5 eV as
ascribed to Fe–F. Therefore, the fluorine element in the precipitation existed as FeF3.
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the precipitate.
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Figure 7. X-ray photoelectron spectroscopy (XPS) spectra of precipitate under optimal conditions.
(agitation rate = 400 rpm, reaction time = 5 min, reaction temperature = 25 ◦C, and final pH value
3.77). (a) P 2p; (b) Fe 2p; (c) Li 1s; (d) O 1s; (e) Al 2p; (f) F 1s.

5. Conclusions

The evolution law of the total equilibrium concentration of Al, Fe, P, and F, and the
phase composition of precipitates at different final pH values are explained using the
thermodynamic mathematical model. By adjusting the final pH value of the Li+–Fe2+/Fe3+–
PO4

3−–SO4
2−–H2O system, Al and F elements were precipitated in solid phases of AlPO4,

and FeF3, whereas P and Fe elements were co-precipitated as Fe3(PO4)2·8H2O, FePO4,
and Fe(OH)3, respectively. Among them, Fe3(PO4)2·8H2O is the main precipitate, and the
precipitate also contains a small amount of FePO4, Fe(OH)3, AlPO4, and FeF3. Therefore,
selective precipitation of Al3+ and F- can be precisely controlled by pH of the leaching
solution, at the same time, the loss rate of P and Fe can be reduced. The removal mechanism
of Al and F was further revealed by characterizing the precipitation via XRD, FTIR, SEM–
EDS, and XPS. Results indicated that the precipitation mainly existed in the form of AlPO4,
Fe3(PO4)2·8H2O, FePO4, Fe(OH)3, and FeF3, consistent with the results of thermodynamic
analysis.
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