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Abstract: This paper considers the applicability of virtual crack closure technique (VCCT) for
calculation of stress intensity factor range for crack propagation in standard metal specimen geometries
with sharp through thickness cracks. To determine crack propagation rate and fatigue lifetime of
a dynamically loaded metallic specimen, in addition to VCCT, standard Forman model was used.
Values of stress intensity factor (SIF) ranges ∆K for various crack lengths were calculated by VCCT
and used in conjunction with material parameters available from several research papers. VCCT was
chosen as a method of choice for the calculation of stress intensity factor of a crack as it is simple and
relatively straightforward to implement. It is relatively easy for implementation on top of any finite
element (FE) code and it does not require the use of any special finite elements. It is usually utilized
for fracture analysis of brittle materials when plastic dissipation is negligible, i.e., plastic dissipation
belongs to small-scale yielding due to low load on a structural element. Obtained results showed that
the application of VCCT yields good results. Results for crack propagation rate and total lifetime for
three test cases were compared to available experimental data and showed satisfactory correlation.

Keywords: virtual crack closure technique (VCCT); stress intensity factor; Forman model; crack
propagation; constant amplitude loading; 2D finite element

1. Introduction

One of the main tasks of advanced structural analysis is the consideration of the crack occurrence
in structure [1], as well as structure lifetime estimation due to fatigue. Fatigue life in general consists
of two phases: crack initiation period and crack growth period [2,3]. Related to that fact, estimation
of the ability of the mentioned structures to resist growth of these cracks is of utmost importance for
estimating the remaining life of the structure in its entirety. Some of the parameters that are commonly
used to characterize and analyze the behavior of a structure containing a crack are energy release
rate G, stress intensity factor K (SIF), Crack Tip Opening Displacement (COTD), and J – integral [4–6].
To predict the value of the mentioned crack parameters, analytical or numerical methods can be used.

One of the most common numerical method used to analyze complex structures is finite element
analysis (FEA) [7,8]. In conjunction with additional calculations, it can be used to determine SIF for a
crack and predict a lifetime of a structure in which that crack is contained. To predict the growth of an
already existing crack in a structure, many different approaches can be used [2], including adaptive
and moving mesh approaches [9–12]. The decision on which approach and fracture parameter will be
used is dependent on a multitude of factors related to the material and geometry of a structure. One of
the first constant amplitude loading crack propagation models that used SIF range to model crack
growth was a model proposed by Paris, Gomez, and Anderson [13]. It is a simple model that has only
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two material parameters that are easily obtained by fitting the model to the available material data.
The biggest shortcoming of that model was that it does not model the threshold region of crack growth
or accelerated crack growth in the region where SIF range approaches values of critical stress intensity
range Kc. On top of that, it does not take into account the effects of stress ratio, so particular model
parameters are required for a stress ratio of interest for a particular problem. These shortcomings of
the Paris model are more or less accounted for by various proposed models that take into account
some or all of these effects [2,4,14].

In this paper, crack propagation in metallic specimens containing sharp through thickness crack
was analyzed using material parameters available in the literature, SIF range and Forman model in
conjunction with the Barsom equation for crack propagation threshold [15]. SIF range for a dynamically
loaded cracked element was calculated from results obtained from FEA in conjunction with the virtual
crack closure technique (VCCT) [16,17]. VCCT was chosen since it can be easily implemented on top of
any basic finite element (FE) code as it is a relatively simple FE post-processing method that does not
require any special finite element types to determine the value of stress intensity factor at the crack tip.
It is easy to implement in a wide range of basic 2D and 3D FE codes that use ordinary finite element
types and linear-elastic analysis. Most frequently, it is used for fracture analysis of brittle materials that
do not exhibit significant plasticity, i.e., for delamination of laminated composites. The groundwork
for VCCT was first presented in the works of Hellen [18] and Parks [19], while the first application on
finite element method (FEM) was done by Rybicki and Kanninen [17] and Rybicki et al. [20]. More
recent books and research papers that cover VCCT theory and applications were published by many
authors, including, but not limited to, Kuna [21], Krueger [16], Leski [22], Bonhomme et al. [23],
Tavares et al. [24], etc.

The outline of this paper is as follows. Section 2 presents and overview of theoretical background
used in the numerical algorithm presented in this paper, as well as some available analytical solutions
for stress intensity factors, used for comparison and validation of VCCT results. Section 3 presents
computer algorithm of the used numerical procedure in more detail. In Section 4, details on test cases
used for validation are presented. Finally, in Section 5, results obtained from numerical algorithm are
presented and compared to experimental data available from other published articles.

2. Theoretical Background

2.1. Crack Propagation Model

In real structures, fatigue crack growth in most cases occurs with variable amplitude time
dependable loading. It is already well established that during these loadings various loading sequence
effects can occur and significantly change the crack growth process. For example, crack tip plasticity
during high load cycles in metals that exhibit significant plastic behavior can cause crack retardation
effect, i.e., decreased crack propagation rate. This has an effect of the prolonged life of the structure
made of such material [14,15]. Nevertheless, since it has been determined that sequence effects can
often cancel each other out, and are often completely unpredictable, simple constant amplitude crack
growth models can be used [2]. These simple models based on constant amplitude loading can be
used to obtain results of sequences of constant amplitude loadings, representing real load sequence
and neglecting mentioned sequence effects. The advantage is that this approach is relatively simple
and gives a conservative estimate of life of a cracked structure.

The simplest, most widely used model is the Paris model. Since, as mentioned earlier, Paris model
does not take into account many effects, a little more complex model can be used if enough material
and load data are available. So, for the purpose of the numerical procedure presented in this paper,
Forman model [2] will be used:

da
dN

=
CF(∆K)mF

(1−R)Kc − ∆K
. (1)
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When material constants for crack growth, CF and mF, and critical stress intensity Kc are known,
the Forman model can model the effect of load asymmetry and the effect of accelerated crack growth
as the SIF range approaches the critical value of SIF range. In order to model the behavior of plates
of various thicknesses and link them to more universal material property, critical stress intensity
value was linked to plane–strain fracture toughness KIc. Irwin presented a model to connect these
two values [4]:

Kc = KIc

√1 + 1.4
t2

(
KIc

σy

)4 (2)

and this model is used in a numerical procedure presented in this paper. This requires additional
material property, yield stress σy, to be known. Since it is always available for metals, this does not
limit the applicability of the presented numerical procedure. To more accurately account for stopping
of crack growth when SIF range approaches threshold value ∆Kth, the threshold value of SIF range
was modeled in such a way to account for load asymmetry with the use of stress ratio R, using Barsom
Equation [15]:

∆KthR = (1−R) · ∆Kth0. (3)

This requires threshold value of SIF for pulse loading ∆Kth0 to be known. In case when ∆Kth0 is
not available, for stress ratio R ≥ 0.1 the threshold value can be computed using expression [25]:

∆KthR = 7.0 · (1− 0.85 ·R). (4)

2.2. Virtual Crack Closure Formulation for 4 and 8-Node Two-dimensional (2D) FEA

In numerical procedure presented in this paper, virtual crack closure technique (VCCT) was used
to calculate SIF range based on FEA results for the models of the particular specimen containing sharp
through thickness crack.

In the available literature, VCCT is also referred to as modified or virtual crack closure method.
VCCT is derived from the crack closure method or two-step crack closure method that is based on
Irwin’s crack closure integral [16]. It assumes that crack extension from a + ∆a to a + 2∆a does not alter
the state at the crack tip in a significant manner. Therefore, the displacements behind the crack tip at
node B are approximately equal to the displacements behind the crack tip at node A when cracks tips
are located at nodes C and B, respectively (Figure 1a). In comparison to two-step crack closure method,
which requires two finite element analyses, VCCT is faster to compute, i.e., more computationally
efficient. The assumption from the VCCT enables us to calculate the work required to close the crack
from one single FE analysis [16] and strain energy release rate G can be calculated by dividing the
work with the created crack surface.
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When 4-node two-dimensional (2D) elements are used to model a crack, strain energy release
rate can be calculated by dividing the work required to close the crack ∆W with the newly created
crack surface:

G = −
∆W
t · ∆a

= −
1

2 · t · ∆a

[
FxB · (uA − uA′) + FyB · (vA − vA′)

]
= −

1
2 · t · ∆a

[
FxB · ∆uA + FyB · ∆vA

]
, (5)

where t is element thickness, ∆a is the length of the elements at the crack front, FxB and FyB are shear
and opening forces at crack tip node B, and ∆uA and ∆vA are shear and opening displacements at a
crack surface node A.

In the expression (4), we can distinguish two parts of energy release rate. One is a result of mode I
crack opening, and other is a result of mode II crack opening (in-plane shear mode), so we can write:

G = GI + GII, (6)

GI = −
1

2 · t · ∆a
FyB · ∆vA, (7)

GII = −
1

2 · t · ∆a
FxB · ∆uA, (8)

where GI and GII are energy release rates for the corresponding crack opening modes.
In the case we model a crack with 8-node 2D elements (Figure 1b), the strain energy release rates

for the corresponding crack opening modes can be calculated as:

GI = −
1

2 · t · ∆a

[
FyB · ∆vA + FyN · ∆vM

]
, (9)

GII = −
1

2 · t · ∆a
[FxB · ∆uA + FxN · ∆uM]. (10)

It has to be noted that, if VCCT is used for the simulation of crack propagation, a kinematically
compatible node releasing scheme has to be used in order to obtain reliable results of strain energy
release rate. If 8-node 2D elements are used, elementwise node release scheme has to be used, i.e.,
edge and midside nodes have to be released simultaneously [16,26].

For test cases in this paper, the calculation of SIF was necessary only for mode I crack opening, so
only the calculation for the value of GI was used. In the case only small-scale yielding is present at the
crack tip, SIF can be calculated from the value of known strain energy release rate GI [4] as:

G =
K2

I

E∗
, (11)

where KI is the value of SIF for mode I crack opening. Value denoted E* is different for the case of
plane-stress or plane-strain condition. In the case of plane-stress condition, it is equal to elasticity
modulus E, where in the case of plane-strain condition it can be calculated as

E∗ =
E

1− ν2 . (12)

where ν represents Poisson’s ratio.
If we calculate SIF only for mode I (opening mode), which is the main crack opening mode in

examples used in this article, the following equations can be derived:

Plane-stress : KI =
√

E ·G, (13)

Plane-strain : KI =

√
E ·G

1− ν2 . (14)
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For the evaluation of the size of elements needed for the FE mesh on the crack path, known
analytical solutions for SIF of the middle tension (M(T)) specimen, given by Irwin and Fedderson [14],
are used:

Irwin : KI = σ
√
πa

[ w
πa

tan
(
πa
w

)] 1
2
, (15)

Fedderson : KI = σ
√
πa

[
sec

(
πa
w

)] 1
2
, (16)

where normal stress σ is calculated as:
σ =

F
t ·w

, (17)

where F represents specimen load, and t and w represent specimen thickness and specimen
width, respectively.

3. Computer Algorithm

The numerical procedure presented in this paper was programmed in MATLAB and implemented
in computer program VC-CGrow. As input data for this program, it is required to have available
certain material data mentioned earlier, and results of crack surface displacements and crack tip forces
acquired from FEA model. Based on this data, the program calculates SIF and crack propagation
rate for a given load and given crack length. Since the program is based on VCCT and finite steps
of crack propagation, SIF between crack length a and a + ∆a is linearly interpolated to give a more
accurate value of SIF for the current crack length. Crack propagation rate and crack propagation
threshold are calculated using Equation (1) and Equation (4), respectively. End of crack propagation
and finite life (cycles at failure) are determined by achieving critical SIF value. It has to be noted that
the implemented procedure does not include the effects of crack tip plasticity, crack closure effects
or effects of overload. Those effects will be studied in future research and implemented in further
development of numerical procedure presented in this article. A more detailed representation of the
numerical procedure currently implemented in program VC-CGrow can be seen in Figures 2–4.
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4. Test Cases and FEA Details

Considering the fact that the experimental data for crack propagation for standard test specimens
was available in various published articles, standard test specimens were selected for the validation
of the presented numerical procedure. These specimens also have known SIF solutions and, as such,
were suitable for the validation of SIF calculated by VCCT in this procedure. Therefore, the numerical
procedure presented in this paper was tested on three different test cases of standard metal specimens
containing sharp through-thickness cracks, subjected to constant amplitude loading. The first test case
refers to the single edge cracked plate made of aluminum alloy 2024-T3 (test case 1) [27]. Second test
case was middle tension specimen (M(T)), [28], made of martensitic structural steel 18G2A (Steel 1.0562,
S355) [29] and third was compact tension specimen (C(T)), [28], made of welded pressure vessel steel
A516 Grade 70 (Steel 1.0473, P355GH) with 45% overmatch weld [30]. All data regarding materials
used in the preparation of test cases are presented in Table 1.

Table 1. Mechanical properties of used materials.

TEST CASE 1 2 3

Material 2024-T3 18G2A (1.0562)
A516 Gr70 (1.0473)

45% overmatch
weld

Yield Strength σy, MPa 324 398 511

Ultimate Tensile strength σUTS, MPa 469 540 580

Young Modulus E, GPa 73.1 210 210

Poisson ratio ν 0.33 0.3 0.3

Plane-Strain Fracture Toughness KIc,
MPa

√
m 37 68 * 91 *

Forman Constants
CF 1 × 10−5 2.23 × 10−6 5.31 × 10−7 **
mF 3.2094 3.073 3.256 **

* estimated value; ** for weld material.

Forman constants are either taken from appropriate articles or, if they were not available, obtained
by fitting curves to available experimental data or Paris models. It should be noted that material
fracture properties used in test case 3 were for weld material and not for the base metal. These values
are denoted with ** in Table 1. In addition, since values of plane-strain fracture toughness were not
available for steels used in this paper, values were estimated based on Charpy impact energy (CVN)
for a given material using Roberts–Newton formula [4,31]:

KIC = 8.47 · (CVN)0.63 (18)

and are denoted with * in Table 1. Specimen dimensions can be seen in Figures 5 and 6. Basic geometry
data and loads of test specimens for particular test cases are shown in Table 2.
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Table 2. Geometry and loads for all test cases.

TEST CASE 1 2 3

Specimen Geometry Single Edge Cracked Plate M(T) C(T)

Specimen Thickness t, mm 6.5 4 12.5

Initial Crack Size a0, mm 17.75 10 12.7

Maximum Load
Fmax. kN 7.2 - 7.061
σmax. MPa 21.3 137.5 -

Minimum Load
Fmin. kN 0.72 - 0.7061
σmin. MPa 2.13 7.5 -

Load Asymmetry Ratio R 0.1 0.0545 0.1

FEA was used to get the required data for various crack sizes, i.e., nodal forces and displacements
needed for VCCT post-processing. Aluminum alloy specimens were modeled as a quarter model and
steel specimens as a half model to alleviate some of the computational load. For the use of VCCT, crack
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front for all test cases was meshed with sufficiently small 8-noded 2D finite elements. Based on tests of
VCCT calculated SIF accuracy in regard to FE size on the crack front, the size of 2 mm × 2 mm was
chosen as a sufficiently small element size that gives reasonably accurate SIF results. A comparison of
VCCT solutions for SIFs with various element sizes at the crack front and known analytical solutions
can be seen in Figure 7. Elements smaller than 2 mm × 2 mm were unnecessary as they should not
significantly contribute to the accuracy of calculated SIFs, only resulting in waste of available computer
resources. Final FE meshes used in crack propagation tests are shown in Figure 8. In the end, results
obtained from the numerical procedure integrated into the program VC-CGrow were compared with
experimental data available in the literature [27,29,30].
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5. Results

For test cases 1 and 2, calculated crack propagation rate was evaluated in comparison to
experimental data available from the works of Mohanty, Verma, and Ray [27] and Skorupa and
Skorupa [29]. For test case 1, it was found that there is a very good correlation with experimental data
for load asymmetry ratio value of R = 0.1 (Figure 9). For test case 2, calculated crack propagation
rate was compared to experimental data and was found to be very accurate for load asymmetry ratio
of R = 0.15. From Figure 10, it can be seen that calculated values for crack propagation rate for load
asymmetry ratio R = 0.5 were somewhat overestimated in comparison to experimental data available
from Skorupa and Skorupa [29].
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Results for crack size versus the number of cycles, obtained with the presented numerical
procedure, were compared to experimental data available in the before mentioned articles, for load
asymmetry ratios given in Table 2. Results can be seen in Figures 11 and 12. Good correlation of crack
growth curve with available experimental data was determined for both test cases. For test case 3,
data for crack size vs. the number of cycles, calculated with numerical procedure implemented in
program VC-CGrow, was compared to experimental data available from the article by Sarzosa et al. [30].
Good correlation with experimental data can also be seen in this case (Figure 13).

Predicted lifetime of structural elements was compared to available data where possible.
Experimental data for number of cycles to failure was available in the above-mentioned articles
for test cases 1 and 3. Accuracy in comparison to data available from experiments was found to be
2.3% or less. Predicted number of cycles to failure for all test cases, as well as available experimental
data, can be seen in Table 3.
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Table 3. Predicted fatigue life in comparison to experimental results.

Test Case 1 2 3

Predicted Cycles to Failure Npf 125,626 115,801 1,068,030
Cycles to Failure–Experiment(data from [27,29,30]) Nef 125,088 - 1,044,444

Deviation 0.43% - 2.3%
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6. Discussion

In this paper, the numerical procedure for calculating crack propagation was presented and
results obtained with the use of the presented procedure was analyzed. The numerical procedure
relies on FEA and VCCT method for the calculation of SIF range, and on available material data for
the calculation of crack growth rate. Test cases included side cracked plate made from aluminum
alloy, M(T) specimen made from 18G2A steel and a C(T) specimen made from A516 Grade70 welded
steel, with crack progressing through weld material. These test cases were selected because of the
availability of experimental data in published articles. Mentioned experimental data was used for
the validation of the presented numerical procedure. Calculated crack propagation rate curves were
compared to experimental data for two test cases, side cracked plate and M(T) specimen. In addition,
crack propagation curves were validated against available experimental data for all test cases, and the
calculated fatigue lifetime of cracked specimens was compared to experimental values for side cracked
plate and C(T) specimen.

Two-dimensional VCCT was shown to provide reliable results for SIF range needed in the
calculation of crack growth rate. Calculated results for crack propagation and structural lifetime were
compared to experimental data available in three different articles. Linear interpolation between SIF
results for two VCCT steps did not have any noticeable impact on the calculated fatigue lifetime of the
structure. In addition, negative impact of linear interpolation between two values of SIF calculated
by VCCT cannot be seen or identified on any of the calculated crack propagation curves, given that
the calculated curves closely follow the experimental data. Calculated fatigue lifetime was in line
with experimental results. Since numerical procedure did not include various effects, such as plastic
zone size, crack retardation effects, etc., further attempts are needed to include these effects in the
existing numerical procedure. This should enable us to assess the influence of the mentioned effects on
the prediction of fatigue lifetime for cracked specimens using the numerical procedure presented in
this article.
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Nomenclature

a0 initial crack size
ai crack size for cycle i
a crack size
a/w relative crack size
CF, mF material constants for Forman model
CVN Charpy impact energy
da/dN crack propagation rate
∆a crack extension, length of the elements at the crack front
∆K stress intensity factor range for a load cycle
∆Kth0 threshold stress intensity factor range for R = 0
∆KthR threshold stress intensity factor range for specific load asymmetry ratio R
∆u shear displacement at crack surface node
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∆v opening displacement at crack surface node
∆W work required to close the crack along one element side
E elasticity modulus
F specimen loading force
Fmin minimum loading force in a cycle
Fmax maximum loading force in a cycle
Fx shear force at the crack tip
Fy opening force at the crack tip
G strain energy release rate
GI strain energy release rate for crack opening mode I
GII strain energy release rate for crack opening mode II
K stress intensity factor
KI stress intensity factor for crack opening mode I
KII stress intensity factor for crack opening mode II
Kmin minimum stress intensity factor in a load cycle
Kmax maximum stress intensity factor in a load cycle
KIc critical stress intensity factor for plane-strain conditions, fracture toughness
Kc critical stress intensity factor
Nef experimental results for cycles to failure
Npf predicted cycles to failure
R load asymmetry ratio
σ normal stress
σUTS ultimate tensile strength
σmin minimum normal stress in a cycle
σmax maximum normal stress in a cycle
σy, σ0.2 yield stress
t specimen and element thickness
u x-coordinate of crack surface node after load
v y-coordinate of crack surface node after load
w specimen width
ν Poisson ratio
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